Use este identificador para citar ou linkar para este item:
https://repositorio.unipampa.edu.br/jspui/handle/riu/6154
Tipo: | Trabalho de Conclusão de Curso |
Título: | Mensuração automática de espessura de gordura subcutânea a partir de imagens ultrassonográficas de bovinos utilizando deep learning |
Autor(es): | Bragamonte, Jean da Silva |
Primeiro Orientador: | Camargo, Sandro da Silva |
Coorientador: | Cardoso, Leandro Lunardini |
1° Membro da banca: | Camargo, Sandro da Silva |
2° Membro da banca: | Heinen, Milton Roberto |
3° Membro da banca: | Piovesan, Sandra Dutra |
Resumo: | Atualmente, a pecuária de corte é uma das principais atividades econômicas no Brasil, tendo uma grande participação nas exportações. Devido às exigências dos mercados internacionais, a busca pelo incremento da qualidade da carne tem se tornado uma preocupação preponderante em toda a cadeia produtiva. Neste sentido, diferentes estratégias de melhoramento genético têm sido utilizadas, dentre elas está a busca por bovinos com melhor acabamento de gordura corporal. A avaliação de gordura corporal é realizada em diferentes momentos da cadeia produtiva, na maioria das vezes de forma não invasiva, com o animal vivo e com o uso de ultrassom. A partir das imagens de ultrassom obtidas, um especialista realiza manualmente a classificação de acabamento de gordura, gerando uma demora no processo que acaba prejudicando a veracidade dos resultados obtidos. Este trabalho tem como objetivo desenvolver uma abordagem automática de avaliação de acabamento de gordura em bovinos, baseada em redes neurais convolucionais, a partir de imagens ultrassonográficas. As imagens para construção dos modelos de regressão foram fornecidas pela Associação Brasileira de Hereford e Braford e foram previamente classificadas por um especialista. Das 7951 imagens utilizadas no projeto, 6758 foram destinadas ao treinamento da rede e 1193 para testes. A capacidade de generalização dos classificadores, foi avaliada pela correlação dos resultados obtidos com os valores previamente classificados que foram fornecidos. De acordo com especialista, a correlação das classificações e das previsões deve estar acima de 0.85. A correlação dos resultados da rede com os resultados reais foi de 0.97. Essa correlação dos resultados finais, comprovam a eficácia do uso de Redes Neurais Convolucionais para automatizar o processo de classificação de gordura subcutânea em imagens ultrassonográficas de bovinos. |
Abstract: | Currently, livestock is one of the main economic activities in Brazil and has a large share of the country’s exports. Due to the demands of international markets, the search for increased meat quality has become a preponderant concern in the whole production chain. In this sense, different strategies of genetic improvement have been used, among them, is a search for cattle with better body fat finishing. The evaluation of body fat is performed at different moments in the production chain, most of the time noninvasively, with live animals and with the use of ultrasound. From the obtained ultrasound images, a specialist manually performs the fat finishing classification, generating a delay in the process, that ends up harming the veracity of the results obtained. This study aims to develop an automatic approach to evaluate the finished fat in cattle, based on convolutional neural networks, from ultrasonographic images. The images for construction of the regression models were provided by the Brazilian Association of Hereford and Braford and were previously classified by a specialist. Of the 7,951 images used in the project, 6,758 were separated for network training and 1,193 for testing. The generalizability of the classifiers was evaluated by the correlation of the results obtained with the previously classified values that were provided. According to a specialist, the correlation of the classifications and the predictions should be at 0.85 or greater. The correlation of the results of the network with the actual results was 0.97. This correlation of the final results prove the effectiveness of the use of Convolutional Neural Networks to automate the process of subcutaneous fat classification in ultrasound images of bovine. |
Palavras-chave: | Redes neurais convolucionais Aprendizado de máquina Carcaça bovina. Classificação de gordura Convolution neural network Machine learning Bovine carcass Fat classification |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal do Pampa |
Sigla da Instituição: | UNIPAMPA |
Campus: | Campus Bagé |
Citação: | BRAGAMONTE, Jean da Silva. Mensuração automática de espessura de gordura subcutânea a partir de imagens ultrassonográficas de bovinos utilizando deep learning. 70 p. 2019. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal do Pampa, Campus Bagé, Bagé, 2019. |
Tipo de Acesso: | Acesso Aberto |
URI: | https://repositorio.unipampa.edu.br/jspui/handle/riu/6154 |
Data do documento: | 29-Jun-2019 |
Aparece nas coleções: | Engenharia de Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TCC Jean Bragamonte.pdf | 3.1 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.