???jsp.display-item.identifier???
https://repositorio.unipampa.edu.br/jspui/handle/riu/8419
Tipo: | Trabalho de Conclusão de Curso |
metadata.dc.title: | Uso de redes neurais artificiais para determinação de pixels indicando água em uma imagem de satélite |
metadata.dc.title.alternative: | Use of artificial neural networks to determine pixels indicating water in a satellite image |
Autor(es): | Elesbão , Igor Silveira |
Primeiro Orientador: | Galafassi, Cristiano |
1° Membro da banca: | Galafassi, Cristiano |
2° Membro da banca: | Carpes, Charles Quevedo |
3° Membro da banca: | Gass, Sidnei Luís Bohn |
Resumo: | As enchentes são problemas enfrentados por inúmeras pessoas, em diversas localidades. Pode-se definir enchente como uma grande quantidade de água que flui devido ao excesso de chuva. O processo de mensuração e predição de áreas afetadas é um processo muitas vezes custoso, seja de conhecimento, ou hardware para processamento de mapas, através de métodos clássicos de sensoriamento remoto. Sabendo disto, este trabalho traz uma alternativa ao uso dos métodos clássicos, onde é proposto para classificar e identificar as áreas alagadas, um modelo baseado em Rede Neural Artificial (RNA). O uso de Redes Neurais Artificiais hoje em dia está sendo difundido e a grande vantagem no uso de RNAs está em sua grande adaptabilidade. Ao usar um modelo baseado em RNA pode-se, por exemplo, treinar a RNA para detecção de pixels que indiquem água na Bacia Hidrográfica de um determinado rio, conforme proposto neste trabalho, e posteriormente adaptar e treinar este modelo para outras Bacias Hidrográficas. Portanto, ao se utilizar um modelo de RNA baseado em um Multi Layer Perceptron (MLP), que é um modelo especializado em classificação de dados, pode-se concluir que a segmentação de imagens pode ser realizada através deste, mas que há limites. Foram implementados quatro modelos baseados em MLP, os quais receberam treinamento com base em dados extraídos de 7 bandas do sensor OLI do satélite Landsat 8. Após treinamento, os quatro modelos geraram mascaras em preto e branco, indicando quando em preto que o pixel fora classificado como sendo “água”, caso contrário como “não água”. |
Abstract: | Floods are problems faced by countless people in different locations. Filling can be defined as a large amount of water flowing due to excessive rainfall. The process of measuring and predicting verified areas is often a costly process, whether in terms of knowledge or hardware for map processing, using classic methods of remote sensing. Knowing this, this work brings an alternative to the use of classical methods, where it is proposed to classify and identify the flooded areas, a model based on Artificial Neural Network (ANN). The use of Artificial Neural Networks today is being widespread and the great advantage of using ANNs is their great adaptability. By using an ANN-based model, it is possible, for example, to train an ANN to detect pixels that indicate water in the Hydrographic Basin of a certain river, as the standard in this work, and later adapt and train this model for other Hydrographic Basins. Therefore, when using an ANN model based on a Multi-Layer Perceptron (MLP), which is a model specialized in data classification, it can be concluded that image segmentation can be performed through it, but that there are limits. Four models based on MLP were implemented, which received training based on extracted data of 7 bands of the OLI sensor of the Landsat 8 satellite. After training, the four models generated masks in black and white, indicating when in black that the pixel was classified as being “water”, otherwise as “not water”. |
metadata.dc.subject: | Aprendizagem de máquina Processamento de imagens Backpropagation Butuí Bacia hidrográfica Tensorflow Sensoriamento remoto Machine learning Image processing Remote sensing Watershed |
CNPQ: | CNPQ::ENGENHARIAS |
Idioma: | por |
metadata.dc.publisher.country: | Brasil |
metadata.dc.publisher: | Universidade Federal do Pampa |
Sigla da Instituição: | UNIPAMPA |
Campus: | Campus Itaqui |
metadata.dc.identifier.citation: | ELESBÃO, Igor Silveira. Uso de redes neurais artificiais para determinação de pixels indicando água em uma imagem de satélite. 2023. 33 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Cartográfica e de Agrimensura) - Universidade Federal do Pampa, Itaqui, 2022. |
Tipo de acesso: | Acesso Aberto |
metadata.dc.identifier.uri: | https://repositorio.unipampa.edu.br/jspui/handle/riu/8419 |
metadata.dc.date.issued: | 2-Feb-2023 |
???org.dspace.app.webui.jsptag.ItemTag.appears??? | Engenharia de Agrimensura |
???org.dspace.app.webui.jsptag.ItemTag.files???
???org.dspace.app.webui.jsptag.ItemTag.file??? | ???org.dspace.app.webui.jsptag.ItemTag.description??? | ???org.dspace.app.webui.jsptag.ItemTag.filesize??? | ???org.dspace.app.webui.jsptag.ItemTag.fileformat??? | |
---|---|---|---|---|
Igor Silveira Elesbão - 2022.pdf | 1.65 MB | Adobe PDF | ???org.dspace.app.webui.jsptag.ItemTag.view??? |
???jsp.display-item.copyright???