UNIVERSIDADE FEDERAL DO PAMPA

HÉCTOR GUSTAVO FERRIZO TOLEDO

MODELO GEOLÓGICO 3D E ESTIMATIVA DE RECURSOS DE UM CORPO CALCÁRIO NO URUGUAI

> Caçapava do Sul 2024

HÉCTOR GUSTAVO FERRIZO TOLEDO

MODELO GEOLÓGICO 3D E ESTIMATIVA DE RECURSOS DE UM CORPO CALCÁRIO NO URUGUAI

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mineral da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Engenharia Mineral.

Orientador: Dr. Felipe Guadagnin

Caçapava do Sul 2024

Ficha catalográfica elaborada automaticamente com os dados fornecidos pelo autor através do Módulo de Biblioteca do Sistema GURI (Gestão Unificada de Recursos Institucionais).

F394m Ferrizo Toledo, Héctor Gustavo Modelo geológico 3D e estimativa de recursos de um corpo calcário no Uruguai / Héctor Gustavo Ferrizo Toledo. 75 p.
Dissertação (Mestrado) -- Universidade Federal do Pampa, MESTRADO EM ENGENHARIA MINERAL, 2024. "Orientação: Felipe Guadagnin".
1. Dissertaçã Programa de Pós-Graduação. I. Título.

HÉCTOR GUSTAVO FERRIZO TOLEDO

MODELO GEOLÓGICO 3D E ESTIMATIVA DE RECURSOS DE UM CORPO CALCÁRIO NO URUGUAI

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mineral da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Engenharia.

Dissertação defendida e aprovada em: 04 de julho de 2024.

Banca examinadora:

Profa. Dra. Luciana Arnt Abichequer Orientadora UNIPAMPA

Prof. Dr. Ítalo Gomes Gonçalves UNIPAMPA

Prof. Dr. Felipe Guadagnin UNIPAMPA

SISBI/Folha de Aprovação 1521804 SEI 23100.010521/2024-28 / pg. 1

Assinado eletronicamente por **ITALO GOMES GONCALVES**, **PROFESSOR DO MAGISTERIO SUPERIOR**, em 21/08/2024, às 13:53, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

Assinado eletronicamente por **FELIPE GUADAGNIN**, **PROFESSOR DO MAGISTERIO SUPERIOR**, em 22/08/2024, às 07:04, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

Assinado eletronicamente por LUCIANA ARNT ABICHEQUER, PROFESSOR DO MAGISTERIO SUPERIOR, em 26/08/2024, às 15:09, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site <u>https://sei.unipampa.edu.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **1521804** e o código CRC **9A8AB5E9**.

AGRADECIMENTO

Quero agradecer primeiramente a meu familia.

Ao meu Orientador Felipe, pela paciência, encorajamento e incentivo para a finalização deste trabalho.

Ao Engenheiro Ernesto Lima e a empresa Calizas del Uruguay SAS, pela disponibilização dos dados de pesquisa mineral.

À professora Luciana, que sempre me auxiliou em todos os trâmites universitários como coordenadora do PPGEM.

À Unipampa, Campus Caçapava do Sul, por ter me aceitado como aluno.

RESUMO

Neste trabalho de pesquisa foi realizada uma avaliação de um corpo de calcário no Uruguai, usando técnicas conjuntas para a avaliação do depósito mineral, desde o banco de dados, incluindo amostras de superfície e sondagem, mapeamento de superfície, modelo digital de terreno e elaboração de uma base planialtimétrica, desenvolvendo o modelo tridimensional e cálculo das reservas mineiras. O modelo 3D do corpo de minério foi construído a partir dos contatos geológicos e da orientação das superfícies estruturais (acamamento e foliação metamórfica), mapeados de forma remota e em campo. Foram adquiridas imagens aéreas da área de estudo, com aeronave pilotada remotamente. As imagens foram processadas por fotogrametria digital para a produção de modelo digital de superfície e ortofotomosaico. Os dados adquiridos no projeto e as informações disponíveis foram integradas em 3D. Os contatos geológicos e os vetores de orientação estrutural foram processados utilizando o software Dips. O modelo geológico 3D e o cálculo dos recursos minerais foram realizados com o software livre RecMin. Com o modelo tridimensional e o modelo de blocos foi possível obter o volume e os teores da ocorrência mineral. O modelo de blocos dentro do modelo geológico 3D para todo o corpo de calcário, estimou mais de 135 milhões de toneladas a uma profundidade de até 50 m. As reservas de calcário também foram calculadas para um setor que contém informações de 4 furos, obtendo 3.747.600 de toneladas correspondentes a calcário com carbonato de cálcio acima de 90%.

Palavras-Chave: Fotogrametria, modelagem tridimensional, estimativa de volume.

ABSTRACT

In this research work, an evaluation of a limestone body in Uruguay was carried out, using joint techniques for the evaluation of the mineral deposit, from the database, including surface and drilling samples, surface mapping, digital terrain model and preparation of a planialtimetric basis, developing the three-dimensional model and calculating mining reserves. The 3D model of the ore body was constructed based on geological contacts and the orientation of structural surfaces (bedding and metamorphic foliation), mapped remotely and in the field. Aerial images of the study area were acquired with a remotely piloted aircraft. The images were processed by digital photogrammetry to produce a digital surface and orthophotomosaic model. The data acquired in the project and the available information were integrated in 3D. Geological contacts and structural orientation vectors were processed using Dips software. The 3D geological model and calculation of mineral resources were carried out using the free RecMin software. With the three-dimensional model and the block model it was possible to obtain the volume and levels of mineral occurrence. The block model within the 3D geological model for the entire limestone body estimated over 135 million tonnes at a depth of up to 50 m. Limestone reserves were also calculated for a sector that contains information from 4 boreholes, obtaining 3,747,600 tons corresponding to limestone with calcium carbonate above 90%.

Keywords: Photogrammetry, 3D modeling, volume estimation.

SUMÁRIO

1 INTRODUÇÃO14	4
2 REVISÃO DA LITERATURA10	6
2.1 Geologia Local	6
2.2 Aerolevantamento em atividade geológico-mineiras23	3
3 MATERIAIS E MÉTODOS20	6
3.1 Revisão de trabalhos bibliográficos2	7
3.2 Trabalhos de campo para a execução do aerolevantamento29	9
3.3 Trabalhos de campo para medições de estruturas e descrições de litologias .3	1
3.4 Processamento de imagens e sistematização de dados de amostras de	
superfície e de sondagem32	2
3.5 Sistematização de dados de amostras de superfície e de sondagem	9
3.6 Modelo Geológico 3D – Coleta e integração de dados para o modelo geológico	C ∧
3.7 Modelo Geológico 3D – Construção do modelo geológico 3D, interpretação e	-
cálculo de recursos4	7
4 DETERMINAÇÃO DE RECURSOS DE CALCÁRIO52	2
5 CONCLUSÕES	2
REFERÊNCIAS64	4
ANEXOS	6
ANEXO I - Dados estruturais obtidos em campo60	6
ANEXO II - Lista de dados de amostras coletadas em superfície74	4
ANEXO III - Dados geoquímicos dos testemunhos do setor leste do corpo calcário).
	2

1 INTRODUÇÃO

Conhecer a geometria das rochas em superfície e em subsuperfície, suas estruturas e teores geoquímicos, contribui significativamente para a gestão dos recursos minerais. Os bancos de dados são a base para um modelo geológico realista e este é crucial para o estabelecimento de modelo de blocos das reservas. A utilização de modelos tridimensionais é uma ferramenta que vem sendo utilizada nos últimos anos para gerar superfícies de terrenos e corpos minerais de interesse econômico (e.g., Wellmann & Caumon, 2018). A geração de modelos 3D faz parte do processo de compreensão, por simulação, de diferentes cenários, para um determinado ambiente geológico, e com a utilidade de poder modificar quantas vezes forem necessárias para definir o modelo mais ajustado possível. Na Engenharia Mineral, os modelos geológicos 3D são fundamentais para a análise de volumes e teores de minério e estéril, para a análise da economicidade dos empreendimentos e do risco exploratório, para o planejamento de lavra, entre outros usos (e.g., Peng et al., 2023).

O presente trabalho apresenta um modelo geológico 3D e estimativa de recursos de um corpo calcário da Formação Polanco, Grupo Arroyo del Soldado, região NE do Uruguai (Gaucher, 2010; Bossi e Gaucher, 2014). Nessa região ocorrem rochas carbonáticas que podem ser utilizadas para a fabricação de cal, cimento, pedra para construção civil ou agregados para a agricultura. A Formação Polanco possui as maiores recursos de calcário do Uruguai e é onde estão localizadas importantes fábricas de cimento. A importância do calcário como matéria-prima reside no fato de ser uma indústria de alto consumo de diversos produtos, com destaque para a fabricação de clínquer para cimento e cal.

O objetivo geral do trabalho é produzir o modelo geológico 3D do corpo de minério a partir de dados de superfície e subsuperfície e quantificar os recursos minerais com base nos teores geoquímicos das rochas. Os modelos geológicos 3D são fundamentais para o planejamento da Exploração do Recursos e para a construção dos Modelos de Recursos. Os Modelos de Recursos podem ser utilizados para a viabilidade econômica do depósitos, para o planejamento da lavra, entre outros usos (Guimarães Texeira, 2012).

Os objetivos específicos são compilar e integrar os dados de superfície e subsuperfície disponíveis para a área de estudo, construir um modelo digital de

superfície por aerolevantamento, realizara a análise estrutural das rochas em superfície e gerar o modelo geológico pelo método de modelagem explícito. O trabalho foi realizado seguindo as etapas de (i) compilação de dados disponíveis para a área de estudo, (ii) construção de modelo digital de superfície e ortofotomosaico por aerolevantamento, (iii) levantamento estrutural e litológico em campo, (iv) integração de dados em 3D, e (v) geração do modelo geológico 3D e cálculo de recursos. Nesse contexto, o trabalho é relevante ao fornecer os resultados para a indústria mineral, quer terá um modelo para a quantificação de recursos e avaliação de projetos e para o planejamento da extração de minério da jazida, delimitado pela qualidade geoquímica da própria rocha, dados que poderiam ser a base de partida para gerar planos de mineração e reservas.

O mapeamento da superfície e a modelagem 3D, mais o volume do minério, são muito importantes para o planejamento da mina a longo e curto prazo, tanto pelas características das rochas quanto pelo efeito no projeto da mina.

A área de estudo está localizada no limite entre o departamento de Cerro Largo e o departamento de Treinta y Tres (Fig. 1), imediatamente ao sul do povoado Parao, Uruguai. O acesso é feito pela Rodovia 8, no quilômetro 342, logo pela estrada vicinal a oeste. Aproximadamente 25 km são percorridos para entrar na área de estudo. As coordenadas UTM, zona 21, do setor central da área são 745.361 mE e 6.374.670 mN.

Figura 1 – Localização da área de estudo. A localização da área de estudo no limite entre as províncias de Cerro Largo e Treinta y Tres é mostrado acima, e o detalhe da área com a indicação da extensão do modelo geológico é mostrado abaixo.

Fonte: elaborado pelo autor a partir do Google Maps.

2 REVISÃO DA LITERATURA

2.1 Geologia Local

Há anos se conhecem áreas com rochas calcárias ao norte do departamento de Treinta y Tres, limítrofes com o departamento de Cerro Largo, nos fotoplanos Puntas del Yerbal e Arbolito.

Em termos geológicos, a área de estudo está localizada no Terreno Nico Pérez (TNP; Bossi & Campal, 1991; Fig. 2). O TNP é limitado por duas falhas, sendo seu limite E, a falha de Cisalhamento Sierra Ballena, e seu limite W, a Megatranscorrência Sarandí del Yí. Internamente, a estratigrafia do TNP é composta por unidades de diversas idades, do Paleoarqueano ao Cambriano (3.410 a 520 milhões de anos).

No TNP observa-se um cinturão correspondente às rochas calcárias e pelíticas, intrudido por uma série de granitos pós-colisionais. Este grupo de rochas pertence ao Grupo Arroyo del Soldado, no qual está localizada a área de estudo. O Grupo Arroyo del Soldado (Fig. 3; Gaucher, 1996) é definido como um conjunto de rochas pertencentes a uma sucessão de plataformas marinhas, que se estende em uma faixa quase contínua desde a cidade de El Parao, no departamento de Cerro Largo, até a sul da cidade de Minas, no departamento de Lavalleja. A direção estrutural regional desta unidade litoestratigráfica é NNE, com variações locais devido a dobramentos, empurrões, falhas e intrusões.

Figura 2 – Distribuição do Terreno Piedra Alta (TPA), Terreno Tandilia (TT), Terreno Nico Pérez (TNP) e Terreno Cuchilla Dionisio (TCD) no Uruguai, limitados pelas estruturas Megatranscorrência Sarandí del Yí (MSY), Zona de Cisalhamento Sierra Ballena (ZCSB) e Zona de Cisalhamento Colonia-Pavón (ZCC-P).

Fonte: extraído de Bossi & Gaucher 2014.

Figura 3 – Área de afloramento do Grupo Arroyo del Soldado e outras unidades Neoproterozoicas e Cambrianas do Uruguai.

Fonte: modificado de Gaucher (2000).

Os trabalhos desenvolvidos pela Dirección Nacional de Minería y Geología (DINAMIGE) no âmbito do Inventário Mineiro Nacional, revelou áreas interessantes e a priori prospectivas naquela região do país, conhecida como Puntas del Parao (Figs. 4 e 5). A área de estudo está localizada exatamente na divisa dos departamentos de Cerro Largo e Treinta y Tres, conforme indicado na figura 1.

Figura 4 – Carta imagem da área de estudo.

Fonte: elaborado pelo autor a partir de imagens do Google Earth.

O Grupo Arroyo del Soldado compreende rochas sedimentares que variam de arenosas a pelíticas, fazendo parte de episódios transgressivos-regressivos de margem continental passiva (Gaucher, 2000). Os calcários ocorrem em camadas com mergulho de 25° a 50° NW e foi determinado por perfis geológicos que a Formação Polanco tem pelo menos 900 m de profundidade (Gaucher, et al 2014).O Grupo Arroyo del Soldado representa uma sequência típica de plataforma, depositada em uma margem continental passiva.

O limite leste da área de estudo corresponde à Zona de Cisalhamentode Sierra Ballena, que separa a área de interesse dos granitóides deformados do Terreno Cuchilla Dionisio (Fig. 6). O limite oeste corresponde a uma falha menor que limita a área atual do complexo metamórfico oeste.

Figura 5 – Visão oblíqua de modelo digital de elevação sobreposto a imagem do Google Earth com área de estudo delimitada por linha vermelha.

Fonte: elaborado pelo autor a partir de imagens do Google Earth.

Figura 6 – Mapa geológico regional da área de estudo.

Fonte: elaborado pelo autor a partir do mapa geológico de Bossi et al. (2001).

A idade de deposição do Grupo Arroyo del Soldado limita-se ao Ediacarano tardio, conforme estudos de zircão detrítico (Blanco et al, 2009) e idades de granitos intrusivos (Kawashita et al, 2009). Gaucher (2014) descreve seis formações geológicas no Grupo Arroyo del Soldado. Da base ao topo descreve a Formação Barriga Negra, composta por conglomerados e arenitos; a Formação Yerbal,

contendo arenitos, pelitos, sílex, BIF, dolomitos; a Formação Polanco, composta por carbonatos (Fig. 7); a Formação Cerro Espuelitas, com pelitos, sílex; a Formação Cerros San Francisco, composta por arenitos quartzosos; e pela Formação Cerro Victoria, que contém dolomitos.

Fonte: elaborado pelo autor.

A sequência calco-pelítica é a mais importante dentro do Grupo Arroyo del Soldado e à qual pertencem os filitos e calcários que afloram na área de estudo. A sequência pelítica é representada por filitos. Sua composição é ilita, sericita e quartzo microcristalino. Sua cor é marrom claro na superfície e verde em profundidade. Apresentam planos de xistosidade marcados, com afloramentos em cristas alinhadas ao longo da direção.

A sequência calcária é representada por calcários cristalinos, de cor cinza, textura granoblástica, granulometria fina, com composições químicas variáveis, desde baixíssimo magnésio até termos dolomíticos. A coloração cinza a cinzaazulada é consequência da quantidade de matéria orgânica presente na rocha. Existem também níveis rítmicos calcário-dolomíticos, onde os estratos dolomíticos, quando alterados, geram colorações ocre-amareladas, mas são mais resistentes. Este pacote de rochas calcárias é o objeto desta investigação. A Formação Polanco é representada por bancos de calcário puro, calcário dolomítico e intercalados com calcoarenitos (Fig. 8). A cor das litologias varia de cinza claro a cinza escuro azulado, dependendo da abundância de matéria orgânica.

Figura 8 – Fotografia mostrando as estruturas típicas das rochas calcárias que ocorrem na área de estudo.

Fonte: autor.

A caracterização estrutural foi realizada com base nas observações das descontinuidades em escala regional. No mapa geológico de Bossi et al. (1998), foi mapeado um sistema de empurrões com vergência para sudeste, conforme indicado na figura 9, e que responde à tectônica regional do Terreno Nico Pérez naquele setor. Isto gerou uma dobra sinclinal recumbente, com plano axial N45°E, mergulhando entre 35° e 40° para NW. A área de estudo está dentro deste sistema de empurrões, o que é verificado na direção e mergulho do estruturas mapeadas, que geralmente têm uma direção aproximada de N40-50°/30-45°NW. Existem cavalgamentos confluindo para SE, que geram limites marcados para N e S da área sinclinal.

Figura 9 – Localização da área de estudo no mapa geológico do Uruguai, na escala 1:500.000.

Fonte: modificado de Bossi et al. (2001).

2.2 Aerolevantamento em atividade geológico-mineiras

O aerolevantamento consiste na obtenção de dados do terreno por meio de aeronaves pilotadas ou não pilotadas. Recentemente, a disponibilidade e popularização dos RPAS (Remotely Piloted Aircraft System), tem permitido a utilização de aerolevantamento em atividades geológico-mineiras. permitindo ao pesquisador economizar um tempo considerável para conhecer a área, sua superfície e suas complexidades, acessibilidade a locais remotos ou afloramentos e uma base de dados permanente de alta precisão. Um RPAS, comumente conhecido como drone, é um veículo sem tripulação, controlado por controle remoto, que utiliza a força de giro de seus motores acoplados às hélices para ascender, capaz de manter autonomamente um nível de voo controlado e sustentado. Existem vários modelos como os de asa fixa e os de asa rotatória, que podem ser quadricópteros, hexacópteros ou octacópteros, dependendo da quantidade de hélices. O sistema RPAS é baseado em uma aeronave, pilotada remotamente por uma estação de controle, de onde o piloto, no solo, a direciona. A estação de controle é onde todos os componentes estão conectados e determina, de acordo com as ordens indicadas, o sinal que tem para que o drone realize o movimento desejado. A partir deste meio de controle, a aeronave pode ser dirigida na posição, orientação e velocidade desejadas, além de manter a estabilidade desejada. Outro elemento muito importante do qual depende o planejamento de voo é a bateria, que é a fonte de energia necessária para todo o equipamento. As baterias normalmente oferecem

uma autonomia entre 15-30 minutos, dependendo do modelo, força do vento, peso do equipamento. Outra parte muito importante do elemento de comando e controle são os sensores: posição vertical, giroscópios, mobilidade e foco da câmera, sensores de altura e sensores de velocidade do ar, entre outros. Em algumas aplicações, o piloto automático também pode ser usado.

O aerolevantamento na exploração geológica e na indústria mineira teve um grande desenvolvimento nos últimos anos, sendo utilizados em inúmeras investigações geológicas para obtenção de informação sobre afloramentos, cálculo e análise de diferentes parâmetros da superfície terrestre ou estudo de relevos, entre outros. Essa técnica tem inúmeras vantagens do ponto de vista geológico para obter informações dos afloramentos, mapeamento estrutural, cálculo de áreas e análise de diferentes parâmetros do terreno, entre outros (e.g., Fernandez Lozano et al., 2016).

O aerolevantamento no mapeamento geológico é uma ferramenta importante na identificação de áreas de interesse minerário e sua aplicação em mapas tridimensionais é uma função muito eficaz para entender a estrutura, disposição e volume do corpo mineralizado (Bustillo et al., 2000; Vollgger et al., 2016). Na indústria de mineração, o aerolevantamento tem sido usado como base para cálculos de reservas, observações de taludes, controle de barragens, além de ser usado para prospecção mineral com o suporte de sensores espectrais e geofísicos (e.g., Sanches García, 2017; Krupnik & Khan, 2019. O aerolevantamento é uma ferramenta importante para diferentes campos de pesquisa, como cartografia, agricultura, geologia, entre outros. Os diferentes tipos de câmeras que podem ser utilizadas permitem a obtenção de informações de alta qualidade, que, uma vez processadas, podem obter informações úteis para diversas análises.

O mapeamento geológico é muito importante para desenvolver a modelagem geológica do corpo mineral. A modelagem geológica consiste na construção e visualização tridimensional de uma estrutura geologia, a fim de determinar com precisão sua extensão e estrutura, bem como caracterizar sua geometria e as diferentes unidades litologias que o formam. Estabelece-se como uma primeira etapa essencial na estimativa de recursos minerais (Hernández, 2022).

A modelagem geológica é basicamente o desenvolvimento físico de um volume de rochas, tal como ocorre na natureza. A base para estes modelos é um mapa de superfície geológica, dados estruturais, tipos de rochas, tipos de alterações presentes e dimensões de cada fator de interesse. O modelamento geológico

historicamente tem sido feito usando interpretação de seções geradas em papel ou tela de computador, sendo digitalizado atualmente diretamente no computador (Oliveira, 2020).

Uma das formas de fazer o modelo geológico é através da modelagem explícita. O modelo geológico explícito implica a interpretação da forma e dimensões do corpo, de acordo com a interpretação do geólogo de campo e é realizada manualmente no computador. Feito isso é realizado a modelagem de contatos gerando seções. Após isso é gerado os wireframes do minério e da superfície, tendo como resultado o modelo geológico (Hernández, 2020).

Algumas desvantagens desse tipo de modelagem são que consome muito tempo por ser um processo totalmente manual, além de exigir um geólogo experiente em modelagem para construir geometrias complexas (Dias Batista, 2021).

3 MATERIAIS E MÉTODOS

A pesquisa foi desenvolvida nas seguintes etapas: (i) revisão de trabalhos bibliográficos, (ii) trabalhos de campo para a execução do aerolevantamento, (iii) trabalhos de campo com medições de estruturas e descrições de litologias, (iv) processamento de imagens e sistematização de dados de amostras de superfície e de sondagem, (v) construção, interpretação e cálculo de reservas a partir do modelo geológico 3D (Fig. 10).

Para o processamento dos dados foi utilizado um computador portátil, que continha o software correspondente para processamento das informações.

Inicialmente foi utilizado o software Agisoft Metashape para processamento de imagens aéreas e o QGIS, versão 3.16, Hannover, para mapeamento geológico e geoquímico. Para o tratamento dos dados 3D e modelo de blocos foi utilizado o software RecMin.

Figura 10 – Fluxograma na metodologia da investigação.

Fonte: autor.

3.1 Revisão de trabalhos bibliográficos

A bibliografia da área é generalizada, com estudos da DINAMIGE, e estudos de especialistas contratados (*Misión Geofísica Alemana*), como Roth et al. (1980). Roth et al. (1980) avaliam técnica e comercialmente grande parte dos calcários do Uruguai (Fig. 11). Os calcários que ocorrem na área de trabalho são chamados de calcários Puntas del Tacuarí. Nessa região, os autores analisaram 88 amostras de calcário retiradas superficialmente, com o resultado químico de que continham em média 3,87% de MgO.

Os mapas disponíveis para a área de estudo são muito limitados. As informações de trabalhos anteriores, disponíveis no banco de dados da empresa proprietária do depósito, foram compiladas e integraram o banco de dados do projeto. Em 2013, foram realizados estudos de avaliação química do calcário pela empresa detentora dos direitos minerários da área. Foram extraídas mais de 330 amostras superficiais e realizada uma campanha de 10 perfurações diamantadas, totalizando 491,5m, distribuídos em 10 sondagens e em duas seções de direção N190 e N210. (Fig. 12). As perfurações foram realizadas na parte SW e SE do corpo calcário (Fig. 13).

Figura 11 – Mapa de localização dos afloramentos de calcários na região de Cerro Largo – Treinta y Tres.

Fonte: Roth et al. (1980).

Figura 12 – Mapa de localização das amostras analisadas com indicação da geologia local e principais pontos notáveis.

Fonte: arquivo da empresa Calizas del Uruguay S.A.S.

Figura 13 – Localização dos poços perfurados na área de estudo.

Fonte: arquivo da empresa Calizas del Uruguay S.A.S.

3.2 Trabalhos de campo para a execução do aerolevantamento

Em campo foram realizados voos com RPAS, que foram planejados e executados de forma semiautônoma utilizando sistema de controle de voo (*Universal Ground Control System* – UgCS). Para o plano de voo, a delimitação da área foi realizada com base nos dados pré-existentes sobre o limite do corpo calcário, conforme figura 11. Foram necessários 7 voos, de rumo N-S, para abranger a área de estudo, com a aeronave a 100 metros acima do ponto de decolagem e sobreposição das imagens de 80% ao longo das linhas de voo e 70% entre as linhas.

As imagens foram adquiridas com RPAS DJI modelo Phantom 4 PRO (Fig. 14).

Figura 14 – Fotografias da preparação dos equipamentos para a execução do aerolevantamento e do voo do RPAS.

Fonte: Autor.

A escolha da área para realização do levantamento aéreo tem como argumento o fato de já serem conhecidos dados sobre o calcário presente (Fig.15).

Figura 15 – Fotografias obtidas pelo RPAS, onde é possível ver detalhes de paisagem cárstica como a dolina (imagem superior), lineações estruturais (canto inferior esquerdo) e microdobras (canto inferior direito).

3.3 Trabalhos de campo para medições de estruturas e descrições de litologias

Na área de trabalho, foram estudadas as estruturas como foliações, lineações, flancos e eixos de dobras, falhas e fraturas. Foram realizadas oito etapas de campo onde foram utilizados instrumentos básicos para trabalho, como lupa, canivete, martelo, GPS e bússola, além dos ortofotomosaicos produzidos na etapa de aerolevantamento (Fig. 16). Nos afloramentos foram feitas descrições da litológica e medidas estruturais da foliação do calcário.

Figura 16 – Fotografia dos equipamentos utilizados em campo, para realização das medidas estruturais.

Os dados foram copiados para uma planilha Excel e posteriormente transferidos para o software estrutural DIPS V5, para execução do processamento.

3.4 Processamento de imagens e sistematização de dados de amostras de superfície e de sondagem

As imagens obtidas com RPAS durante a etapa de aerolevantamento foram processadas por meio do software Agisoft Metashape, pelo fluxo de trabalho da fotogrametria digital (e.g., Carrivick et al., 2016).

O manuseio do software é fácil e intuitivo. Na barra de ferramentas temos a aba Workflow, onde estão todos os passos que precisamos para processar as imagens, na parte inferior temos duas opções: espaço de trabalho e espaço de referência (Fig. 17). Na área de trabalho, vemos todos os produtos que estamos gerando durante o processamento da imagem. No espaço de referência teremos toda a informação das fotografias em que estamos a trabalhar. Podemos ver as coordenadas e pontos de controle.

Figura 17 – Imagem computacional no processamento de imagens captadas pelo RPAS.

O primeiro passo é ir para o fluxo de trabalho e adicionar as fotografias obtidas nos voos do RPAS na área de estudo. Estas fotografias estão no sistema de coordenadas UTM. O próximo passo é orientar as fotografias. O que se executa nesse processo é orientar as fotos de acordo com os pixels que compartilham ou têm em comum. Aqui poderemos escolher algumas qualidades das fotos, estando entre a qualidade máxima e mínima, sendo a qualidade máxima aquela com maior precisão para encontrar pixels de igual valor e alinhá-los e orientá-los. Esse processo leva muito tempo, dependendo do número de fotos. No final, será obtido um ortofotomosaico da área de estudo (Figs. 18,19,20).

Figura 18 – Ortofotomosaico produzido após o processamento das imagens captadas pelo RPAS.

Fonte: Autor.

Figura 20 – Fotomosaico em visão 3D.

Fonte: Autor.

O Modelo Digital de Terreno (MDT) é uma representação da altura de um terreno em relação a um plano e esses valores estão contidos em um modelo raster como o da figura 21. Para o MDT foram utilizados dados do IDEuy (Infraestrutura de Dados do Uruguai). A Infraestrutura de Dados Espaciais (IDE) é um órgão descentralizado do governo uruguaio, que tem como missão a produção e acesso à informação geográfica de forma confiável e de alta qualidade, com adaptação e geração de IG (indicação geográfica), e que pode ser acessada de um geoportal de uso público. O Modelo Digital de Terreno foi produzido através da aquisição de imagens digitais de cobertura nacional, com levantamento aerofotogramétrico com câmera UltraCam Eagle Prime, com tamanho de pixel de terreno de 32 cm (<u>https://visualizador.ide.uy/geonetwork/srv</u>). Foram extraídas curvas de nível a partir do MDT, com o software QGIS, para cada 2,5 m (Figs. 22 a 27).

Figura 21 – Raster do Modelo Digital do Terreno, correspondendo a área de estudo.

Fonte: portal IDEUY.

Figura 22 – Modelo Digital do Terreno com curvas de nível da área de estudo.

Figura 23 – Vista em perspectiva do Modelo Digital do Terreno.

Figura 24 – Imagem 3D do Modelo Digital do Terreno.

Fonte: Autor.

Figura 25 – Mapa de relevo sombreado elaborado com o Modelo Digital do Terreno.

Fonte: Autor.

Fonte: Autor.

Figura 27 – Ortofotomosaico com curvas de nível cada 2,5 m.com vista em perspectiva.

Fonte: Autor.

3.5 Sistematização de dados de amostras de superfície e de sondagem

Os contatos geológicos e a orientação das superfícies estruturais, especialmente do acamamento sedimentar e da foliação metamórfica, foram obtidos em campo. Em campo foram levantados 327 pontos, com bússola, clinômetro e GPS. Também foi realizada uma análise estrutural com fotos aéreas na escala 1:20.000 (Fig. 28), captadas pelo Serviço Geográfico Militar em 1967. Além disso, foi realizada uma interpretação com por análises de sensoriamento remoto (Sabins, 1999).

A coleta de dados dos afloramentos de campo incluiu a extração de coordenadas, medição de direção (*strike*) e mergulho (*dip*), e a classificação das estruturas, conforme indicado na tabela a seguir. A figura 28 apresenta os pontos onde foi realizado o levantamento estrutural dos afloramentos. Todas as medições estruturais realizadas durante a investigação de campo foram inseridas no programa Dips V5, realizando o processamento e análise dos dados estruturais (Figs. 30 a 33).

Figura 28 – Estudo de fotolineamentos e mapa de afloramentos calcários em fotos aéreas de 1967.

Fonte: Autor.

Figura 29 – Localização dos pontos de campo com medidas de orientação de estruturas geológicas.

Fonte: Autor.
Figura 30 – Projeção estereográfica arco-polo de medidas estruturais de afloramentos.

Fonte: Autor.

Observa-se que a direção estrutural predominante é NE, com planos entre 30 a 60 NE°. O *trend/plunge* médio é N52°/47° (Fig. 29).

Figura 31 – Roseta da direção das estruturas obtidas em campo.

Fonte: Autor.

Na figura 31, vemos que a maioria das estruturas está entre 40° a 50°, no quadrante nordeste. Também em menor grau existem foliações entre 70° a 90°.

Figura 32 – Diagrama de contorno polar da superfície da foliação.

Fonte: Autor.

A figura 32 indica que as estruturas estão com planos inclinados para NW e com direções NE. A figura 33 apresenta o gráfico de predominância das medidas em relação à direção, com direção ponderada de 52° e mergulho de 42°.

Figura 33 – Histograma do percentual da direção (strike) da foliação.

Fonte: Autor.

Na figura 34 pode ser observada a orientação da foliação das rochas expostas no terreno de parte da área de estudo, bem como fraturas e falhas identificadas por sensoriamento remoto.

As estruturas e falhas da área de estudo fazem parte dos eventos de deformação e tensões transpressivas presentes na região, localmente associados à tectônica de transcorrência da zona de cisalhamento de Sierra Ballena.

As falhas dominantes no sector têm tendência N50E e correspondem a uma falha inversa com sistemas de empurrão NW para SE. Isto é compatível com o mapa geológico de Bossi et al, 1988, onde a estrutura está associada a uma dobra sinclinal recumbente. A área de estudo estaria localizada no flanco E desta dobra.

Por outro lado, as imagens fotográficas captadas pelo drone, pela sua qualidade de pixel, são óptimas para interpretações estruturais ao nível dos afloramentos, como mostra a figura 33.

Figura 34 – Fotointerpretação de ortofotomosaico onde são observados afloramentos com dobras, associadas à cinemática de falha sinestral.

Fonte: Autor.

3.6 Modelo Geológico 3D – Coleta e integração de dados para o modelo geológico

O banco de dados de amostras superficiais e perfurações foi fornecido pela empresa Calizas del Uruguay S.A.S., atual propietária da área. O trabalho realizado na área pelas anteriores mineradoras consistiu na coleta e análise de amostras de superfície. Para a amostragem eles consideraram uma malha regular de 100x100 metros, que foi ajustada à presença ou não de afloramentos, com área tampão de 15 metros. As amostras foram colhidas no vale ("v") ou crista ("c") do afloramento, conforme indicado na figura 35.

Figura 35 – Imagem indicando os locais de coleta de amostras, no vale e cristas de afloramentos.

Fonte: Autor.

Esta forma de apresentação dos afloramentos no terreno faz parte da composição e distribuição de níveis mais resistentes dentro da estratigrafia do calcário, o que cria cristas e nas zonas menos resistentes geram-se vales. Em geral, a amostragem na crista ou vale do afloramento não é indicativa de diferenças entre a presença de mais ou menos Ca ou Mg.

O mapa gerado no relatório de uma das mineradoras que atuavam na área foi georreferenciado para uso com o aplicativo Google Earth e realizar a extração de informações mais precisas sobre a localização de amostras e levantamentos, como pode ser visto na figura 36. Os dados disponibilizados pela empresa proprietária do direito minerário contêm amostragem de rochas nos afloramentos, análises geoquímicas, mapa geológico básico, e descrição dos testemunhos de sondagem em pelo menos duas seções do corpo calcário. Todos os dados estão compilados em planilhas e podem ser convertidos para o formato adequado aos diferentes *softwares* utilizados.

Figura 36 – Imagem sobreposta no Google Earth do mapa de amostras superficiais e com localização de perfurações, gerado pela mineradora Calizas del Uruguay S.A.S.

Fonte: Autor com dados disponibilizados por Calizas del Uruguay S.A.S.

A empresa que executou os trabalhos no alvará mineiro recolheu amostras 315 amostras, cobrindo uma superfície total de 3.173 hectares nas rochas calcárias (Fig.36 e 37). As análises geoquímicas foram realizadas no laboratório ECOTECH em Montevidéu encontrando carbonatos de cálcio e magnésio (CaCO3 e MgCO3), resíduos insolúveis (RI) e óxidos totais (R2O3). Para este trabalho são apresentadas apenas as porcentagens de carbonatos de cálcio e magnésio, como pode ser observado na tabela de dados geoquímicos do calcário (Anexo II), há variação no comportamento do carbonato de cálcio e do carbonato de magnésio. Grande parte das amostras obtidas possuem qualidade suficiente para serem utilizadas na indústria de cal ou cimento. Com base nas informações obtidas nos resultados da amostragem, foi elaborado um mapa mostrando a distribuição geoquímica dos calcários. Foi tomado como base o percentual de CaCO3. Foram definidos calcários de alto, médio e baixo cálcio (Fig. 38). Devido aos resultados das amostras foi possível identificar sectores com calcário com elevada pureza de cálcio (90%- Ca alto), outra zona com valores intermédios (85-90%- Ca médio) e outra zona com baixo carbonato de cálcio (menos de 85%- Ca baixo).

Figura 37 – Localização no corpo calcário, das 315 amostras extraídas.

Fonte: Autor.

Figura 38 – Distribuição dos resultados em calcários de alto, médio e baixo teor, provenientes de amostras superficiais.

Tendo em conta estes resultados e a continuidade geológica do calcário, foi gerado um modelo geológico de todo o corpo mineral, com base no mapa geológico da figura 7.

3.7 Modelo Geológico 3D – Construção do modelo geológico 3D, interpretação e cálculo de recursos

A modelagem geológica é um componente essencial na indústria de mineração, pois ajuda a identificar potenciais depósitos minerais e estimar suas reservas. Para criar o modelo geológico, é necessário executar um software de modelagem 3D. A modelagem geológica envolve a criação de um modelo 3D da geologia da área, que é utilizado para estimar os recursos minerais. Um modelo geológico 3D representa a forma do depósito e delimita o volume de mineral que contém. Para criar modelos geológicos precisos, é essencial coletar e integrar uma ampla gama de dados geológicos. Esses dados incluem perfurações, mapas geológicos, informações estruturais de interpretação fotográfica e sensoriamento remoto. Ao mesclar essas diversas fontes de dados, pode-se construir um modelo que represente fielmente a subsuperfície. Os dados de perfuração, incluindo informações sobre litologia, qualidades minerais e propriedades das rochas,

fornecem informações sobre a geologia do subsolo. Tecnologias como imagens de satélite oferecem uma perspectiva mais ampla sobre a geologia da superfície e do terreno, que pode ser integrada em modelos geológicos 3D. Ao integrar dados de poços, fotointerpretação e observações de afloramentos, podem ser criados modelos 3D que fornecem informações mais completas das formações geológicas. A utilidade de um modelo geológico 3D é a capacidade de compreender a estrutura do reservatório, suas dimensões, falhas e outras características geológicas que podem definir reservas potenciais.

O modelo geológico foi construído utilizando o software RecMin. RecMin é um software puramente de mineração, de uso gratuito. Do banco de dados de sondagens e amostras são importadas as informações das tabelas: Colar, Levantamento, Litologia, Alteração, Amostras etc. Com base nesses dados, é possível fazer cortes e desenhar polígonos de interpretação geológica e finalmente construir o sólido que representa a estrutura mineral. Também pode-se construir o modelo de bloco. Todos os dados disponíveis e as informações obtidas durante a execução do projeto será integrado em 3D.

O software RecMin (software livre; Ruiz, 2015) será utilizado para gerar modelo geológico explícito (Paredes, 2019) editando as unidades geológicas e baseado na imagem composta georreferenciada na topografia tridimensional, interpretando a geologia do depósito. Por outro lado, também, pode ser feito um modelo implícito do depósito, tendo a opção de usar o mesmo software. A modelagem implícita é definida como um processo no qual o modelo geológico é obtido pela avaliação de um conjunto de dados de entrada em software, utilizando uma função matemática através do espaço (Calcagno, 2006). Ambos os modelos podem ser comparados.

Neste caso o modelo geológico explícito modelado através de interpretação manual, representa a forma do corpo calcário abaixo da superfície nas ortofotos. Neste caso, o modelo geológico compõe apenas a informação litológica, baseada em informações de um mapa de superfície, amostras coletas em superfície e de 10 furos que atingem 20 metros na vertical. A profundidade foi ampliada para obter uma melhor visão do corpo, até uma profundidade de 50 metros. Esta conformação algo distorcida e artística, baseada numa interpretação geológica e considerando o conhecimento da área, proporciona uma melhor realidade natural da jazida.

Como se pode compreender, este é um modelo geológico preliminar e básico do corpo calcário, pois responde à informação existente no momento da realização da investigação. Futuramente, e de acordo com a realização de novas perfurações, o modelo poderá ser melhorado e aperfeiçoado. O modelo geológico 3D foi obtido baseados em mapeamento geológico e dados de levantamento. Como resultado da integração e análise da informação disponível, foi construído o modelo que melhor se adequava à área de estudo, embora não tenham sido utilizados dados para a interpretação estrutural do local.

Os perfis para construção do modelo foram feitos no eixo NS, com base na topografia gerada, e com referência à profundidade de 50 m (Fig. 39). A profundidade de 50 m baseia-se no pouco conhecimento dos poços executados, que não ultrapassam os 20 m na vertical, mas considerando a extensão territorial do maciço calcário e a sua distribuição no terreno, essa profundidade é apenas uma pequena parcela do seu potencial em profundidade.

Fonte: Autor.

Foram definidas 18 seções, com espaço regular entre elas, que foram unidas através de malha T3 (triangulação), com o software RecMin, criando o corpo em 3D, como mostra a figura 40.

Figura 40 – Visualização 3D da triangulação o wireframes.

Finalmente, foi gerado o modelo geológico 3D de todo o corpo calcário conhecido (Figs 41 a 44). Os critérios geológicos definidos para a modelagem foram o estado do mapeamento, as amostras superficiais e as poucas perfurações realizadas, que garantem a dimensão do maciço calcário. A partir deste corpo é possível calcular o volume mineral da jazida e iniciar a modelagem dos blocos. O modelo de blocos serve de base para o cálculo das reservas minerais.

Figura 41 – Modelo geológico 3D do corpo calcário.

Fonte: Autor.

Figura 42 – Vista plana e 3D do modelo geológico explícito.

Figura 43 – Visão longitudinal e transversal do modelo geológico.

Fonte: Fonte: Autor.

Figura 44 – Vista de um corte do modelo geologico, onde pode ser visualizada sua forma de acordo com a topografia do terreno.

Fonte: Autor.

4 DETERMINAÇÃO DE RECURSOS DE CALCÁRIO

Para processar os volumes de calcário, foram utilizadas todas as informações disponíveis, como a continuidade geológica do corpo, o comportamento estrutural como base para a disposição final do maciço rochoso, o comportamento geoquímico da superfície e os dados de furos com recuperação de testemunho.

Para determinar as recursos de calcário, além da extensão da superfície, também é necessário conhecer a extensão da profundidade. A área estudada possui resultados de 12 perfurações diamantadas, com profundidade vertical de até 20 metros. Para os nossos cálculos, foi utilizada uma extensão em profundidade de até 50 m, e que corresponde à profundidade tomada para o modelo geológico 3D.

Por estimativa de recursos entende-se determinar a quantidade de matéria prima em um depósito ou em uma de suas partes. Esta quantificação formal da matéria-prima mineral estimada por procedimentos empíricos ou teóricos é chamada de Inventário Mineral que é expresso em termos de recursos e reservas. A estimativa de recursos é um fim para cada etapa dos trabalhos de prospecção e exploração de jazidas minerais e esse processo continua durante a exploração da jazida. Todos os trabalhos de exploração em uma jazida contribuem para uma estimativa mais precisa da matéria-prima mineral. A estimativa de recursos/reservas é considerada um processo contínuo que começa com a exploração e recolha de informação seguida da interpretação geológica e estimativa de recursos. Posteriormente, são considerados os fatores modificadores (mineração, metalúrgica, ambiental, legal, entre outros) e é calculada a estimativa das reservas. A quantidade de reservas em uma jazida, como um dos fatores determinantes de sua viabilidade econômica, tem grande influência na vida útil da jazida, na sua produção anual e na decisão final de construção da mineradora.

Os diferentes métodos usados atualmente para estimativa de recursos são definidos pelos princípios de interpretação usados e técnicas de interpolação espacial. Obtém-se assim os métodos clássicos de cálculo desenvolvidos e utilizados desde o início da lavra até os dias de hoje, baseados em procedimentos manuais onde os principais parâmetros são estimados a partir do desvio médio aritmético e desvio médio ajustado. Por outro lado, existem métodos assistidos por computadores, incluindo o método de ajuste por ajuste do inverso da distância e a

geoestatística fundamentada em procedimentos de interpolação matemática definidos a partir de informações espaciais nos dados.

Os métodos de categorização tradicionais usam os seguintes critérios:

a) Continuidade geológica depende do conhecimento existente do depósito e da apreciação da continuidade geológica. É importante estabelecer a continuidade física ou geométrica da mineralização.

 b) Densidade de pesquisas de exploração, ou seja, a quantidade de dados que existe por área do depósito;

c) Qualidade da informação dependendo do tipo de perfuração, o método de amostragem, volume das amostras, influenciam diretamente na qualidade da informação.

A modelagem geológica nesta fase tenta expor os recursos calcários que existem na área de estudo. A falta de dados com perfurações profundas implica o desenvolvimento de um cálculo dos recursos indicados, calculados a partir das amostras superficiais e das poucas perfurações realizadas. O modelo geológico 3D é a base para o cálculo do modelo de blocos, que indicará as reservas minerais existentes. Para o modelo de blocos, o primeiro passo é gerar uma área de recurso com coordenadas iniciais e coordenadas finais em X, Y e Z, da área na qual contém o modelo geológico a ser medido (Figs. 45 e 46).

Figura 45 – Modelo geral de blocos que abrange a área a ser estudada.

Fonte: Autor.

Figura 46 – Vista plana do modelo de bloco e modelo geológico 3D.

Foi executado um modelo de blocos de acordo com o modelo geológico 3D, e a uma profundidade de 50 m. Foram considerados blocos de 10m x10m x10m.

Esta dimensão de bloco é baseada em dados operacionais de outras minas de calcário da região, onde a frente de operação é de 10 m e para que, ao mesmo tempo, não implique um modelo com muitos blocos, o que pode causar o colapso do software RecMin. A seguir procede-se à extração dos blocos que estão contidos no modelo geológico 3D, que seriam os recursos minerais resultantes (Fig. 47 e 48).

Figura 47 – Imagem do modelo de blocos contidos no modelo geológico 3D.

Figura 48 – Vista tridimensional do modelo de bloco e modelo geológico 3D.

Fonte: Autor.

Depois de executados esses dois procedimentos no software RecMin, foram produzidos 50.088 blocos, equivalentes a 50.088.000 m³ de rocha calcária. Considerando uma densidade de 2,7 g/cm³ para a rocha calcária, seriam 135.237.600 toneladas de mineral, a uma profundidade de 50 metros de profundidade. Foi também realizado um modelo geológico 3D e cálculo de recursos

no setor leste do corpo calcário, onde existem 4 furos (P16, P17, P18, P19), como mostra as figuras 49 e 50.

Figura 49 – Tela do RecMin com todas as perfurações feitas na área de estudo.

Fonte: Autor.

Figura 50 – Tela do RecMin com as perfurações a serem utilizadas no modelo de bloco do setor leste

Fonte: Autor.

Os furos foram plotados com teores de carbonato de Ca e Mg, para visualizar a correspondência entre as amostras superficiais e profundas. A amostragem dos núcleos foi realizada a cada 3 m. Não existem perfurações no restante do corpo de calcário, mas a partir desta base pode-se assumir uma correlação entre os dados da superfície e o que existe no subsolo. Nesse setor, os calcários apresentam elevado teor de Ca, em média acima de 90% (Anexo II).

As 4 perfurações atingem níveis de elevado carbonato de cálcio, pelo que foi executado um modelo geológico que integra estas 4 perfurações através de sete secções, relacionando-as com amostras de superfície (Figs. 51 e 52). O contexto da localização dos poços e sua relação com as amostras superficiais é mostrado na figura abaixo, indicando que a área contém calcário com alto teor de cálcio, superior a 90% CaCO3.

Figura 51 – Perfuração nº 16 com teores de CaCO3 e MgCO3.

Fonte: Autor.

Figura 52 – Tela RecMin com localização de furos e amostras de superfície.

Para criar o modelo geológico do setor leste, foram feitas secções individuais que contêm uma perfuração e outras secções intermédias e laterais, de forma de fechar o corpo (Fig.53).

Figura 53 – Modelo geológico 3D do corpo de calcário com alto teor, do setor leste.

Para posicionar o corpo mineral em subsuperfície, procedeu-se à utilização das medições estruturais realizadas em campo, naquela área, utilizando para sua

construção um mergulho de 30° e um de direção N25, além do azimute e mergulho dos poços (Fig.54).

Figura 54 – Seção de modelo geológico 3D.

Fonte: Autor.

Para este caso de cálculo de recurso mineral foram levadas em consideração a profundidade e inclinação das perfurações, criando um modelo com aproximadamente 20 m de largura (Figs. 55 e 56). Foram mantidas as dimensões de blocos de 10 m x 10 m x 10 m, calculando-se para aquele corpo um total de 1.388 blocos correspondentes a 1.388.000 m³ e a 3.747.600 toneladas de calcário com alto teor de carbonato (densidade de 2.7 gr/cm³).

Figura 55 – Tela do RecMin onde é mostrado em planta e em vista tridimensional o modelo de bloco.

Fonte: Autor.

É importante perceber que dentro do modelo geológico de todo o corpo calcário, novos modelos geológicos podem ser interpretados, dependendo da quantidade e qualidade da informação disponível (Fig. 57).

Figura 57 – Vista do modelo geológico total mostrando dentro do modelo geológico da área com dados de perfuração.

Fonte: Autor.

5 CONCLUSÕES

As conclusões mais relevantes desta pesquisa são que a pesquisa com drones tem múltiplas aplicações, desde o acesso a áreas remotas ou de difícil acesso, até a obtenção de imagens absolutamente nítidas e precisas dos afloramentos, com redução do tempo necessário para analisar todo o terreno.

A fotogrametria permite a digitalização detalhada de afloramentos geológicos em um tempo relativamente curto. Oferece oportunidades para incorporar interpretações estruturais, observar zonas de difícil acesso, bem como poder percorrer livremente os percursos e repeti-los quando quiser. Os produtos fotogramétricos permitem a modelagem tridimensional digitalizada da superfície, informações topográficas do terreno, curvas de nível, malhas 3D texturizadas, facilitando a realização de diversas atividades no planejamento do projeto.

A modelagem 3D é uma ferramenta primordial para a criação de modelos geológicos. São criados modelos 3D detalhados de depósitos minerais, que podem ser usados para estimar suas reservas. Softwares de modelagem 3D também podem ser usados para visualizar a geologia de uma área e identificar áreas com alto potencial mineral. O modelo geológico permite simular e analisar diversos cenários de exploração e explotação, auxiliando na tomada de decisões e otimizando a extração de recursos. A modelagem geológica permite uma estimativa precisa das quantidades e qualidades dos recursos.

Os recursos calcários existentes na área são enormes, com capacidade para fornecer matéria-prima para diversos usos e por um período muito longo. Esta é uma informação muito importante para aquelas empresas que desejam investir no ramo de mineração de calcário. A partir dos resultados obtidos é possível concluir que a área de estudo contém 135.237.600 toneladas de calcário, como recurso mineral, calculado a partir de blocos de 10 x 10 x 10 m até a profundidade de 50 metros. O setor leste, possui 3.747.600 toneladas, de acordo com o modelo gerado. Para a criação do modelo de blocos foram levadas em consideração as características do calcário, que possui grande expressão territorial na área, além do conhecimento básico de seu comportamento em profundidade. Considerando o poderoso pacote calcário descrito nas pesquisas realizadas, a possibilidade de sua extensão em profundidade é enorme, portanto, trata-se apenas da porção superior deste enorme depósito.

Ao integrar dados geológicos e geoquímicos em modelos 3D, as reservas prováveis podem ser delineadas com maior precisão. Num contexto mineiro, compreender as características da jazida ajuda a planear estratégias de extração eficientes e a maximizar a produtividade e rentabilidade da jazida.

REFERÊNCIAS

AGISOFT LLC. **Agisoft Metashape User Manual** Professional Edition. V. 1.5. St. Petersburg, Rússia. 124 p., 2019. Disponível em: https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf>. Acesso em: 12 maio 2022.

BOSSI, J., GAUCHER, C. **Geología del Uruguay** – Tomo 1: Predevónico, 450 pp, 2014. Bossi y Gaucher (Eds).

BUSTILLO, M., LÓPEZ GIMENO, C., RUIZ SÁNCHEZ-PORRO, J.; GARCIA BERMÚDEZ, P. (2000): **Manual de aplicaciones informáticas en minería**. U.D. Proyectos. E.T.S.I. Minas. UPM, 381 p.

CALCAGNO, P.; COURRIOUX, G., GUILLEN, A., FITZGERALD, D. & MCINERNEY, P. **How 3D implicit geometric modelling helps to understand geology**: the 3DGeoModeller methodology. https://www.researchgate.net/publication/237709700, 2006.

CARRIVICK, J.L., SMITH, M.W., QUINCEY, D.J., 2016. Structure from motion in geoscience. Willey.

DIAS BATISTA, J. **Análise comparativa entre métodos de modelamiento geológico**.https://cursos.unipampa.edu.br/cursos/tecnologiaemmineracao/files/2016/03/TCC-Jociane.pdf ; Tecnologia em mineração. Unipampa.

DINAMIGE. **Estadística de producción minera del Uruguay**. Estadísticas anuales de la producción de minerales y rocas de la industria extractiva del Uruguay, entre los años 1998 y 2015. Disponible desde: [Acceso 2021]

FERRIZO, Héctor; ABRE, Paulina. **Mapeo de lineamientos estructurales en el sector centro-sur del Terreno Nico Pérez basado en imágenes satelitales ASTER**. In: VIII Congreso Uruguayo de Geología, Uruguay, 2016a.

GAUCHER, C., SPRECHMAN, P., MONTAÑA, J., MARTÍNEZ, S. Litoestratigrafía, sedimentología, y paleogeografía del Grupo Arroyo del Soldado (Vendiano-Cambrico, Uruguay). Actas del II Congreso Uruguayo de Geología, pp. 24-31, 1998b.

GAUCHER, Claudio. **Grupo Arroyo del Soldado**. En: Bossi y Gaucher (Eds.): Geología del Uruguay – Tomo 1: Predevónico: 313-340, 2014.

GUIMARÃES TEIXEIRA, J. B., **Recursos Minerais**, In book: Geologia do Brasil (pp.814-832); https://www.researchgate.net/publication/317497896, 2012.

INFRAESTRUCTURA DE DATOS ESPACIALES- Presidencia de la República Oriental del Uruguay.. **Visualizador.ide.uy**, https://visualizador.ide.uy, 2017.

KRUPNIK, E., KHAN, S., 2019. Close-range, ground-based hyperspectral imaging for mining applications at various scales. Review and case studies. Earth-Science Reviews 198, https://doi.org/10.1016/j.earscirev.2019.102952.

MARTÍNEZ ALVAREZ, J. A. Manual de Mapas Geológicos, Explicación e interpretación. Editorial: PARANINFO. Oviedo, España. 259 pp., 1980.

MISIÓN GEOFÍSICA ALEMANA. **Asesoramiento Geológico y Yacimentológico** a la Dirección Nacional de Minería y Geología DI.NA.MI.GE, 1988.

RUIZ, Yhonny. Aplicación de software libre para la estimación de recursos y para la evaluación técnica de reservas minerales (Tesis de Pregado). Universidad Nacional de Piura, Piura. Obtenido de http://repositorio.unp.edu.pe/handle/UNP/975, 2015.

RIBEIRO DE SALES, E. Estudo comparativo da modelagem geológica de uma ocorrência de mármore na paraíba com ferramentas computacionais utilizadas na indústria mineral. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia Mineral, Recife 2019.

OLIVEIRA, H. **Modelos geológicos e sua influência na redução do risco nos negócios.** Disponível em https://institutominere.com.br/blog/modelos-geologicos-e-sua-influencia-nareducao-do-risco-nos-negocios. Acesso em: 12 de maio de 2024.

PAREDES, J.H. **Comparación modelamiento implicito vs modelamiento explicito.** Universidad Nacional de Ingeniería. Facultad de Ingenieria Geológica Minera y Metalúrgica- Perú, 2019.

PASETTO, G.A. **Modelagem geológica 3D utilizando aerofotogrametria com VANT em mina de mármore no município de Caçapava do Sul – RS.** 2018. 53 f. Dissertação (Bacharelado em Geologia) – Universidade Federal do Pampa, Caçapava do Sul, 2018.

SABINS, F.F. **Remote sensing for mineral exploration**, Ore Geology Reviews, pp 157-183, 1999.

VOLLGGER, S. A., & CRUDEN, A. R. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168-187, 2016.

ANEXOS

Ponto	Este	Norte	Direção	Mergulho	Tipo de estrutura
1	746050	6374380	86	37 N	Foliação
2	746080	6374365	62	25 NW	Foliação
3	746141	6374316	74	28 N	Foliação
4	746208	6374300	40	43 NW	Foliação
					dobra isoclinal
5	746253	6374323	36	44 NW	assimetrica
6	744178	6374817	25	53 NW	Foliação
7	744174	6374819	35	54 NW	Foliação
8	744168	6374819	30	74 NW	Foliação
9	744132	6374803	30	63 NW	Foliação
10	744094	6374815	54	56 NW	Foliação
11	746880	6374307	20	25 NW	Foliação
12	746554	6374305	40	32 NW	Foliação
13	746630	6374215	38	35 NW	Foliação
14	746672	6374224	40	46 NW	Foliação
15	746694	6374162	20	44 NW	Foliação
16	746793	6374242	32	46 NW	Foliação
17	746997	6374450			contacto pelita
18	746946	6374415	8	38 W	Foliação
19	746874	6374410	5	32 W	Foliação
20	746906	6374402	5	34 W	Foliação
21	746752	6374417	20	45 NW	Foliação
22	746709	6374507	32	32 NW	Foliação
			55	26 SW	eje pliegue
			77	subV	falla dextral
23	746615	6374504	43	32 NW	Foliação
24	746574	63744536	22	36 NW	Foliação
25	746560	6374425	25	42 NW	Foliação
26	746509	6374349	18	26 NW	Foliação
27	746473	6374381	16	29 NW	Foliação
28	746426	6374385	0	24 NW	Foliação
29	746355	6374328	0	35 NW	Foliação
30	745853	6374357	85	39 N	Foliação
31	745818	6374328	87	39 N	Foliação
31 A	745843	6374281	75	43 NW	Foliação
32	745854	6374232	90	39 N	Foliação
33	745879	6374193	76	40 NW	Foliação
	745840	6374127			pelitas
34	745777	6374171	90	42 N	Foliação

ANEXO I - Dados estruturais obtidos em campo.

35	745746	6374179	90	43 N	transição pelita calcário
36	745691	6374244	75	55 NW	Foliação
37	745665	6374303	90	33 N	Foliação
38	745724	6374378	64	38 NW	Foliação
	745825	6374444			pelitas
39	743859	6373849	20	48 NW	Foliação
40	743847	6373821	23	52 NW	Foliação
41	743813	6373826	31	46 NW	Foliação
42	743772	6373812	25	55 NW	Foliação
43	743753	6373796	22	47 NW	Foliação
44	743796	6373785	28	50 NW	Foliação
45	743817	6373806	20	51 NW	Foliação
46	743825	6373785	21	47 NW	Foliação
47	743836	6373795	26	43 NW	Foliação
48	743848	6373820	25	53 NW	Foliação
49	743846	6373837	23	55 NW	Foliação
50	743869	6373844	28	47 NW	Foliação
51	743884	6373865	32	56 NW	Foliação
52	743894	6373855	30	54 NW	Foliação
53	743892	6373812	32	51 NW	Foliação
54	743911	6373795	36	55 NW	Foliação
55	743939	6373813	33	49 NW	Foliação
56	743960	6373780	33	50 NW	Foliação
57	743981	6373779	35	57 NW	Foliação
58	743971	6373756	32	55 NW	Foliação
59	743950	6373741	30	55 NW	Foliação
60	744112	6374086	38	46 NW	Foliação
61	744074	6374085	41	42 NW	Foliação
62	744045	6374099	41	45 NW	Foliação
63	744081	6374141	39	47 NW	Foliação
64	744118	6374122	43	40 NW	Foliação
65	744146	6374164	39	41 NW	Foliação
66	744155	6374204	40	50 NW	Foliação
67	744103	6374215	50	43 NW	Foliação
68	744214	6374271	42	40 NW	Foliação
69	744126	6374324	38	41 NW	Foliação
70	744061	6374350	39	42 NW	Foliação
71	744128	6374421	49	39 NW	Foliação
72	744138	6374465	45	39 NW	Foliação
73	744194	6374436	46	45 NW	Foliação
74	744233	6374388	37	32 NW	Foliação
75	744293	6374356	41	40 NW	Foliação
76	744354	6374333	46	43 NW	Foliação
77	744349	6374275	45	50 NW	Foliação
78	744253	6374239	49	49 NW	Foliação

79	744242	6374181	47	48 NW	Foliação
80	744187	6374082	42	51 NW	Foliação
81	744181	6374025	45	50 NW	Foliação
82	746076	6374679	17	50 NW	Foliação
83	746112	6374662	20	47 NW	Foliação
84	746143	6374646	21	43 NW	Foliação
85	746165	6374626	49	48 NW	Foliação
86	746207	6374608	51	46 NW	Foliação
87	746303	6374658	50	47 NW	Foliação
88	746334	6374709	51	46 NW	Foliação
89	746254	6374692	45	51 NW	Foliação
90	746209	6374711	46	47 NW	Foliação
91	746175	6374716	32	46 NW	Foliação
92	746155	6374747	26	47 NW	Foliação
93	746220	6374784	41	50 NW	Foliação
94	746309	6374821	49	47 NW	Foliação
95	746303	6374862	51	42 NW	Foliação
96	746352	6374862	51	41 NW	Foliação
97	746376	6374787	49	42 NW	Foliação
98	746455	6374846	50	43 NW	Foliação
99	746493	6374904	48	48 NW	Foliação
100	746415	6374955	50	48 NW	Foliação
101	743690	6374077	40	43 NW	Foliação
102	743726	6374079	41	50 NW	Foliação
103	743771	6374072	43	51 NW	Foliação
104	743779	6374021	38	48 NW	Foliação
105	743769	6373954	40	46 NW	Foliação
106	743700	6373961	42	50 NW	Foliação
107	743703	6373918	39	51 NW	Foliação
108	743555	6373907	42	47 NW	Foliação
109	744173	6374081	40	45 NW	Foliação
110	744217	6374094	41	47 NW	Foliação
111	744187	6374117	38	50 NW	Foliação
112	744214	6374185	43	50 NW	Foliação
113	744245	6374185	45	45 NW	Foliação
114	744283	6374167	47	43 NW	Foliação
115	744268	6374142	43	46 NW	Foliação
116	744297	6374160	46	48 NW	Foliação
117	744352	6374167	39	42 NW	Foliação
118	744400	6374164	36	45 NW	Foliação
119	744356	6374103	39	43 NW	Foliação
120	744395	6374089	35	45 NW	Foliação
121	744455	6374265	55	48 NW	Foliação
122	744552	6374325	53	46 NW	Foliação
123	744615	6374375	43	43 NW	Foliação

124	744493	6374373	48	50 NW	Foliação
125	744547	6374448	57	49 NW	Foliação
126	744558	6374529	54	53 NW	Foliação
127	744481	6374518	56	56 NW	Foliação
128	744493	6374478	48	51 NW	Foliação
129	744429	6374480	50	46 NW	Foliação
130	744360	6374416	49	53 NW	Foliação
131	744313	6374380	56	59 NW	Foliação
132	744262	6374334	48	48 NW	Foliação
133	744337	6374322	57	56 NW	Foliação
134	744257	6374243	53	49 NW	Foliação
135	744342	6374272	44	46 NW	Foliação
136	744421	6374271	40	45 NW	Foliação
137	744463	6374196	41	43 NW	Foliação
138	744487	6374159	39	43 NW	Foliação
139	744451	6374117	40	41 NW	Foliação
140	744631	6374228	47	48 NW	Foliação
141	744625	6374275	49	45 NW	Foliação
142	744621	6374329	45	46 NW	Foliação
143	744688	6374399	46	49 NW	Foliação
144	744826	6374434	51	52 NW	Foliação
145	744943	6374510	49	56 NW	Foliação
146	745067	6374537	60	61 NW	Foliação
147	745096	6374453	62	56 NW	Foliação
148	744215	6373530	46	50 NW	Foliação
149	744299	6373602	43	45 NW	Foliação
150	744202	6373654	44	47 NW	Foliação
151	744143	6373703	47	46 NW	Foliação
152	744269	6373774	43	46 NW	Foliação
153	744364	6373840	45	43 NW	Foliação
154	744333	6373952	46	50 NW	Foliação
155	744471	6373927	42	52 NW	Foliação
156	744493	6374008	42	51 NW	Foliação
157	744611	6374067	46	49 NW	Foliação
158	744685	6374067	43	56 NW	Foliação
159	744644	6374155	44	53 NW	Foliação
160	744744	6374213	42	55 NW	Foliação
161	744842	6374198	44	51 NW	Foliação
162	744905	6374145	42	55 NW	Foliação
163	745056	6374228	43	53 NW	Foliação
164	745066	6374358	45	49 NW	Foliação
165	745139	6374311	45	50 NW	Foliação
166	745045	6374150	45	56 NW	pelitas
167	744931	6374078	43	60 NW	pelitas
168	744805	6373974	44	59 NW	pelitas

169	744691	6373882	41	58 NW	pelitas
170	744598	6373791	44	62 NW	pelitas
171	744460	6373700	41	60 NW	pelitas
172	744307	6373601	45	58 NW	pelitas
173	744217	6373528	42	59 NW	pelitas
174	744162	6373388	36	60 NW	pelitas
175	746253	6375151	66	55 NW	Foliação
176	746183	6375126	64	53 NW	Foliação
177	746190	6375098	69	52 NW	Foliação
178	746159	6375118	66	53 NW	Foliação
179	746106	6375095	67	56 NW	Foliação
180	746092	6375053	64	51 NW	Foliação
181	746025	6375028	65	52 NW	Foliação
182	745961	6374982	66	55 NW	Foliação
183	745947	6374912	69	54 NW	Foliação
184	745902	6374937	68	56 NW	Foliação
185	745806	6374891	64	53 NW	Foliação
186	745749	6374985	65	52 NW	Foliação
187	745856	6374999	82	50 NW	Foliação
188	745886	6375049	85	52 N	Foliação
189	745949	6375053	86	49 N	Foliação
190	746018	6375084	85	48 N	Foliação
191	746063	6375100	83	46 NW	Foliação
192	746106	6375105	82	52 NW	Foliação
193	746111	6375144	84	53 NW	Foliação
194	746225	6375171	86	47 N	Foliação
195	745193	6375838	83	50 NW	Foliação
196	745253	6375816	80	51 NW	Foliação
197	745356	6375819	82	49 NW	Foliação
198	745357	6375782	83	50 NW	Foliação
199	745279	6375763	81	52 NW	Foliação
200	745331	6375729	79	51 NW	Foliação
201	745337	6375619	77	48 NW	Foliação
202	745244	6375641	86	49 NW	Foliação
203	745181	6375684	87	50 NW	Foliação
204	745159	6375742	83	49 NW	Foliação
205	745085	6375757	82	49 NW	Foliação
206	744546	6374742	80	51 NW	Foliação
207	744637	6374817	78	59 NW	Foliação
208	744567	6374732	81	55 NW	Foliação
209	744694	6374831	82	56 NW	Foliação
210	744716	6374907	77	56 NW	Foliação
211	744903	6374980	77	54 NW	Foliação
212	744879	6375024	76	46 NW	pelita
213	744956	6375092	78	45 NW	pelita

214	745009	6375047	80	50 NW	Foliação
215	745009	6374975	73	46 NW	Foliação
216	744975	6374895	74	51 NW	Foliação
217	745088	6374855	75	47 NW	Foliação
218	744983	6374824	79	44 NW	Foliação
219	745072	6374763	79	46 NW	Foliação
220	744922	6374793	81	49 NW	Foliação
221	745442	6374971	80	46 NW	Foliação
222	745470	6375023	78	51 NW	Foliação
223	745523	6375063	80	50 NW	Foliação
224	745568	6375046	79	49 NW	Foliação
225	745607	6375088	81	47 NW	Foliação
226	745674	6375067	78	50 NW	Foliação
227	745750	6375103	77	48 NW	Foliação
228	745815	6375126	80	47 NW	Foliação
229	745946	6375216	79	45 NW	Foliação
230	745794	6375222	81	51 NW	Foliação
231	745525	6375134	77	46 NW	Foliação
232	745464	6375139	78	45 NW	Foliação
233	745401	6375089	80	48 NW	Foliação
234	745320	6375048	79	47 NW	Foliação
235	746727	6375089	72	36 NW	Foliação
236	746745	6375045	71	33 NW	Foliação
237	746856	6375037	74	39 NW	Foliação
238	746767	6375007	70	38 NW	Foliação
239	746821	6374963	71	38 NW	Foliação
240	746869	6374934	69	41 NW	Foliação
241	746799	6374873	70	40 NW	Foliação
242	746717	6374797	68	35 NW	Foliação
243	746694	6374884	67	32 NW	Foliação
244	746684	6374946	71	35 NW	Foliação
245	746641	6375002	70	36 NW	Foliação
246	746578	6375019	70	32 NW	Foliação
247	746510	6375014	69	31 NW	Foliação
248	746629	6375113	85	45 N	Foliação
249	746679	6375167	86	44 N	Foliação
250	746695	6375223	85	43 N	Foliação
251	746755	6375226	87	41 N	Foliação
252	746725	6375174	88	44 N	Foliação
253	746801	6375197	87	43 N	Foliação
254	746856	6375231	85	42 N	Foliação
255	746923	6375236	88	40 N	Foliação
256	747015	6375242	85	40 N	Foliação
257	747093	6375245	86	41 N	Foliação
258	747181	6375209	53	36 NW	Foliação

259	747242	6375212	52	32 NW	Foliação
260	747196	6375149	53	38 NW	Foliação
261	747222	6375077	50	36 NW	Foliação
262	747158	6375095	55	38 NW	Foliação
263	747108	6375126	52	33 NW	Foliação
264	747003	6375093	53	46 NW	Foliação
265	746906	6375086	53	48 NW	Foliação
266	745150	6374503	63	45 NW	Foliação
267	745156	6374576	65	51 NW	Foliação
268	745194	6374653	67	49 NW	Foliação
269	745335	6374677	64	47 NW	Foliação
270	745428	6374674	67	43 NW	Foliação
271	745423	6374620	66	46 NW	Foliação
272	745426	6374584	71	48 NW	Foliação
273	745540	6374602	72	47 NW	Foliação
274	745654	6374640	70	45 NW	Foliação
275	745677	6374734	68	50 NW	Foliação
276	745674	6374841	65	44 NW	Foliação
277	745512	6374841	64	45 NW	Foliação
278	745481	6374758	68	46 NW	Foliação
279	745356	6374744	70	50 NW	Foliação
280	745383	6374489	65	52 NW	Foliação
281	745777	6374543	66	50 NW	Foliação
282	745255	6374372	67	49 NW	Foliação
283	745184	6374330	65	51 NW	Foliação
284	745258	6374306	64	50 NW	Foliação
285	745433	6374277	68	48 NW	Foliação
286	745534	6374304	72	47 NW	Foliação
287	745652	6374084	80	54 NW	pelita
288	745749	6374092	82	56 NW	pelita
289	746428	6374466	20	35 NW	Foliação
290	746493	6374515	18	29 NW	Foliação
291	746554	6374565	23	25 NW	Foliação
292	746581	6374537	16	24 NW	Foliação
293	746535	6374486	18	22 NW	Foliação
294	746528	6374397	16	22 NW	Foliação
295	746130	6374468	32	35 NW	Foliação
296	746094	6374514	36	39 NW	Foliação
297	746050	6374507	33	32 NW	Foliação
298	746433	6374025	16	20 NW	Foliação
299	746433	6373994	19	20 NW	Foliação
300	746410	6373972	18	25 NW	Foliação
301	746471	6373950	16	23 NW	Foliação
302	746495	6373935	17	25 NW	Foliação
303	746415	6373918	20	23 NW	Foliação

304	746381	6373885	18	26 NW	Foliação
305	746366	6373839	16	26 NW	Foliação
306	746306	6373827	20	25 NW	Foliação
307	746324	6373883	22	27 NW	Foliação
308	746343	6373984	21	28 NW	Foliação
309	746281	6374005	22	28 NW	Foliação
310	746303	6374112	32	30 NW	Foliação
311	746883	6374545	30	30 NW	Foliação
312	746819	6374590	32	28 NW	Foliação
313	746752	6374606	30	32 NW	Foliação
314	746742	6374693	31	31 NW	Foliação
315	746855	6374772	33	36 NW	Foliação
316	746897	6374857	31	30 NW	Foliação
317	746960	6374916	31	31 NW	Foliação
318	747023	6375019	33	33 NW	Foliação
319	747099	6375055	30	36 NW	Foliação
320	747110	6374995	31	29 NW	Foliação
321	747079	6374931	29	35 NW	Foliação
322	747013	6374880	29	33 NW	Foliação
323	746968	6374830	31	32 NW	Foliação
324	746976	6374745	30	35 NW	Foliação
325	746965	6374650	29	35 NW	Foliação
326	747043	6374650	28	36 NW	Foliação
327	746987	6374498	31	34 NW	Foliação

amostra			altitude			
N°	ESTE	NORTE	(m)	CaCO3	MgCO3	litologia
1	746495.366	6374543.76	272.8	91.24	2.29	calcário
2	746561.284	6374539.03	272.6	91.26	2.42	calcário
3	746654.072	6374542.23	275.2	91.16	1.57	calcário
4	746698.464	6374441.28	275.8	93.32	2.12	calcário
5	746568.616	6374442.53	273.7	95.42	1.88	calcário
6	746455.213	6374439.51	274.7	91.83	2.43	calcário
7	746571.803	6374344.02	276.1	92.91	1.86	calcário
8	746662.411	6374334.94	278.3	93.84	1.67	calcário
9	746657.321	6374232.42	276.7	93.32	1.06	calcário
10	746542.035	6374247.88	276	94.57	2.22	calcário
11	746467.719	6374236.29	277.2	95.68	1.32	calcário
12	746466.769	6374135.77	277.3	95.18	1.65	calcário
13	746574.006	6374140.9	275.8	96.1	1.09	calcário
14	746601.886	6374038.06	279.3	93.6	1.33	calcário
15	746377.115	6374027.9	279.4	93.89	2.54	calcário
16	746265.548	6374000.25	283	93.75	1.79	calcário
17	746157.836	6373943.85	286.8	94.24	2.04	calcário
18	746152.804	6373847.49	288.6	91.21	1.41	calcário
19	746275.212	6373932.46	281.8	95.88	1.23	calcário
20	746371.888	6373911.02	279	95.62	1.22	calcário
21	746456.642	6373936.88	278.9	94.66	2.19	calcário
22	746561.697	6373929.71	280.5	95.15	2.37	calcário
23	746569.048	6373835.28	281.8	94.19	2.68	calcário
24	746474.299	6373842.34	280.4	94.66	2.54	calcário
25	746377.43	6373843.27	279.4	94.6	2.19	calcário
26	746264.054	6373842.31	282.1	94.81	2.08	calcário
27	746271.289	6373735.57	281.8	93.31	1.41	calcário
28	746463.044	6373741.93	281.1	94.72	1.58	calcário
29	746553.689	6373736.96	282	95.27	2.67	calcário
30	746575.582	6373654.69	284.6	92.68	2.31	calcário
31	746460.165	6373655.8	283.3	94.41	1.68	calcário
32	746268.356	6373643.28	281.8	94.41	2.37	calcário
33	746163.113	6373629.94	288.2	93.71	2.55	calcário
34	743787.968	6373141.88	290.9	94.74	2.01	calcário
35	743875.385	6373191.69	289.4	96.74	1.05	calcário
36	743876.285	6373245.02	289	94.51	2.41	calcário
37	743762.905	6373244.88	288.2	92.72	2.19	calcário
38	743772.974	6373353.44	284.2	91.08	2.37	calcário
39	743867.777	6373351.84	286.2	91.08	2.02	calcário
40	743974.503	6373446.45	286.5	92.47	1.81	calcário
41	743875.685	6373454.28	284.7	96.91	0.58	calcário
42	743743.652	6373448.31	283.7	91.95	2.5	calcário

ANEXO II - Lista de dados de amostras coletadas em superfície.

43	743864.902	6373548.84	281	92.01	2.4	calcário
44	743963.725	6373541.01	283.4	93.93	2.69	calcário
45	744070.793	6373656.14	279.5	94.52	0.93	calcário
46	743971.732	6373649.61	278.6	91.17	2.51	calcário
47	743868.688	6373651.36	278.3	91.24	2.05	calcário
48	743765.547	6373646.95	280.5	91.03	2.65	calcário
49	743767.172	6373743.35	280.2	94.84	2.48	calcário
50	743862.102	6373749.95	276.7	93.73	0.85	calcário
51	743971.361	6373750.15	275.5	93.42	2.14	calcário
52	744070.25	6373746.42	276.5	93.06	1.08	calcário
53	744190.785	6373803.87	277.1	94.53	1.42	calcário
54	744274.187	6373859.91	275.8	91.51	1.9	calcário
55	744183.438	6373857.35	275.5	91.52	1.61	calcário
56	744094.818	6373858.85	273	97.96	0.7	calcário
57	743962.68	6373846.73	274.4	93.08	1.86	calcário
58	743872.004	6373848.26	275.8	94.52	1.83	calcário
59	743746.231	6373846.29	280.3	92.73	2.41	calcário
60	743766.504	6373948.53	278.1	94.57	1.96	calcário
61	743865.423	6373946.85	277.3	95.19	0.93	calcário
62	743933.847	6373970.32	278	93.3	2.13	calcário
63	744077.859	6373953.52	270.4	93.93	2.55	calcário
64	744130.857	6373917.74	272.6	94.08	2.63	calcário
65	744259.464	6373964.8	276	93.19	1.64	calcário
66	744275.482	6374058.91	274.1	93.06	2.28	calcário
67	744270.82	6374149.28	271.1	93.46	2	calcário
68	744165.884	6374161.32	269	95.07	1.53	calcário
69	744182.602	6374052.28	272	92.31	2.67	calcário
70	744081.754	6374062.2	271	92.4	2.3	calcário
71	744001.003	6374040.99	275.5	95.05	2.44	calcário
72	743723.356	6374645.41	288.1	86.11	5.1	calcário
73	743779.575	6374655.41	288	90.09	3.51	calcário
74	743848.661	6374657.67	285.6	88.6	5.19	calcário
75	743927.999	6374657.33	281.4	89.9	4.34	calcário
76	743966.346	6374664.85	279.3	93.51	2.95	calcário
77	744032.941	6374656.88	276.3	86.52	3	calcário
78	744084.109	6374661.79	274.8	88.81	4.11	calcário
79	744163.51	6374646.08	271.5	90.52	4.67	calcário
80	744370.809	6374655.44	261.7	74.71	3.77	calcário
81	744450.168	6374667.91	258.4	88.22	4.93	calcário
82	744550.003	6374657.23	256.1	87.51	5.23	calcário
83	744649.759	6374628.62	260.6	84.5	3.23	calcário
84	745170.619	6374764.85	252.8	87.34	3.04	calcário
85	745536.051	6374860.98	268.2	86.44	5.71	calcário
86	745670.808	6374937.75	264	80.26	5.04	calcário
87	745868.755	6374942.05	267.3	71.14	3.89	calcário

88	746108.897	6374954.39	277	88.12	5.43	calcário
89	746165.183	6374940.92	278.4	84.91	2.76	calcário
90	746261.371	6374943.81	277.8	76.15	5.72	calcário
91	746659.729	6375253.95	261.8	90.78	3.63	calcário
92	746849.066	6375233.16	266.4	80.64	5.57	calcário
93	747062.196	6375248.88	267.1	93.24	3.87	calcário
94	747047.07	6375132.62	262.6	85.21	3.18	calcário
95	746967.316	6375132.96	263.6	90.82	3.53	calcário
96	746754.482	6375120.6	267.8	93.06	3.42	calcário
97	746658.214	6375127.65	267.9	92.91	2.87	calcário
98	746583.043	6374942.42	270.9	93.18	3.27	calcário
99	746519.927	6374932.77	273.1	93.55	3.42	calcário
100	747065.936	6374857.72	261.6	90.62	3.07	calcário
101	746959.49	6374831.77	265.9	93.58	2.98	calcário
102	746860.095	6374832.2	269.1	90.3	3.18	calcário
103	746770.732	6374839.19	270.8	92.7	3.53	calcário
104	746661.491	6374846.26	268.9	93.15	3.27	calcário
105	746565.337	6374840.08	270	91.75	3.19	calcário
106	746462.637	6374840.53	272.7	84.57	4.74	calcário
107	746353.372	6374847.6	275.2	89.48	3.59	calcário
108	746257.244	6374841.41	276.9	88.91	3.83	calcário
109	746161.176	6374841.83	278.8	83.09	3.62	calcário
110	746098.216	6374838.8	278.3	76.02	5.68	calcário
111	745753.669	6374823.8	267	87.82	3.36	calcário
112	745664.26	6374834.09	264.7	87.29	4.71	calcário
113	745664.079	6374741.78	266.7	88.23	4.21	calcário
114	745571.425	6374748.77	266.6	91.65	3.42	calcário
115	745263.681	6374713.89	253.7	91.76	3.2	calcário
116	745170.947	6374650.71	251.9	90.01	3.94	calcário
117	744905.853	6374546.21	261.6	83.9	3.31	calcário
118	744826.474	6374559.66	266	92.3	4.45	calcário
119	744551.68	6374527.66	260.2	86.79	3.04	calcário
120	744446.036	6374610.37	256.7	85.92	3.29	calcário
121	744376.312	6374538.15	260	83.43	3.39	calcário
122	744270.485	6374558.27	266.6	91.06	3.46	calcário
123	744181.126	6374555.28	270.7	86.33	3.82	calcário
124	744068.642	6374562.26	275.7	90.28	3.75	calcário
125	744009.027	6374545.99	278.1	90.15	4.05	calcário
126	743969.328	6374549.42	279.2	90.77	4.75	calcário
127	743870.047	6374546.47	283.6	89.52	3.11	calcário
128	743770.782	6374550.1	284.5	92.56	4.29	calcário
129	743671.477	6374543.85	286.2	93.38	3.77	calcário
130	743572.223	6374550.78	289.3	88.81	5.23	calcário
131	743671.159	6374448.34	284.1	90.25	4.16	calcário
132	743770.438	6374448	281.2	92.2	4.05	calcário
133	743892.872	6374444.29	280.5	90.75	4.63	calcário
-----	------------	------------	-------	-------	------	----------
134	743972.226	6374424.25	277.3	87.76	5.97	calcário
135	744071.598	6374453.55	275.2	85.27	5.67	calcário
136	744170.85	6374446.63	271.9	82.46	2.71	calcário
137	744266.822	6374449.59	266.6	87.83	5.98	calcário
138	744376.007	6374442.63	263.4	87.16	5.72	calcário
139	744468.682	6374445.6	263	87.86	5.8	calcário
140	744564.662	6374445.28	265.4	82.03	4.04	calcário
141	744690.345	6374421.79	270.5	85.93	5.07	calcário
142	744769.853	6374447.87	267.3	79.67	5.16	calcário
143	744849.244	6374437.71	262.5	83.36	5.39	calcário
144	744968.39	6374440.6	256.2	91.2	3.02	calcário
145	745094.256	6374473.1	252.7	87.11	4.53	calcário
146	745160.734	6374561.81	252.3	89.25	3.15	calcário
147	745263.637	6374656.98	252.3	78.89	4.33	calcário
148	745369.515	6374650.03	256.4	89.57	3.7	calcário
149	745462.196	6374656.29	261.2	90.37	5.45	calcário
150	745558.271	6374688.9	265.5	87.17	3.54	calcário
151	745664.02	6374642.42	267.7	94.48	3.2	calcário
152	745756.697	6374648.69	270.5	92.21	3.75	calcário
153	745852.682	6374654.95	274.9	88.25	5.4	calcário
154	745852.546	6374612.13	274	91.48	3.17	calcário
155	745743.331	6374609.22	270.6	84.21	2.76	calcário
156	745564.56	6374586.77	263.7	91.61	2.71	calcário
157	745451.961	6374560.81	259.4	91.37	3.21	calcário
158	745359.324	6374567.72	254.3	87.47	3.08	calcário
159	745273.382	6374600.95	251.2	93.92	3.1	calcário
160	745273.202	6374544.95	252.8	92.41	3.14	calcário
161	745167.193	6374512.38	252.7	92.99	3.08	calcário
162	745157.137	6374472.89	253.4	93.76	3.27	calcário
163	745262.922	6374436.29	255.5	90.82	3.44	calcário
164	745369.016	6374495.22	256.3	85.93	4.67	calcário
165	745368.854	6374445.81	259.1	86.8	4.83	calcário
166	745448.342	6374465.3	260.4	86.44	4.53	calcário
167	745670.108	6374481.01	271.7	89.24	3.77	calcário
168	745766.282	6374543.26	272.4	88.41	4.47	calcário
169	745746.111	6374447.82	274.4	88.68	5.52	calcário
170	746071.367	6374739.84	279.8	88.27	4	calcário
171	746154.126	6374746.14	280.2	91.09	3.08	calcário
172	746262.888	6374724.78	277.3	91.72	3.47	calcário
173	746368.856	6374744.18	275.9	93.08	3.15	calcário
174	746451.627	6374753.78	273.9	81.48	5.64	calcário
175	746564.1	6374736.92	272.5	91.08	2.73	calcário
176	746660.108	6374746.48	272.8	83.75	5.07	calcário
177	746766.003	6374742.82	271.7	89.56	4.08	calcário

178	746852.075	6374745.82	268.6	79.76	3.42	calcário
179	746961.298	6374742.15	265.8	66.33	5.98	calcário
180	747070.528	6374741.78	262.9	89.22	4.07	calcário
181	746967.619	6374649.9	265	91.89	2.97	calcário
182	746838.5	6374643.76	270.6	91.89	3.08	calcário
183	746762.351	6374637.43	272.2	91.71	3.8	calcário
184	746656.443	6374637.8	273.2	91.27	4.23	calcário
185	746557.192	6374648.02	272.5	89.55	3.48	calcário
186	746457.916	6374651.65	273.9	93.05	3.39	calcário
187	746265.942	6374645.72	278.4	86.32	5.71	calcário
188	746166.636	6374639.47	282.5	89.78	2.72	calcário
189	746073.978	6374639.79	282.6	91.86	3.91	calcário
190	746083.606	6374547.54	283.7	80.44	5.43	calcário
191	746169.625	6374540.66	283.3	85.16	5.42	calcário
192	746298.735	6374553.39	280.4	88.62	4.63	calcário
193	746758.743	6374545.22	273.7	90.24	5.51	calcário
194	746871.284	6374544.83	268.8	92.67	3.18	calcário
195	746887.498	6374439.37	267.8	91.5	3.72	calcário
196	746761.702	6374436.52	273.8	92.75	3.36	calcário
197	746867.337	6374347.22	269.6	87.86	5.9	calcário
198	746767.978	6374331.1	275	80.85	5.91	calcário
199	746751.13	6374238.93	275.8	84.97	4.46	calcário
200	746863.696	6374245.12	270.6	92.11	4.78	calcário
201	746357.601	6374335.81	281.5	85.33	4.67	calcário
202	746261.627	6374336.14	283.4	90.71	3.14	calcário
203	746195.791	6374445.06	283.4	93.17	3.36	calcário
204	746060.094	6374438.94	283	90.89	2.81	calcário
205	746066.407	6374343.4	280	89.96	3.77	calcário
206	746178.906	6374339.72	282.2	90.61	3.35	calcário
207	746277.894	6374250.45	285.4	92.69	2.87	calcário
208	746158.736	6374240.98	281.9	88.37	5.53	calcário
209	746062.762	6374238.01	277.3	87.06	5.67	calcário
210	745464.154	6374358.62	263	91.17	3.01	calcário
211	745371.497	6374362.23	260.1	88.21	5.29	calcário
212	745265.558	6374352.7	255.5	91.25	3.72	calcário
213	744941.148	6374330.76	256.4	88.77	4.44	calcário
214	744779.009	6374334.61	263.8	87.08	4.08	calcário
215	744572.042	6374341.96	268.9	90.87	4.29	calcário
216	744509.203	6374355.35	268.2	89.64	5.74	calcário
217	744443.005	6374352.28	267.9	91.02	3.57	calcário
218	744363.525	6374336.08	267.6	80.22	2.82	calcário
219	744267.582	6374346.29	267	87.87	3.78	calcário
220	744168.363	6374363.1	271.2	83.62	3.27	calcário
221	743969.746	6374347.31	273	83.83	3.04	calcário
222	743850.546	6374327.96	275.8	93.74	3.13	calcário

223	743810.901	6374347.86	277.1	88.63	3.16	calcário
224	743764.584	6374351.31	278.8	89.39	3.77	calcário
225	743715.069	6374387.71	282.2	93.66	2.94	calcário
226	743684.9	6374265.95	284.6	89.71	3.22	calcário
227	743714.774	6374295.49	282.3	90.6	4.39	calcário
228	743744.573	6374301.98	279.9	91.88	2.88	calcário
229	743797.39	6374262.27	276.5	84.17	3.38	calcário
230	743674.29	6374058.48	283.4	85.55	4.72	calcário
231	743760.6	6374140.53	280.8	88.81	5	calcário
232	743849.992	6374153.4	278.6	88.23	5.17	calcário
233	744055.453	6374241.62	272.6	87.79	5.73	calcário
234	744181.193	6374237.9	269.7	89.36	4.37	calcário
235	743773.535	6374048.26	280	94.16	2.89	calcário
236	743796.802	6374077.83	281	86.38	5.67	calcário
237	743876.088	6374034.74	279.4	87.92	5	calcário
238	744088.206	6374136.11	271.6	83.47	5.91	calcário
239	744356.3	6374145.08	272.7	80.53	5.09	calcário
240	744395.782	6374072.48	273.9	89.45	3.2	calcário
241	744349.038	6373944.19	274.9	93.69	2.74	calcário
242	744465.328	6374088.71	271.3	91.37	3.3	calcário
243	744468.817	6374144.69	271.2	90.55	2.81	calcário
244	744465.836	6374246.8	269.8	91.94	2.89	calcário
245	744555.198	6374249.79	269	92.32	4.18	calcário
246	744551.643	6374174.05	267.6	90.68	3.93	calcário
247	744587.62	6374042.18	268.7	88.81	3.14	calcário
248	744650.533	6374055.12	264.6	85.51	3.52	calcário
249	744634.219	6374127.64	263.1	89.2	3.24	calcário
250	744624.465	6374180.38	263.5	90.67	4.01	calcário
251	744621.339	6374236.39	265.5	89.07	4.53	calcário
252	744783.589	6374265.47	260.3	94.87	2.84	calcário
253	744906.026	6374261.76	256.6	91.92	3.01	calcário
254	746160.803	6374142.14	285.2	90.29	3.12	calcário
255	746174.104	6374033.46	285.9	90.13	4.24	calcário
256	746680.403	6374145.66	275.2	93.04	3.2	calcário
257	746749.927	6374122.63	273.3	88.15	3.93	calcário
258	746667.277	6373941.44	279.7	92.5	2.84	calcário
259	745269.261	6375440.42	246.2	84.31	9.15	calcário
260	745355.010	6375415.06	244.7	85.23	6.97	calcário
261	745258.156	6375365.69	248.2	85.91	7.18	calcário
262	744798.71	6375054.67	262.3	87.39	6.67	calcário
263	744283.468	6375032.36	268.6	86.18	6.37	calcário
264	744304.597	6374964.61	268.1	85.64	6.78	calcário
265	744054.165	6374958.76	272.3	82.91	7.66	calcário
266	743971.872	6374955.61	275.4	53.66	15.82	calcário
267	743850.294	6374963.35	279.3	50	19.74	calcário

268	743574.342	6374854.38	290.8	71.61	8.95	calcário
269	743667.304	6374846.79	287.3	82.61	6.57	calcário
270	743760.304	6374846.32	286.1	83.83	12.21	calcário
271	743860.474	6374849.37	281.6	87.76	5.97	calcário
272	743960.556	6374834.62	277.1	87.83	5.98	calcário
273	744067.953	6374851.88	273.5	82.51	12.16	calcário
274	744157.38	6374851.43	272.1	91.24	6.65	calcário
275	744246.789	6374847.41	269	89.48	6.33	calcário
276	744268.306	6374857.98	268.3	71.37	11.66	calcário
277	744372.008	6374850.33	267.3	83.62	9.85	calcário
278	744479.304	6374846.23	265.2	75.86	6.07	calcário
279	744568.696	6374838.66	259.8	81.83	8.36	calcário
280	744619.39	6374963.01	262.2	77.2	6.26	calcário
281	744723.094	6374955.37	256.7	65.06	9.73	calcário
282	744672.433	6374838.13	255.5	79.3	8.41	calcário
283	744786.944	6374844.67	253.8	78.98	14.31	calcário
284	744923.442	6374957.92	250.2	76.92	10.58	calcário
285	744956.071	6375046.76	252.3	73.84	6.92	calcário
286	745020.38	6375028.64	248.2	79.3	7.2	calcário
287	744973.437	6374939.86	248.8	66.33	5.98	calcário
288	744962.285	6374854.46	250.5	84.11	6.44	calcário
289	745037.341	6374839.84	249.4	78.54	8.22	calcário
290	745478.221	6375015.6	261.8	81.38	7.87	calcário
291	745560.679	6375050.79	258.2	41.67	7.85	calcário
292	745654.116	6375135.77	259.7	72.11	9.09	calcário
293	745671.543	6375043.11	260.3	79.08	8.91	calcário
294	745757.664	6375096.08	261.6	71.38	10.32	calcário
295	745768.074	6375031.93	263.2	55.38	35.23	calcário
296	745864.501	6374999.39	266.2	80.85	5.91	calcário
297	746266.458	6375253.72	266.8	71.44	7.42	calcário
298	746366.619	6375246.1	262.3	75.11	10.46	calcário
299	744757.942	6374766.49	257	65.6	30.84	calcário
300	744664.826	6374745.6	255.9	83.34	11.45	calcário
301	744557.526	6374749.7	257.9	71.18	11.02	calcário
302	744464.537	6374753.74	261.1	80.68	6.89	calcário
303	744371.514	6374750.65	264.4	76.35	9.73	calcário
304	744239.128	6374744.2	268	86.62	7.1	calcário
305	744153.177	6374723.27	272.3	71.32	24.3	calcário
306	744117.6	6374762.62	274	86.61	6.48	calcário
307	744060.349	6374759.35	274.9	87.8	6.32	calcário
308	743960.194	6374759.86	278.3	70.34	18.55	calcário
309	743863.571	6374749.66	284.3	85.65	7	calcário
310	743770.627	6374760.82	287.9	84.81	7.26	calcário
311	743688.212	6374732.76	289	86.5	6.58	calcário
312	743577.44	6374758.24	289.9	90.65	6.4	calcário

313	743466.656	6374780.17	291.1	89.3	6.91	calcário
314	743462.454	6374655.58	288.1	89.39	7.48	calcário
315	743573.338	6374651.46	288.8	83.47	5.91	calcário

ANEXO III - Dados geoquímicos dos testemunhos do setor leste do corpo calcário.

Testemunho	desde (m)	até (m)	CaCO3
P16	0	2.8	92.2
P16	2.8	5.2	92.2
P16	5.2	8.2	92.3
P16	8.2	11.2	93.5
P16	11.2	14.2	91.1
P16	14.2	17.2	93.9
P16	17.2	20.2	93
P16	20.2	23.2	93.5
P16	23.2	26.2	92.8
P16	26.2	29.2	93.2
P16	29.2	32.2	92.5
P16	32.2	35.2	91.1
P16	35.2	38.2	88.5
P16	38.2	41.2	91.9
P17	0	2.4	85.3
P17	2.4	5.2	90.6
P17	5.2	8.2	93.7
P17	8.2	11.2	94.9
P17	11.2	14.2	94.1
P17	14.2	17.2	95.3
P17	17.2	20.2	96.4
P17	20.2	23.2	94.5
P17	23.2	26.2	93.2
P17	26.2	29.2	89.6
P17	29.2	32.2	93.1
P17	32.2	35.2	93.5
P17	35.2	38.2	94.8
P17	38.2	41.2	93.9
P17	41.2	44.2	91.1
P17	44.2	47.2	90.4
P17	47.2	50.1	91.5
P18	1.2	2.8	61.4
P18	2.8	5.2	82.9
P18	5.2	8.2	81.8
P18	8.2	11.2	83.1
P18	11.2	14.2	81.7
P18	14.2	17.2	88.6
P18	17.2	20.2	91.8
P18	20.2	23.2	93.7
P18	23.2	26.2	96.1
P18	26.2	29.2	92.5
P18	29.2	32.2	93.6

P18	32.2	35.2	89.3
P18	35.2	38.2	92.9
P18	38.2	41.2	91.5
P18	41.2	44.2	91.7
P18	44.2	47.2	90.9
P18	47.2	50	95.1
P19	0.5	2.8	85.1
P19	2.8	5	92.7
P19	5	8	91.2
P19	8	11	92.1
P19	11	14	90.3
P19	14	17	90.8
P19	17	20	92.1
P19	20	23	88.7
P19	23	26	89.5
P19	26	29	92.8
P19	29	32	89.7
P19	32	35	92.8
P19	35	38	91.6
P19	38	41	92.5
P19	41	44	90.6
P19	44	47	91.3
P19	47	50	89