Use este identificador para citar ou linkar para este item: https://repositorio.unipampa.edu.br/jspui/handle/riu/241
Tipo: Dissertação
Título: Metodologia para previsão de carga de curtíssimo prazo considerando variáveis climáticas e auxiliando na programação de despacho de pequenas centrais hidrelétricas
Autor(es): Bordignon, Sérgio
Primeiro Orientador: Bernardon, Daniel Pinheiro
Resumo: A previsão de carga é uma atividade de grande importância no Setor Elétrico, tendo em vista que a maioria dos estudos de planejamento e operação dos sistemas elétricos necessita de uma boa estimativa da carga a ser atendida. Na literatura encontram-se diversas metodologias para projeção de carga elétrica nos distintos horizontes de planejamento, porém limitadas a sistemas elétricos de médio e grande porte e poucas são as propostas de projeção de demanda no horizonte de curtíssimo prazo, principalmente para pequenas empresas do Setor Elétrico. O objetivo deste trabalho é apresentar uma metodologia inovadora de previsão de carga, a curtíssimo prazo, que considere as influências das condições climáticas e que possa auxiliar na programação do regime de operação de uma Pequena Central Hidrelétrica (PCH), principalmente em épocas de estiagem, quando a disponibilidade de água é restrita. A metodologia proposta envolve a criação de um modelo probabilístico discreto (cadeia de Markov) a partir da classificação dos dados históricos em um Mapa Auto-Organizável (SOM). Assim, é possível se estimar a probabilidade de um determinado nível de demanda acontecer dada uma condição climática atual, bem como o número de intervalos de tempo (horas) até que isso aconteça. Com estas informações é possível elaborar a melhor agenda de funcionamento da PCH de forma que a mesma esteja em funcionamento nos momentos em que a demanda atingir os valores máximos. O método proposto apresenta como diferencial em relação aos demais métodos existentes o fato de considerar a influência das variáveis climáticas (temperatura, umidade relativa do ar e velocidade do vento) para a previsão de demanda de energia elétrica no curtíssimo prazo, além de que os valores de entrada de demanda de energia e das variáveis climáticas (temperatura e umidade relativa do ar) são obtidos em tempo real, através de um sistema SCADA. Esta metodologia foi aplicada utilizando-se os dados reais de uma pequena concessionária de distribuição de energia elétrica do Rio Grande do Sul, mostrando resultados satisfatórios, suficientes para permitir a sua aplicação prática.
Abstract: The electrical charge forecast is an activity of great importance in the Electricity Sector, considering that most studies of electrical systems planning and operation require a good estimative of the charge to be fulfilled. In books, there are various methodologies to have the electrical charge projection in different planning horizons, but limited to medium and large electrical systems. Furthermore, there are only a few demand projection proposals in the very short-term horizon, especially for small Electricity Sector companies. The aim of this paper is to present an innovative methodology in order to have the charge forecast, in a very short-term, which considers the climatic conditions influence and is able to assist the operation system programming of a Small Hydroelectric Power Plant, particularly in times of drought when water availability is restricted. The proposed methodology involves creating a discrete probabilistic pattern (Markov chain) from the historical data classification in a Self-Organizing Map (SOM). It is therefore possible to estimate the probability of reaching a certain demand level, taking the current climatic condition, as well as the periods of time (hours) until it happens. With this information it is possible to develop the best plant operation schedule so that it operates when the demand reaches its maximum numbers. The proposed method presents as differentials upon the other existing methods, the fact of considering the climatic variables influence (temperature, air humidity and wind speed) to forecast electricity demand in the very short-term, as well as the energy demand input values and climate variables obtainment (temperature and air humidity) in real time via a SCADA system. This methodology was applied using real data from a small electricity distribution plant in Rio Grande do Sul, showing satisfactory results, enough to allow their practical application.
Palavras-chave: Despacho de PCH
Previsão de demanda
Curtíssimo prazo
Influências climáticas
Mapas auto-organizáveis
Small hydroelectric power plant release
Demand forecast
Very short-term
Climatic influences
Self-organizing maps
CNPq: CNPQ::ENGENHARIAS
Editor: Universidade Federal do Pampa
Campus: Campus Bagé
URI: http://dspace.unipampa.edu.br/jspui/handle/riu/241
Data do documento: 29-Jun-2012
Aparece nas coleções:Mestrado em Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
107110004.pdf2.89 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.