???jsp.display-item.identifier??? https://repositorio.unipampa.edu.br/jspui/handle/riu/5729
???org.dspace.app.webui.jsptag.ItemTag.full???
???org.dspace.app.webui.jsptag.ItemTag.dcfield??????org.dspace.app.webui.jsptag.ItemTag.value??????org.dspace.app.webui.jsptag.ItemTag.lang???
dc.contributor.advisor1Pinho, Leonardo Bidese de-
dc.creatorSoares, Ânderson Fischoeder-
dc.date.accessioned2021-06-25T13:40:43Z-
dc.date.available2021-06-17-
dc.date.available2021-06-25T13:40:43Z-
dc.date.issued2021-04-09-
dc.identifier.citationSOARES, Ânderson Fischoeder. TouceiraTech: um Farm Management Information System para pecuária de precisão baseado em predição com redes neurais recorrentes .144.: il. 2021. Dissertação (Mestrado em Computação Aplicada) – Universidade Federal do Pampa, Campus Bagé, Bagé, 2021.pt_BR
dc.identifier.urihttp://dspace.unipampa.edu.br:8080/jspui/handle/riu/5729-
dc.description.abstractTo increase productivity in beef cattle ranching it is essential to improve pasture manage ment, which demands periodic measurement of the mass and accumulation of forage and adjustment of stocking rate. Therefore, it is important to develop tools capable of helping cattle ranchers in this process. The present work, supported initially by an exploratory methodology and later by an explanatory one, proposes, implements and evaluates Tou ceiraTech, a prototype of FMIS for Precision Cattle Raising capable of collecting, storing, preprocessing, predicting and visualizing data on forage accumulation rate, necessary for adjusting the stocking rate in a georeferenced area of interest. TouceiraTech was designed in an interdisciplinary way, from the expansion of an original model of forage availabil ity prediction, based on machine learning with LSTM-type Artificial Neural Networks with field vegetation data obtained by historical, direct, destructive sampling in experi ments carried out to evaluate animal production in different management conditions of the native field. In the prediction model are aggregated meteorological data, remotely collected from an automatic weather station near the region of interest, and also mete orological forecast data. These data are automatically pre-processed by TouceiraTech to estimate specific variables, with emphasis on a new automated approach to estimate evapotranspiration. In addition, it allows the use of non-destructive indirect sampling of vegetation, based on NDVI, from the processing of aerial images incorporated into its spa tial database. The results demonstrate the effectiveness of automated periodic collection of meteorological data needed for prediction, from remote databases of INMET, INPE and NOAA. In particular, they prove that changes in the model training approach, in a stratified way, complemented by adjustments in its input variables, allowed the design of specialized models by treatment types with accuracy significantly higher than that of the original model. Additionally, they indicate the potential of incorporating georeferenced aerial images to enable a decision support system to adjust stocking rates based on indirect sampling with low operational cost, replacing the direct method.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal do Pampapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectManejo da pastagempt_BR
dc.subjectSistemas de apoio à decisãopt_BR
dc.subjectMétodos de amostragempt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectAjuste de lotaçãopt_BR
dc.subjectTaxa de acúmulopt_BR
dc.subjectPasture managementpt_BR
dc.subjectDecision support systemspt_BR
dc.subjectSampling methodspt_BR
dc.subjectRemote sensingpt_BR
dc.subjectStocking ratept_BR
dc.subjectAccumulation ratept_BR
dc.titleTouceiraTech: um Farm Management Information System para pecuária de precisão baseado em predição com redes neurais recorrentespt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor-co1Perez, Naylor Bastiani-
dc.contributor.referee1Pinho, Leonardo Bidese de-
dc.contributor.referee2Ferreira, Ana Paula Lüdtke-
dc.contributor.referee3Bremm, Carolina-
dc.contributor.referee4Trentin, Gustavo-
dc.publisher.initialsUNIPAMPApt_BR
dc.publisher.programMestrado Acadêmico em Computação Aplicadapt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApt_BR
dc.description.resumoPara aumentar a produtividade na pecuária de corte é fundamental aprimorar o manejo do pasto, o que demanda a mensuração periódica da massa e do acúmulo de forragem e o ajuste da taxa de lotação. Portanto, mostra-se relevante desenvolver ferramentas capazes de auxiliar os pecuaristas neste processo. O presente trabalho, amparado inicialmente por uma metodologia exploratória e, posteriormente, explicativa, propõe, implementa e avalia o TouceiraTech, um protótipo de FMIS para Pecuária de Precisão capaz de coletar, armazenar, pré-processar, predizer e visualizar dados sobre a taxa de acúmulo, necessária para o ajuste da taxa de lotação em uma área de interesse georreferenciada. O TouceiraTech foi projetado de forma interdisciplinar, a partir da expansão de um modelo original de predição de disponibilidade de forragem, baseado em aprendizado de máquina com Redes Neurais Artificiais do tipo LSTM com dados de vegetação campestre obtidos pela amostragem histórica, direta, destrutiva, em experimentos realizados para avaliar a produção animal em diferentes condições de manejo do campo nativo. No modelo de predição são agregados dados meteorológicos, coletados remotamente de estação meteorológica automática próxima à região de interesse e, também, dados de previsão meteorológica. Esses dados são automaticamente pré-processados pelo TouceiraTech para estimação de variáveis específicas, com destaque para uma nova abordagem automatizada para a estimativa da evapotranspiração. Além disso, permite o uso de amostras indiretas não destrutivas da vegetação, com base no NDVI, a partir do processamento de imagens aéreas incorporadas ao seu banco de dados espacial. Os resultados demonstram a eficácia das coletas periódicas automatizadas dos dados meteorológicos necessários para a predição, a partir de bases remotas do INMET, INPE e NOAA. Em especial, comprovam que mudanças na abordagem de treinamento do modelo, de forma estratificada, complementada por ajustes nas suas variáveis de entrada, permitiram a concepção de modelos especializados por tipos de tratamento com acurácia significativamente superior à do modelo original. Adicionalmente, indicam o potencial da incorporação de imagens aéreas georreferenciadas para viabilizar um sistema de suporte à decisão de ajuste de taxa de lotação com base em amostragem indireta de baixo custo operacional, em substituição ao método direto.pt_BR
dc.publisher.departmentCampus Bagépt_BR
???org.dspace.app.webui.jsptag.ItemTag.appears???Mestrado em Computação Aplicada

???org.dspace.app.webui.jsptag.ItemTag.files???
???org.dspace.app.webui.jsptag.ItemTag.file??? ???org.dspace.app.webui.jsptag.ItemTag.description??? ???org.dspace.app.webui.jsptag.ItemTag.filesize??????org.dspace.app.webui.jsptag.ItemTag.fileformat??? 
Dissertacao_AndersonFischoeder__5_.pdf10.48 MBAdobe PDF???org.dspace.app.webui.jsptag.ItemTag.view???


???jsp.display-item.copyright???