
UNIVERSIDADE FEDERAL DO PAMPA

João Batista Pedroso Carbonell

OpenMLPerf - Graphical Domain-Specific
Modeling Language for Performance Testing

in Web Systems

Alegrete
2023

João Batista Pedroso Carbonell

OpenMLPerf - Graphical Domain-Specific Modeling
Language for Performance Testing in Web Systems

Master Thesis Master thesis presented as
partial requirement for obtaining the degree
of Masters of Software Engineering at Uni-
versidade Federal do Pampa.

Supervisor: Prof. Dr. Élder de Macedo Ro-
drigues

Co-supervisor: Prof. Dr. Maicon Bernardino
da Silveira

Alegrete
2023

Ficha catalográfica elaborada automaticamente com os dados fornecidos
pelo(a) autor(a) através do Módulo de Biblioteca do

Sistema GURI (Gestão Unificada de Recursos Institucionais) .

Carbonell, João
 OpenMLPerf - Graphical Domain-Specific Modeling Language
for Performance Testing in Web Systems / João Carbonell.
 103 p.

 Dissertação(Mestrado)-- Universidade Federal do Pampa,
MESTRADO EM ENGENHARIA DE SOFTWARE, 2023.
 "Orientação: Elder Rodrigues".

 1. Engenharia de Software. 2. Linguagem de Dominio
Específico. 3. Teste de Desempenho. I. Título.

C264o

11/03/2024, 15:22 SEI/UNIPAMPA - 1251145 - SISBI/Folha de Aprovação

https://sei.unipampa.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1370361&infra_sistema=10… 1/2

JOAO BATISTA PEDROSO CARBONEL

OpenMLPerf - Graphical Domain-Specific Modeling Language for Performance Testing in Web
Systems

Dissertação apresentada ao Programa
de pós-graduação em Engenharia de
Software da Universidade Federal do
Pampa, como requisito parcial para
obtenção do Título de Mestre em
Engenharia de Software.

Dissertação defendida e aprovada em: 11 de outubro de 2023.

Banca examinadora:

__

Prof. Dr. Elder de Macedo Rodrigues
Orientador

 UNIPAMPA

__

Prof. Dr. Maicon Bernardino da Silveira
 Co-orientador
UNIPAMPA

Prof. Dr. Fábio Paulo Basso
 UNIPAMPA

11/03/2024, 15:22 SEI/UNIPAMPA - 1251145 - SISBI/Folha de Aprovação

https://sei.unipampa.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1370361&infra_sistema=10… 2/2

Prof. Dr. Avelino Francisco Zorzo
 PUCRS

Assinado eletronicamente por ELDER DE MACEDO RODRIGUES, PROFESSOR DO
MAGISTERIO SUPERIOR, em 28/11/2023, às 20:17, conforme horário oficial de Brasília, de
acordo com as normativas legais aplicáveis.

Assinado eletronicamente por MAICON BERNARDINO DA SILVEIRA, PROFESSOR DO
MAGISTERIO SUPERIOR, em 28/11/2023, às 21:44, conforme horário oficial de Brasília, de
acordo com as normativas legais aplicáveis.

Assinado eletronicamente por FABIO PAULO BASSO, PROFESSOR DO MAGISTERIO
SUPERIOR, em 01/12/2023, às 14:04, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

Assinado eletronicamente por Avelino Francisco Zorzo, Usuário Externo, em 06/03/2024, às 15:43,
conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site
https://sei.unipampa.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1251145 e o
código CRC 41D40F99.

“Science is a way of thinking much more than it is a body of knowledge.”
(Carl Sagan)

ABSTRACT

Testing system performance is one of the most crucial tasks in the software development
process and its evolution. Most of the current performance tests focus on evaluating an
already implemented system, making it difficult to predict issues such as load capacities
and bottlenecks. Therefore, it is recommended to employ mechanisms for modeling and
specifying system information before implementation. One potential solution is the uti-
lization of models that represent unchangeable aspects of the system domain, such as
infrastructure features or user behavior.
Using models to abstract, define, and model domain aspects has become the most com-
monly adopted approach for addressing problems within specific contexts, aligning with
the principles of Model-Driven Engineering (MDE), which advocate for using models
throughout the software lifecycle. Domain-Specific Languages (DSLs) are one way to
specify and model a domain. DSLs are compact languages with limited expressiveness
designed for specific domains. Unlike general-purpose languages like Python and Java,
DSLs are not intended for implementing systems across all domains; they are restricted
to their original purpose.
In this study, we propose the reimplementation of a graphical DSL called Canopus for
modeling performance tests in web systems. As part of this reimplementation, we have
developed a code generator within the DSL. The code generator is specifically designed
to generate SCALA code that can be used in conjunction with the JMeter tool.
The previous implementation of Canopus utilized commercial licensed technologies, which
limited its distribution and evolution. Hence, we present a new version of this DSL, named
OpenMLPerf, which will be released under an open-source license, enabling its use, im-
provement, and evolution. With the addition of the code generator, OpenMLPerf em-
powers users to automatically generate SCALA code for their performance test scenarios,
facilitating the integration with the widely-used JMeter tool.
For the selection of a DSL development tool, we conducted a Systematic Literature Map-
ping, identifying fifty-three (53) available DSL support tools. We chose to use Ecore
from the Eclipse Modeling Framework (EMF) and the Sirius framework to implement the
language metamodel and the language itself. In addition to these two frameworks, we
also utilized the Acceleo framework for template modeling and Scala code generation for
performance testing tools.
We conducted an empirical evaluation to measure the effort required by users when mod-
eling a performance test scenario using the OpenMLPerf approach, compared to using a
UML profile for performance testing. Although the results indicated that both approaches
require similar efforts from participants, the OpenMLPerf approach proved to be highly
scalable, comprehensive, and intuitive.
A crucial factor for adopting the OpenMLPerf approach is its development within an
open-source platform, allowing for replication, customization, and community-driven im-

provements. As a point of consideration, it is worth noting that the adoption of this
approach may be influenced by performance and usability issues related to the Eclipse
platform.

Key-words: Domain-Specific Language. Model Based Testing. Model Driven Engineer-
ing. Performance Testing.

RESUMO

Testar o desempenho de um sistema é uma das tarefas mais cruciais no processo de
desenvolvimento de software e sua evolução. A maioria dos testes de desempenho atuais
concentra-se em avaliar um sistema já implementado, tornando difícil prever problemas
como capacidades de carga e gargalos. Portanto, é recomendado utilizar mecanismos
para modelar e especificar informações do sistema antes da implementação. Uma solução
potencial é a utilização de modelos que representem aspectos imutáveis do domínio do
sistema, como características de infraestrutura ou comportamento do usuário.
O uso de modelos para abstrair, definir e modelar aspectos do domínio tornou-se a
abordagem mais comumente adotada para resolver problemas em contextos específicos,
alinhando-se aos princípios da Engenharia Orientada a Modelos (MDE), que defendem o
uso de modelos ao longo do ciclo de vida do software. Linguagens Específicas de Domínio
(DSLs) são uma maneira de especificar e modelar um domínio. As DSLs são linguagens
compactas com expressividade limitada projetadas para domínios específicos. Ao con-
trário de linguagens de propósito geral como Python e Java, as DSLs não se destinam a
implementar sistemas em todos os domínios; elas são restritas ao seu propósito original.
Neste estudo, propomos a reimplementação de uma DSL gráfica chamada Canopus para
modelar testes de desempenho em sistemas web. Como parte dessa reimplementação,
desenvolvemos um gerador de código dentro da DSL. O gerador de código foi especialmente
projetado para gerar código SCALA que pode ser usado em conjunto com a ferramenta
JMeter.
A implementação anterior do Canopus utilizava tecnologias licenciadas comercialmente,
o que limitava sua distribuição e evolução. Portanto, apresentamos uma nova versão
desta DSL, chamada OpenMLPerf, que será disponibilizada sob licença de código aberto,
permitindo seu uso, aprimoramento e evolução. Com a adição do gerador de código,
o OpenMLPerf capacita os usuários a gerar automaticamente código SCALA para seus
cenários de teste de desempenho, facilitando a integração com a amplamente utilizada
ferramenta JMeter.
Para a seleção de uma ferramenta de desenvolvimento de DSL, conduzimos um Mapea-
mento Sistemático da Literatura, identificando cinquenta e três (53) ferramentas de apoio
a DSL disponíveis. Optamos por utilizar o Ecore, do Eclipse Modeling Framework (EMF),
e o framework Sirius para implementar o metamodelo da linguagem e a própria linguagem
de modelagem. Além desses dois frameworks, também utilizamos o framework Acceleo
para a modelagem de templates e a geração de código Scala destinado a ferramentas de
teste de desempenho.
Realizamos uma avaliação empírica para medir o esforço exigido dos usuários ao modelar
um cenário de teste de desempenho usando a abordagem OpenMLPerf, em compara-
ção com o uso de um perfil UML para testes de desempenho. Embora os resultados
tenham indicado que ambas as abordagens requerem esforços semelhantes por parte dos

participantes, a abordagem OpenMLPerf demonstrou ser altamente escalável, completa e
intuitiva.
Um fator determinante para a adoção da abordagem OpenMLPerf é o seu desenvolvi-
mento em uma plataforma de código aberto, o que permite sua replicação, customização
e aprimoramento pela comunidade. Como ponto de atenção, vale ressaltar que a adoção
dessa abordagem pode ser afetada por questões de desempenho e usabilidade relacionadas
à plataforma Eclipse.

Palavras-chave: Linguagem Específica de Domínio. Teses Baseados em Modelos. En-
genharia Dirigida por Modelos. Teste de Desempenho.

LIST OF FIGURES
Figure 1 – Process adopted in the development of the work 24
Figure 2 – Metamodeling architecture based on OMG’s MOF. 30
Figure 3 – EMF unifies UML, Java, and XML . 31
Figure 4 – Ecore hierarchical structure . 32
Figure 5 – Sirius framework graphical interface . 33
Figure 6 – Acceleo template-based technology . 33
Figure 7 – Systematic Mapping Study Conduction Results 42
Figure 8 – Package dependency diagram showing the main model and the six lan-

guage metamodels . 49
Figure 9 – Class diagram of the OpenMLPerf package 50
Figure 10 – Class diagram illustrating the Performance Monitoring metamodel of

the language . 51
Figure 11 – Class diagram depicting the metamodel of the performance scenario in

the language . 52
Figure 12 – Class diagram displaying the scripting metamodel of the language . . . 54
Figure 13 – Sirius Specification Editor and the viewpoint specifications related to

the models . 55
Figure 14 – Modeled nodes to represent the elements of the OpenMLPerf Specifica-

tion Monitoring metamodel . 56
Figure 15 – Modeled nodes to represent the elements of the OpenMLPerf Specifica-

tion Metric metamodel . 57
Figure 16 – Example of graphical relationship elements (edges) between objects in

the model. 57
Figure 17 – Monitoring Test Modeling Diagram . 58
Figure 18 – Monitoring Metric Modeling Diagram 58
Figure 19 – Test Scenario Modeling Diagram . 59
Figure 20 – Modeling diagram of a scenario script 59
Figure 21 – Workload modeling diagram . 60
Figure 22 – Menu for creating the Scripting diagram 61
Figure 23 – Properties editing menu . 61
Figure 24 – Results of the leveling questions . 73
Figure 25 – Effort of participants . 74
Figure 26 – Results of questions about OpenMLPerf 75
Figure 27 – Results regarding the recommendation of using the DSL 76
Figure 28 – Class diagram displaying the monitoring metamodel of the language . . 87
Figure 29 – Class diagram showing the metamodel of the workload 88
Figure 30 – Modeling diagram of the language’s scripts 89

LIST OF TABLES
Table 1 – Number of participants per approach. 72
Table 2 – Effort of Participants (Average and Median) 73
Table 3 – Effort per participant . 74
Table 4 – Standard deviation for participant effort 77

CONTENTS

1 INTRODUCTION . 21
1.1 Motivation . 21
1.2 Objective . 22
1.3 Methodology . 22
1.4 Organization . 25

2 BACKGROUND . 27
2.1 Model-Driven Engineering (Model-Driven Engineering (MDE)) 27
2.1.1 Model-Based Testing (Model-Based Testing (MBT)) 27
2.1.1.1 Performance Testing (PT) . 28
2.1.2 Domain-Specific Languages . 29
2.1.2.1 Models, Metamodels, and Meta-Metamodels 29
2.1.3 Eclipse Modeling Framework (EMF) 30
2.1.3.1 Ecore . 31
2.1.4 Eclipse Sirius Framework . 31
2.1.5 Acceleo Code Generator . 32
2.1.6 DSL Canopus . 34
2.1.7 Lessons from the Chapter . 34

3 RELATED WORK . 35
3.1 Related Work . 35
3.1.1 Chapter Lessons . 37

4 SYSTEMATIC MAPPING STUDY ON DOMAIN-SPECIFIC
LANGUAGE DEVELOPMENT TOOLS 39

4.1 SMS Design and Execution . 39
4.2 Report . 42
4.3 Conclusion . 44

5 GRAPHICAL DOMAIN-SPECIFIC MODELING LANGUAGE
FOR PERFORMANCE TESTING IN WEB SYSTEMS . . . 47

5.1 Requirements and Design Decisions 47
5.1.1 Language Requirements . 47
5.1.2 Design Decisions . 48
5.2 Architecture and Domain Modeling with Eclipse Ecore 48
5.3 Language Implementation with the Eclipse Sirius Framework 53
5.3.1 Definition of Relationships . 56
5.3.2 Modeling Diagrams . 57
5.3.3 Modeling Menus . 60

5.4 Code Generation . 60
5.4.0.1 Acceleo Template Development . 60
5.4.0.2 Integration with OpenMLPerf DSL 62
5.4.0.3 Customization and Extension . 62
5.4.0.4 Generated Code Artifacts . 63
5.4.0.5 Generation of Scala Code for JMeter 63
5.4.1 Chapter Lessons . 66

6 EMPIRICAL EVALUATION . 67
6.1 Evaluation Definition . 67
6.1.1 Research Questions . 67
6.1.2 Objective Definition . 68
6.2 Planning . 68
6.2.1 Context . 68
6.2.2 Hypothesis Formulation . 68
6.2.3 Participant Selection . 69
6.2.4 Evaluation Design . 69
6.2.5 Instrumentation . 69
6.2.6 Threats to Validity . 70
6.3 Evaluation Operation . 71
6.3.1 Preparation . 71
6.3.2 Execution . 71
6.3.3 Results . 73
6.3.4 Discussion . 76
6.3.5 Chapter Lessons . 77

7 CONCLUSION . 79
7.1 Lessons Learned . 79
7.2 Future Work . 80

BIBLIOGRAPHY . 81

APPENDIX 85

APPENDIX A – APÊNDICE A 87

APPENDIX B – . 89

APPENDIX C – . 91

APPENDIX D – . 97

CONTENTS 19

cutter=M1234x, keywords=Modelo de texto, UNIPAMPA, Latex, firstcommit-
teemember=Nome membro da banca 1
UNIPAMPA, secondcommitteemember=Nome membro da banca 2
Instituição,

21

1 INTRODUCTION
The increasing prevalence of web applications hosted on local or cloud servers, it

has become essential to test, predict, and analyze the capabilities and performance of the
hosting infrastructure. Performance testing should be applied not only to systems hosted
on physical or virtual machines but also to those hosted in the cloud or distributed
in a hybrid manner. Executing and analyzing performance tests on an already imple-
mented system helps verify whether resource utilization is efficient, plan architectural
improvements, and prevent wastage of computational resources (MOLYNEAUX, 2014).
Therefore, conducting tests to forecast future infrastructure demands aids in devising an
efficient plan, encompassing not only the computational capacities of the infrastructure
but also the technologies employed for system implementation.

One of the challenges in applying performance testing lies in integrating domain
knowledge with the understanding of the hardware and software technologies used to cre-
ate the hosting environment. One commonly employed approach to address this challenge
is the utilization of the methodology of Model-Driven Engineering (MDE) (Model-Driven
Engineering) and its associated activities, such as Model-Based Testing (MBT), which
emphasize the use of models to express the domain and model the system responsible for
solving the domain problem. MDE and MBT provide support for various activities that
would typically be performed by the end user, such as code and script generation. This
way, the user’s efforts are concentrated solely on domain modeling. One such activity
supporting this methodology is the utilization of Domain-Specific Languages (Domain-
Specific Language (DSLs)).

DSL (FOWLER, 2010) has been widely adopted as an approach to solving prob-
lems in specific domains. It finds application in diverse domains, ranging from perfor-
mance testing modeling (BERNARDINO, 2016), machine learning (ZHAO; HUANG,
2018), and domain-driven object-oriented design (LE; DANG; NGUYEN, 2018), to au-
tomatic generation of school timetables (RIBIĆ et al., 2018), and even languages for
communication and querying of databases, such as Structured Query Language (SQL).

1.1 Motivation

Modeling tests without the concern for implementation platform technologies (FRANCE;
RUMPE, 2007) is one of the benefits provided by DSLs for MBT. Bernardino (2016) pro-
posed the Canopus DSL for modeling performance test scenarios and scripts for web
systems. In addition to modeling test scenarios and scripts, Canopus aims to automati-
cally generate input data for load testing tools such as HP LoadRunner (Hewlett Packard,
2018). Canopus development was a joint effort between industry and academia, through
a partnership between researchers and a multinational Information Technology company.

22 Chapter 1. Introduction

The development of Canopus utilized a Lightweight Language (Language Work-
bench (LW)) called MetaEdit+ (MetaCase, 2018). Although it was considered a satisfac-
tory experience from a functional perspective, the fact that MetaEdit+ is a commercially
licensed distributed tool requiring each Canopus user to purchase a MetaEdit+ license
made the deployment and utilization of Canopus financially costly and, in many scenar-
ios, unfeasible. Therefore, it became relevant to develop a new version that could be
distributed under an open-source license, accessible for both industrial use and research
and development in academia.

1.2 Objective

The main objective of this work is to develop an open-source graphical DSL for
modeling performance test scenarios for web systems. This DSL will also include a code
generation feature to automatically generate code snippets for input data in load gener-
ation tools, such as JMeter (Apache Foundation, 2023).

To achieve the main objective, the following specific objectives have been defined
through requirements gathering and decisions (see Section 5.1):

⋆ Implement a DSL that encompasses the following general requirements:

– Open-source license
– Enable graphical modeling and visualization of models
– Represent the characteristics of the Performance Test (PT)
– Model different metrics and scripts that can be reused by other scenarios
– Model different user profiles and their behaviors

⋆ Include a code generation feature to automatically generate code snippets for load gener-
ation tools like JMeter

⋆ Evaluate the developed DSL through an empirical experiment

1.3 Methodology

To identify the existing tools, notations (graphical or textual), and their licenses,
a Systematic Literature Mapping was conducted. The most important databases in the
field of computer science were searched, applying inclusion, exclusion, and quality criteria.
This allowed for the qualification and classification of the most relevant studies regarding
DSL development tools in the context of this work.

As shown in Figure 1, the development process of the OpenMLPerf DSL was
divided into:

⋆ Conception

– Requirement elicitation for the language

1.3. Methodology 23

∗ Identification of the requirements necessary to meet the needs of perfor-
mance testing domain.

– Design decisions

∗ Decisions necessary to fulfill the DSL requirements, such as the choice of
implementation tools, code generation support, etc.

– Systematic Literature Mapping

∗ A systematic study to identify existing tools that support the creation and
maintenance of DSLs.

⋆ Implementation

– Modeling the metamodel using the Ecore framework

∗ Definition of the properties, relationships, and elements of the domain and
their representations in the metamodel.

– Implementation of the visual representation of the language using the Sirius
framework

∗ Graphical representation of the elements defined in the model, serving as
the language interface.

– Code generation

∗ Development of code generation mechanisms to automatically generate
code based on the DSL models, facilitating their practical application in
performance testing scenarios.

⋆ Evaluation

– Empirical evaluation to assess the effort, effectiveness, and ease of use of the
language.

24
C

hapter
1.

Introduction

Figure 1 – Process adopted in the development of the work

Source: Author

1.4. Organization 25

1.4 Organization

This work is organized as follows: Chapter 2 establishes the theoretical foundation
to provide technical and theoretical background on the subjects and terms addressed
throughout the work. Chapter 3 discusses related works that use DSL in some way
for performance testing. Chapter 4 presents the Systematic Literature Mapping and its
results, conducted to aid in finding the supporting tool used in the development of the
proposed language. Chapter 5 presents the requirements and design decisions, the defined
metamodel for the language, and the language implementation. Chapter 6 presents the
empirical evaluation conducted to assess the DSL. Finally, in Chapter 7, the conclusions
and future work will be discussed.

27

2 BACKGROUND
The concept of using models to express a domain and create software has been

widely adopted in recent decades. The use of models in all phases of the software life cycle
is a fundamental principle of Model-Driven Engineering (MDE). In this context, it is suit-
able to adopt models for abstracting test scenarios and generating code. Domain-Specific
Languages (DSLs) enable domain modeling and subsequent code generation, which can
be used as input for testing tools. In this section, we will discuss and explain terms that
will be encountered and used in the following chapters and sections of this work, all of
which are part of the domain of DSLs.

2.1 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is an approach in software engineering that
utilizes models and their transformations to abstract various aspects of a domain and/or
a system. According to (FRANCE; RUMPE, 2007), one of the primary goals of MDE is
to isolate developers from the complexities of implementation platforms. In other words,
it aims to hide the intricacies that occur during system execution, such as infrastructure,
middleware, libraries, computer networks, etc. (KENT, 2002) states that MDE combines
architecture, process, and analysis for domain abstraction. The activities of MDE include
Model-Driven Architecture (MDA) and MBT.

2.1.1 Model-Based Testing (MBT)

Model-Based Testing (MBT) is an approach that utilizes models and their transfor-
mations to abstract various aspects of a domain and/or a system. According to (UTTING;
LEGEARD, 2010), there are four main approaches to MBT:

The first approach is the generation of test input data for a domain model, this
involves creating test input data using a domain model. Following we have the generation
of test cases from an environment model and in this approach, test cases are generated
based on an environment model. Other approach is the generation of test cases with
Oracles from a behavioral model. In this approach, test cases, along with oracles for
expected outcomes, are generated from a behavioral model. The last approach is the
generation of abstract test scripts, where abstract test scripts are generated to represent
test scenarios.

According to (EL-FAR; WHITTAKER, 2002), in addition to these approaches,
several activities are typically carried out in MBT: Generation of Expected Inputs: Uti-
lizing the model to generate test inputs, including test cases and test scripts; Generation
of Expected Outputs: Creating mechanisms to determine if the test execution produces
correct results; Test Execution: Running the test scripts and recording the results of each
test; Result Comparison: Comparing the obtained results with the expected outputs to

28 Chapter 2. Background

identify discrepancies; Decision-Making: Taking actions such as estimating the software’s
quality based on the test results; The last activity is the test completion, which conclues
the testing process and preparing the software for release.

To carry out these tasks, supporting tools need to be adopted, allowing the full
utilization of the advantages provided by MBT. Various tools for MBT support are avail-
able, including commercial, academic, and open-source tools (All4Tec, 2019)(Austrian
Institute of Technology, 2019)(Test Optimal, 2019).

2.1.1.1 Performance Testing (PT)

One of the most important activities in Performance Engineeringis is the PT (SMITH;
WILLIAMS, 1993), which focuses on improving scalability, and performance, and identify-
ing bottlenecks in the tested systems. Performance testing is supported by measurement-
based approaches, such as the analysis of non-functional requirements and performance
metrics, e.g., response time, and throughput. Through performance testing, it is possible
to determine the behavior of a system under different conditions, identifying process-
ing limits, insufficient memory, and low disk space. According to Meier et al. (2007),
performance testing can be classified into two categories:

• Load testing: It aims to determine or evaluate the behavior of the System Under
Test (SUT) under normal workload conditions and determine if the system meets
the requirements and specifications.

• Stress testing: It seeks to determine the behavior of the system under situations
where the workload exceeds normal conditions, thus identifying system failures and
bottlenecks.

Furthermore, according to Meier et al. (2007), the process of conducting perfor-
mance tests consists of a set of activities:

Identify the Test Environment: Start by defining the test environment, includ-
ing hardware specifications, software configurations, and network settings that will be
used during testing. Identify Performance Acceptance Criteria: Establish goals and as-
sumptions regarding response time and the utilization of computational resources by the
system. This helps define what is considered acceptable performance. Plan and Model
the Tests: Identify test scenarios and the variability of user representations. This in-
volves creating test cases that cover different usage situations of the system. Configure
the Environment: Prepare the testing environment, including the tools and resources
needed to conduct performance testing efficiently. Implement Test Modeling: Develop
scripts and test scenarios that represent real-world situations the system will encounter
in production. Execute the Tests: Implement performance monitoring and run the tests
according to the defined scenarios. This involves observing how the system behaves un-
der load. Analyze the Results and Redo the Tests: After executing the tests, analyze the

2.1. Model-Driven Engineering (MDE) 29

obtained results. This may involve creating summaries and consolidating collected data.
If necessary, repeat the tests to validate findings and ensure result consistency.

2.1.2 Domain-Specific Languages

Domain-Specific Languages (DSLs) are also known as Little Languages, Small Lan-
guages, Special-Purpose Languages, or Domain-Specific Modeling Languages (DSMLs).
As defined by Mernik, Heering e Sloane (2005), DSLs are "programming languages for
computers with limited expressiveness that focus on a specific domain" (MERNIK; HEER-
ING; SLOANE, 2005). Meanwhile, DSMLs are domain-specific languages with a different
syntax that uses graphical components to model the behavior of the system (KELLY;
TOLVANEN, 2007). A DSL can be classified in two ways: Internal DSL or External
DSL.

Internal DSL: A DSL can be classified as internal when it uses the structure of a
host language. As defined by Fowler (2010), "an internal DSL is a specific way of using
a general-purpose language... a script, in an internal DSL, is valid code in its general-
purpose language" (FOWLER, 2010).

External DSL: An external DSL is a language independent of the host language
of the application. In an external DSL, a script can be parsed by code in the application,
using techniques such as syntactic and semantic analysis (e.g., Structured Query Language
- SQL) (FOWLER, 2010).

Language Workbench (LW) Language Workbenches are tools used to develop
DSLs. According to Wachsmuth, Konat e Visser (2014a), LWs provide "high-level mech-
anisms for implementing programming languages to make the development of new lan-
guages accessible" (WACHSMUTH; KONAT; VISSER, 2014a). They are environments
that not only support the creation of new DSLs but also work together with other nec-
essary tools to enable the efficient use of these DSLs by end users. LWs facilitate not
only the definition of syntax parsers but also help create customized environments for the
languages. Additionally, they allow the definition of abstract syntax, which is commonly
used to obtain the desired language, which can be accessed in an integrated development
environment (KORENKOV; LOGINOV; LAZDIN, 2015).

Frameworks are sets of concepts used in a specific domain to solve problems.
According to Johnson (1997), "a framework is an application skeleton that is ready to be
customized by a developer" (JOHNSON, 1997). Frameworks are "components," and an
application can use multiple frameworks. However, frameworks can be adapted according
to the user’s needs, providing more flexibility than other components (JOHNSON, 1997).

2.1.2.1 Models, Metamodels, and Meta-Metamodels

According to Fuentes-Fernández e Vallecillo-Moreno (2004), the concept of orga-
nizing models, metamodels, and meta-metamodels based on the Meta-Object Facility

30 Chapter 2. Background

(MOF) of the OMG is classified into four layers.

Layer 0 (M0): This layer is named "instance" and its function is to model the running
system. Its elements are real instances that exist in the system. Examples of these
instances are "Shneider" living in "Alabama" who bought a copy of the book "DSL".

Layer 1 (M1): A model is a description of a system (or part of it) written in a well-
defined language. A well-defined language is a language with syntax and semantics
suitable for automatic interpretation by a computer. Examples of this layer are
"Person", "State", and "Book".

Layer 2 (M2): A model of a model (Metamodel) consists of elements that comprise the
modeling language. This layer defines the concepts that will be used to model an
element of the model layer, and each element of the model layer is an instance of
an element in the metamodel. For example, in UML, "Class", "Attributes", and
"Relationships" are defined in M2.

Layer 3 (M3): A model of a model of a model (Meta-Metamodel) defines the concepts
that can be used to define modeling languages. For example, UML defines "Class"
as a classifier.

Figure 2 – Metamodeling architecture based on OMG’s MOF.

Tang (2009)

Frameworks and DSLs can be classified as metamodels following the specifications
contained in OMG’s MOF and DSL, however, they are classified as models.

2.1.3 Eclipse Modeling Framework (EMF)

Developed and maintained by the Eclipse Foundation, the EMF is a framework
that enables the abstraction and modeling of domains through the definition of models.

2.1. Model-Driven Engineering (MDE) 31

The modeling can be done using UML modeling tools such as class diagrams or Java
annotations, as well as XML schemas, allowing code generation from the defined models.
According to Steinberg et al. (2008), EMF unifies three important technologies (see Figure
1): Java, XML, and UML. Regardless of the technology used to define the model, EMF
brings them together under an EMF model that maintains their unity. The Eclipse EMF
is distributed under the Eclipse Public License 2.0.

Figure 3 – EMF unifies UML, Java, and XML

Source: Steinberg et al. (2008)

2.1.3.1 Ecore

Ecore is the model used to represent other models in the Eclipse Modeling Frame-
work (EMF). According to Budinsky et al. (BUDINSKY et al., 2004), Ecore is its own
metamodel since Ecore is an EMF model itself.

The concept of Ecore model components is arranged following a hierarchy based on
a UML dialect. The top-level component is called EObject, from which another abstract
component called EModelElement is derived. At this point in the Ecore hierarchical
tree, we find the ENamedElement component, from which all components below in
the hierarchy inherit the definition of the name attribute, except for EAnnotation and
EFactory components that are located alongside. Below this level, there are other com-
ponents such as EClassifier, ETypedElement, EClass, EDataType, EAttribute,
EReference, among others (see Figure 4).

2.1.4 Eclipse Sirius Framework

The Sirius framework is an open-source project owned and maintained by the
Eclipse Foundation, with the goal of enabling the creation of modeling tools. Sirius
encapsulates EMF, GEF, and GMF. EMF provides a graphical object in the form of a
model for representation, GEF provides the capability of building visual representations
of models, and GMF provides the tool for creating graphical editors Viyović, Maksimović
e Perišić (2014). In Sirius, editors are defined by a model that establishes the behavior of
all editing and navigation tools used to adapt a DSL.

32 Chapter 2. Background

Figure 4 – Ecore hierarchical structure

Source: Eclipse Foundation (2018a)

The construction of the modeling tool, or DSL, is done following the domain
modeling definitions established in an Ecore model. It is possible to establish graphical
representations for both relationships and elements (see Figure 3). It is also possible
to choose parts of the model to be represented and modeled, as well as parts that have
semantic meaning in the model but are hidden from the user, serving only as model rules.

2.1.5 Acceleo Code Generator

Acceleo (Eclipse Foundation, 2023) is a code generation framework widely used in
model-driven development (MDD) approaches. It allows developers to define templates
that specify how to transform models into code. With Acceleo, it is possible to generate
source code, configuration files, documentation, and other artifacts from models expressed
in various modeling languages.

One of the key features of Acceleo is its template-based approach. Developers
create templates using a combination of static text and dynamic expressions written in a
dedicated Acceleo language. These templates can access and manipulate the elements of

2.1. Model-Driven Engineering (MDE) 33

Figure 5 – Sirius framework graphical interface

Source: Author

a model, extracting relevant information and generating code accordingly. The generated
code can be customized and tailored to meet specific requirements and constraints (see
6).

Figure 6 – Acceleo template-based technology

Source: (Eclipse Foundation, 2023)

Acceleo provides a set of tools and APIs to support the code generation process.
It integrates with popular modeling tools and frameworks, such as Eclipse Modeling
Framework (EMF) and Eclipse Modeling Project (EMP), making it a versatile choice for
model-driven code generation tasks. It also supports the use of model transformations,
allowing developers to define complex mapping rules between models and code.

The Acceleo code generator offers benefits such as improved productivity, consis-
tency, and maintainability in software development projects. By automating the gener-
ation of code from models, it reduces manual coding efforts and minimizes the risk of

34 Chapter 2. Background

errors and inconsistencies. It also promotes model-driven practices, enabling developers
to focus on high-level modeling concepts and abstracting away low-level implementation
details.

In the context of OpenMLPerf, the Acceleo code generator plays a crucial role in
translating the models created with the OpenMLPerf DSL into executable performance
testing artifacts. It takes the model representations of performance testing scenarios,
metrics, workloads, and other elements and generates the corresponding code files that
can be executed to conduct performance tests. This integration with Acceleo further en-
hances the usability and effectiveness of OpenMLPerf, enabling seamless transitions from
modeling to execution and facilitating the automation of performance testing processes.

2.1.6 DSL Canopus

The Canopus (BERNARDINO; ZORZO; RODRIGUES, 2016) Domain-Specific
Language DSL was created using the MetaEdit+ Language Workbench (MetaCase, 2018),
a proprietary tool developed and maintained by MetaCase. The primary emphasis of the
Canopus DSL lies in facilitating performance testing for web systems within a specific
domain. Canopus allows the modeling of various aspects of the performance testing
domain, such as defining user profiles, scalability of access and resources, and monitoring
of the System Under Test (SUT) and its associated metrics. It also allows the modeling
of scripts that describe the activities and behavior of the modeled user profiles. This
information is associated with the modeling of scenarios in which these profiles and scripts
will be executed.

2.1.7 Lessons from the Chapter

In this chapter, the main concepts involved in our work have been explored. Model-
Driven Engineering (MDE), Model-Based Testing (MBT), and particularly Domain-Specific
Languages (DSL) have been discussed to understand the impact and the role of our pro-
posal in the software development process. The use of models to represent concepts and
properties is widely adopted by both industry and academia. Therefore, it is important
to focus on the use of these representations rather than the specific execution technolo-
gies. MBT naturally fits into this context as every system, even if not implemented yet,
needs to be tested, and the best way to test a non-existent system is through models
that represent domain aspects. Thus, discussing concepts such as model, metamodel, and
meta-metamodel helps in understanding the implementation mechanisms of the language
and its integration with the real world. Understanding these concepts not only assists
in the implementation of our proposal but also in choosing the most suitable tool for its
implementation.

35

3 RELATED WORK
Multiple research works address the realm of Domain-Specific Languages DSLsacross

various domains (NAKAMURA et al., 2012), (PEREZ; VALDERAS; FONS, 2013), (RIBIĆ
et al., 2018). It is known that, as of the date of this work, only the Canopus DSL (BERNARDINO,
2016) has been developed to perform graphical modeling of performance tests. In this
chapter, some tools for performance testing will be presented and discussed, where some
are DSLs themselves, while others use DSLs to assist the tool in its purpose.

3.1 Related Work

Ruffo et al. (RUFFO et al., 2004) in their work presents a tool for performance
evaluation of web applications with a focus on user behavior. Called WALTy (Web Ap-
plication Load-based Testing tool), it consists of a set of tools that enable scalable test
analysis. To achieve this goal, load tests are based on information extracted from appli-
cation logs using Customer Behavioral Model Graphs (CBMG) (MARK; CSABA, 2007),
which are proposed for characterizing state transition graphs of e-commerce websites.
CBMGs are used to represent each section, and a clustering algorithm is then employed
to group all identified sections. This allows the identification of user profiles for a group
of users with common navigation patterns. The process of WALTy can be structured as
follows: Firstly, CBMG constructors, using input data (logs), define states based on a set
of user rules, specify embedded objects and where these objects should be filtered, and
generate parameter specifications to characterize user website behavior, considering the
number of clusters and session time limit. Subsequently, the network traffic representation
is generated using a CBMG with the aid of an algorithm.

One of the key differences between this work and our proposed approach is the
timing of the testing. While in the work of Ruffo et al. (RUFFO et al., 2004), the system
needs to be fully implemented, in our approach, only the system concept is required, as
we model the application domain and its concept, allowing for pre-modeling and testing
before implementation. Furthermore, our approach is visual, making it more technology-
agnostic in terms of the adopted execution technologies.

In the work of Abbors et al. (ABBORS et al., 2012), the model-based performance
testing tool MBPeT is presented. The tool uses models to generate workload to be applied
in real-time to systems, collecting different performance metrics. The models are defined
using timed probabilistic automata, describing different user profiles that interact with
the system. As input, the tool accepts a set of models expressed as automata, the number
of virtual users, the ramp-up functions, and the test duration. It then provides a report
describing the test measurements.

The performance models consist of user behavior, described by locations and trans-
actions. The models are read by parsers, which build the model representations and val-
idate them based on a set of rules, such as ensuring valid connections between locations.

36 Chapter 3. Related Work

The test is reported by a report generator module, which creates an HTML report with all
the test execution results. The load generator sends a workload to the System Under Test
(SUT), where each instance of a model contains user actions expressed in probabilities.
Similar to the work of Ruffo et al. (RUFFO et al., 2004) mentioned earlier, the system
needs to be defined and built prior to testing, and there is no graphical representation
for all stages of the performance testing process, only for the automata models. In con-
trast, in our approach, the visual aspect encompasses all stages of performance testing
modeling.

A declarative approach for performance testing in continuous software development
environments is presented by Ferme et al. (FERME; PAUTASSO, 2018). The approach
consists of a DSL for performance testing and a programmable framework driven by
this DSL, targeting the end-to-end execution process of these tests. The tests can be
specified using templates of standard test models or more advanced models. The DSL is
implemented as an expressive goal-oriented language. The tests are specified declaratively,
with automated and model-driven executions. The second part of the approach, related to
the framework, uses the DSL itself to program and automate the test execution process,
performing all the activities and objectives specified by the users for the test execution.
The proposed DSL is used to declaratively specify the test objectives and control the
execution processes, and it is adapted for microservice systems. Some of the performance
characteristics that can be specified using the DSL include load functions, workloads,
virtual users, test data, test set management, and performance data analysis. According
to the authors, the framework was built to assist users in all activities of performance
testing. The approach proposed by the authors presents a textual DSL with a declarative
language, tightly bound to performance testing terms, which may make it less user-friendly
for users in the proposed domain. Our approach also utilizes terms and properties of
performance testing, but we consider it much more accessible to users in the domain
of web applications. Additionally, being visual, our approach complements attribute
and property information with graphical representations of the domain and relationships
between elements.

Sun et al. (SUN; WHITE; EADE, 2014) present a textual DSL for specifying high-
level load test plans and quality of service (QoS) requirements without details of low-level
configurations. The DSL, called GROWL, is implemented using the Xtext framework.
From the DSL, a model is constructed that generates test specifications compatible with
the jMeter load testing tool. The DSL is used to capture resource configuration and
information about QoS that are not captured by load-generation tools. The model analysis
is used to identify the relationship between QoS performance and resource configurations,
and code generation is performed for the automatic allocation of these configurations.
Through an instance of a GROWL model, an XML-based specification is generated with
the assistance of xTend.

3.1. Related Work 37

GROWL satisfies the modeling, model analysis, and code generation parts within
the ROAR (Resource Optimization, Allocation, and Recommendation System) approach
proposed by the paper, which combines modeling, model analysis, test automation, code
generation, and optimization techniques. In comparison to our work, the approach pre-
sented by Sun et al. (SUN; WHITE; EADE, 2014) does not allow for the modeling of
complex behaviors through input parameters, i.e., variable parameters as test inputs. The
parameters are specified in the modeling phase, whereas in our approach, the parameters
can be dynamic and come from external files.

The work of Spafford e Vetter (2012) describes an approach for analytical perfor-
mance modeling that utilizes a DSL called Aspen. Aspen specifies a formal grammar to
describe two types of models: one that describes the behavior of an application, including
parallelism, counters, data structures, and control flows, and another that specifies an
abstract machine model. Both specified models are compiled, checked for semantic cor-
rectness, and persisted or simulated for modeling scenarios. In contrast to OpenMLPerf,
which focuses on measurement models that can be compared with other techniques, As-
pen considers predictive models to compare performance with other techniques, such as
analytical models.

Some performance testing support tools have been developed in the past years.
Gatling (Gatling, 2018) is a load-testing tool where scenarios are defined in code using an
expressive DSL, making the scenarios self-explanatory. Load Runner by (Hewlett Packard,
2018) measures the behavior of a system under load by simulating user activities and
generating messages between applications. Both solutions allow for scenario simulation
and performance testing generation. However, unlike the proposal of this work, neither of
them allows for graphical modeling of test scenarios independent of load and performance
testing technologies.

3.1.1 Chapter Lessons

The use of DSLs to represent performance tests has gained increasing popularity
when deciding which approach to use for modeling domain test models. There are both
tools composed of a subset of other tools, including DSLs, and the use of specific-purpose
languages alone. However, despite this variety of modeling tools, none of them, except
for OpenMLPerf and Canopus DSL, have been found to allow for graphical modeling of
performance tests. The majority of tools in this domain support textual notation for
modeling.

In this chapter, we have presented related works to our proposed web system
performance testing modeling tool. Some works make use of DSLs at some stage of
the development, execution, or user utilization process. We have also introduced some
performance testing execution tools that could potentially be future output tools for
OpenMLPerf.

39

4 SYSTEMATIC MAPPING STUDY ON DOMAIN-SPECIFIC LAN-
GUAGE DEVELOPMENT TOOLS

In this chapter, we present a detailed summary of a Systematic Mapping Study Sys-
tematic Mapping Study (SMS) on Domain-Specific Language (DSL) (IUNG et al., 2020)
development tools that we conducted. The objective of the study was to identify various
development tools for DSLs, including LWs, code generators, analyzers, and code trans-
formers, among others, that could provide support at any stage of DSL development.

4.1 SMS Design and Execution

For this SMS, the review process presented by (PETERSEN et al., 2008) was
adopted. The process was divided into three phases: Planning, Execution, and Reporting.
The first two phases will be addressed in this section.

The first step was to define the objective of the study, which is to map LWs,
frameworks, and other supporting tools, in order to provide an overview of tools and
their licenses and assist DSL developers. This aims to help practitioners in MDE (Model-
Driven Engineering) choose the best tools that can support them in their challenges and
needs.

With this goal, the following Research Questions (RQ) was formulated:

RQ1. What are the technologies used for DSL development? Our goal is to characterize
these tools, thus qualifying their maturity in research and practice.

RQ2. What are the tools license types? Once tool acquisition and training are depen-
dent from decisions such as business models built on non-commercial or commercial
licenses, our goal is to map tools by licensing.

RQ3. For which application domains are the studies devoted to? Our goal is to identify
the relevance of DSL roles in software development for each cross-domain such as
Web applications, mobile applications, embedded systems, and others.

RQ4. What features of the DSL creation process do these tools support? Since model
management tools are diverse and help in many phases of DSL development, we
aim at characterizing these proposals by their technical features.

To determines which works may be classified and qualified in later stages of the
study, inclusion and exclusion criteria activity based on the scope, study objectives, and
the research questions were defined, as described next:

Inclusion Criterias (Inclusion Criteria (ICs))

IC1. The primary study must present an approach, technique, method, process, tool,
framework, or LW to manipulate DSL or DSML.

40 Chapter 4. Systematic Mapping Study on Domain-Specific Language Development Tools

Studies presenting a new technology that support DSL or DSML development will
be included, e.g. Studies presenting the Xtext framework.

IC2. The primary study must mention a DSL supporting tool, framework, or LW.

Studies that mention a technology that supports DSL or DSML development will
be included, e.g. Studies that are focused on the geospatial domain but mention
the use of a DSL and the technology that was used in its development.

Studies that focus on presenting a new DSL or DSML and also mention the tech-
nology that is used in its development will be included, e.g. Studies focused on
presenting a DSL and that also mention the technology that was used in its devel-
opment.

Exclusion Criterias (Exclusion Criteria (CEs))

CE1. Studies published before 2012.

CE2. Studies in any language other than English.

CE3. Duplicated and/or incomplete studies.

CE4. Studies only available in the form of abstract, slide presentation, poster or short
paper.

During the search process, we only considered the use of computer science databases
providing web-based search engines through keywords. The following digital libraries on
the computing area are used: Compendex (Engineering Village)1, IEEE Xplore2, Sci-
enceDirect3, Association for Computing Machinery (ACM) Digital Library4, Scopus5 and
SpringerLink6.

Study Quality Assessment To evaluate the quality of the primary studies, a
set of Quality Assessments (Quality Assessments (ICs)) criteria was defined. The studies
target for IC is those remaining after application of the inclusion and exclusion criteria.
These criteria aim to quantify the relevance of each primary study and to allow us to
compare the selected primary studies. Primary studies with “zero (0) quality score”
are removed from the relation of primary studies, even if they are in the domain of the
research. In addition, primary studies that did not score in QA1 consequently did not
score on other quality assessments and were therefore removed from the list of primary
studies. Each researcher applied the IC criteria in accordance with the following grade:
Yes: 1.0; Partially: 0.5; No: 0.0. The IC criteria are defined as follows:
1 Compendex: <www.engineeringvillage.com>
2 IEEE : <www.ieeexplore.ieee.org>
3 ScienceDirect: <www.sciencedirect.com>
4 ACM : <https://dl.acm.org>
5 Scopus: <www.scopus.com>
6 SpringerLink: <www.link.springer.com>

4.1. SMS Design and Execution 41

IC1. Does the study present a tool that supports DSL development?
Evaluation: Y: The study presents a tool that supports DSL development; P: The
study mentions a tool that supports DSL development but does not present details
about the tool; N: The study does not present or mention a supporting tool to assist
DSL development.

IC2. Does the tool support at least one of the notations (graphical or textual)?
Evaluation: Y: The study presents a tool supporting graphical or textual notations;
P: The study does not present any supporting tools but the results indicate that
graphical or textual notations were used; N: The study does not indicate evidences
about a graphical or textual notation usage.

IC3. Does the study report how the tool was applied in the development of a DSL?
Evaluation: Y: The study presents the tool using coding examples, code snippets
or images; P: The study argues that a tool was used, but does not present imple-
mentation details; N: The study does not present any implementation evidences.

IC4. Is the tool usage described in a clear/detailed manner?
Evaluation: Y: The study presents a tutorial, a process, steps to complete a task, or
defines a flow to achieve a goal; P: The study only mentions activities that must be
executed without further explanations; N: The study does not present any evidence
in order to support the usage of the tool.

Data Extraction Strategy
We created a form to identify and extract relevant data from the selected studies.

This information is used to answer the RQs. From each study, we extracted the following
data:

⋆ Database: ACM, Compendex (Engineering Village), IEEE, SCOPUS, ScienceDirect and
SpringerLink

⋆ Source: full reference conference, book, journal name
⋆ Title
⋆ Abstract
⋆ Authors
⋆ Year
⋆ Application Domain: domain to which the study is proposed
⋆ Tool, Framework, Language Workbench

– Feature: notation, semantics, edit support, semantic and syntactic services, valida-
tion, testing and composability

– Licence Type: commercial or non-commercial

Execution

42 Chapter 4. Systematic Mapping Study on Domain-Specific Language Development Tools

Two search strings were used to search the IEEE Xplore digital library. This
composite search strategy was adopted because the IEEE search engine has a limitation
of 15 terms per string. Therefore, to accommodate the common terms, the search string
was split into two compound terms: DSL and DSML.

For all databases, the search was restricted to the fields "Abstract," "Title," and
"Keywords." Additionally, the search engine was configured to include papers published
from 2012 to 2019.

As depicted in Figure 7, a total of 1,862 studies remained after removing duplicates.
Subsequently, studies that were deemed irrelevant to the research scope, despite containing
the terms DSL or DSML, were excluded. This step reduced the total to 1,780 studies,
which were subjected to the application of exclusion and inclusion criteria.

The activities "Application of Exclusion Criteria" and "Application of Inclusion
Criteria" were executed, resulting in 1,780 studies. These studies were then read and
assessed in the "Qualifying and Classifying Papers" activity. As a result, 1,430 stud-
ies remained after applying the exclusion criteria. Next, studies that did not relate to
any inclusion criteria were excluded, leaving a total of 390 studies for qualification and
classification.

Figure 7 – Systematic Mapping Study Conduction Results

4.2 Report

In this section, we present the outcomes that address the research questions as
follows.

RQ1. Which are the technologies used for DSL development?
After analyzing the 230 selected papers, we identified 59 DSL development tools.

It was observed that some technologies were mentioned by multiple authors. Notably, the
Xtext framework received a significant number of citations (102), along with other tools
based on the Eclipse Modeling Framework (EMF) (114) and Graphical Modeling Frame-
work (GMF) (30). Examples of such tools include the Papyrus tool (18) and the Sirius
framework (42). Several other LWs also received notable citations, including MetaEdit+

4.2. Report 43

(27) from MetaCase, MPS (Meta Programming System) (48) developed by JetBrains,
and Spoofax (21) by MetaBorg.

Out of the mapped tools, 28 are graphical supporting tools, accounting for 47.5%
of the total, making graphical notations the most widely used. On the other hand, 20
tools (34%) support textual notation.

Among the mapped tools, T38 and T55 provide support for all notations, account-
ing for 3.4% of the total. Only T34 offers support for graphical, tabular, and symbolic
notations. Additionally, T32 supports graphical, textual, and tabular notations. Tools
such as T5, T6, T21, T28, T33, T43, and T48 provide support for both graphical and textual
notations, representing 11.9% of the total number of tools.

It is important to note that none of the tools implement all notations, as some
tools focus on specific activities within DSL development. Furthermore, although T1, T27,
and T58 are code generators, T57 is a Java dialect, and T18 is a family of languages and
tools for code generation and model validation, they are considered part of the textual
notation in this context.

RQ2. What are the tools license types?
In this SMS, the studies were classified into two categories: commercial or non-

commercial. The information regarding the license type was typically extracted from the
studies themselves, but in some cases, it was necessary to search official websites and
manufacturers of the tools. In the analises was classified 41 tools as non-commercial and
only nine having commercial licenses. The license type of nine tools could not be identified
as they have not been officially released and do not have online information. To gather
information about these tools, we conducted searches on Google (<www.google.com>).
The category of non-commercial software includes tools under academic licenses and those
available from online repositories open for evaluation, such as GitHub.

RQ3. For which application domains is the study devoted?
To map the domains in which the construction tools for DSLs are applied, we

examined the sections dedicated to evaluation and conceptual demonstration in the se-
lected studies. Based in the data collected from these studies, it can be concluded that
"DSL construction" is a mature research area, with numerous cross-application domains,
indicating increasing interest from the research community.

It is observed that 36.1% (83) of the included studies are related to tools, ap-
proaches, or methods that support various stages of the DSL and DSML development
process lifecycle. Embedded systems are the focus of 3% (seven studies), while web sys-
tems account for 1.3% (three studies). Mobile applications are mentioned in 2.6% (six
studies), and multi-agent systems are represented by 1.7% (four studies). Additionally,
there are four studies specifically targeting Cyber-Physical Systems, making up 1.7%.
Application domains mentioned in only one or two studies, such as aerospace systems,
are classified as "Other," which comprises the majority of the studies at 53.5% (123 pa-

44 Chapter 4. Systematic Mapping Study on Domain-Specific Language Development Tools

pers). This diverse range of application domains demonstrates the breadth of research in
the field.

RQ4. What features of the DSL creation process do these tools support?
It is noteworthy to highlight the comprehensive capabilities of non-commercial

LWs such as Xtext, MPS, GEMOC Studio, and MetaEdit+. These tools cover multiple
features in the DSL development process. Xtext (Eclipse Foundation, 2018b) supports 29
features, MetaEdit+(MetaCase, 2018) covers 28 features, MPS(JetBrains, 2023) covers
32 features, and GEMOC Studio (Eclipse GEMOC Research Consortium, 2023) covers
31 features. Spoofax (WACHSMUTH; KONAT; VISSER, 2014b), Onion (ERDWEG et
al., 2013; ERDWEG et al., 2015), and Whole (ERDWEG et al., 2013; ERDWEG et al.,
2015) also provide extensive coverage of DSL development features.

Six LWs support both graphical and textual notations. Among them, GEMOC
Studio and MPS are two non-commercial LWs that are actively maintained. GEMOC
Studio stands out as the only tool with bidirectional model representation, allowing real-
time synchronization of changes between the textual and graphical models. GEMOC
Studio is built on EMF, Xtext, and Sirius, making it one of the most comprehensive
open-source tools. Additionally, GEMOC Studio supports semantic execution and model
simulation. MPS, on the other hand, covers graphical, textual, and tabular specifications
(feature 03), but the implementation of the graphical representation of models (feature
02) is only partially completed, as mentioned in (ERDWEG et al., 2015).

Argyle is marked as covering graphical notation due to its support for graphical
representations of Software Product Line specifications as feature models.

Two other LWs that support both graphical and textual notations, Enso and Más,
are no longer being maintained or supported. Lastly, MetaEdit+, despite its completeness,
does not provide a specification for textual notation, but it offers a textual representation
of graphic models.

4.3 Conclusion

Our results indicate that there are only a few tools supporting a bidirectional DSL
transformation between different workbenches. Besides, we also concluded that few DSL
tools support bi-directional/multiple notations. Bi-directional DSLs tools embrace in the
same tool more than one notation, including graphical, textual, symbolic, and/or tabular
DSL notation. Likewise, another less explored tool feature is the support for customized
graphical elements to represent concepts of the language application domain (e.g. .SVG,
.EPS, .JPG), which helps improve language expressiveness in relation to the domain.

However, we were able to identify the necessary tools to carry out our work, divid-
ing it into development stages where each stage can be considered an independent module
but functions as a whole. The first module, the metamodel, was developed using Ecore
tools; the second module, the graphical interface, was developed using Sirius Workbench,

4.3. Conclusion 45

and the third module, code generation, was developed using Acceleo.
A comprehensive overview of this work, including details of the entire design and

execution process, as well as full data analysis, can be found in the publication by (IUNG
et al., 2020).

47

5 GRAPHICAL DOMAIN-SPECIFIC MODELING LANGUAGE FOR
PERFORMANCE TESTING IN WEB SYSTEMS

In this chapter, the implementation of the OpenMLPerf Domain-Specific Language
(DSL) will be presented. Various aspects will be discussed, ranging from the definition
of requirements and design decisions to the implementation of the language using the
Sirius LW. Section 5.1 covers the requirements modeled according to the performance
testing domain and design decisions. Section 5.2 presents the metamodel and the under-
lying architecture of the DSL. Section 5.3 showcases the language implementation using
the Sirius framework. The DSL code generation is discussed in the Section 5.4. Finally,
Section 7.1 discusses the lessons learned from the development of the DSL.

5.1 Requirements and Design Decisions

The domain analysis, along with its formalization through an ontology, was defined
in the work of (BERNARDINO, 2016). The ontology provides a foundation for deter-
mining concepts and relationships that represent the domain. Although the requirements
baseline was also created in this work, improvements and changes have been made. The
design decisions were based on the needs imposed by these requirements. In this section,
the new requirements and design decisions for the DSL will be presented.

5.1.1 Language Requirements

This section lists the new requirements included in the OMLPerf proposal. The
requirements baseline was previously established in the Requirements Analysis and Design
Decisions for OpenMLPerf study (BERNARDINO, 2016).

Requirement (RQ)1) The language should be implemented and made available
under an open-source license.

As a key change from the first version of OpenMLPerf, any tool used in the im-
plementation of the language should be open-source, allowing it to be made available in
repositories open to the community, academia, and industry.

RQ2) The DSL should provide a graphical representation of performance testing
features.

This requirement pertains not to the language itself but to the tool used for its
creation. Therefore, the tool should be capable of providing mechanisms to graphically
represent all the features of the domain.

RQ3) The DSL should generate code for testing tools, such as JMeter.
In addition to providing a textual representation to facilitate the adoption and

documentation of the language, the DSL should also be capable of automatically gener-
ating the necessary code for executing performance tests in specific tools, such as JMeter.

48 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

This will enable test engineers to use the language to define test scenarios more efficiently
and effectively, eliminating the need to manually write code for the testing tools.

RQ4) The DSL should enable traceability between elements in graphical and textual
notations.

To ensure clarity and consistency in the modeling process, it is essential that the
DSL supports traceability between the graphical and textual representations of the per-
formance test elements. This means that changes made in one representation should be
automatically reflected in the other, allowing for seamless synchronization and maintain-
ing the integrity of the test models. This traceability feature enhances the usability of
the language and improves the overall efficiency of test development and maintenance.

5.1.2 Design Decisions

This section describes the design decisions made for the creation of the new version
of the language, related to the requirements mentioned in Section 5.1.1. For each decision,
its respective requirement(s) will be presented.

Design Decision (DD)1 The use of open-source solutions for aiding the im-
plementation of graphical DSLs (RQ1, RQ2).

These requirements were fulfilled through a literature review conducted, presented
in Chapter 4, where several tools that met these requirements were found. Therefore, it
was decided to use the EMF and Eclipse Sirius frameworks, which are open-source and
released under the Eclipse Public License 2.0 and Eclipse Public License 1.0, respectively.
These frameworks provide support for creating DSLs with graphical notations.

DD2) Enable support and traceability between graphical and textual notations
(RQ2, RQ3, RQ4).

This requirement was achieved by selecting the Eclipse development tools EMF and
Sirius, which allow for the integration of graphical notation with the implementation of
textual notation for the DSL. Additionally, the Acceleo tool was used for code generation
from the models created with the DSL. The LW allows for the conversion and translation
of model rules, providing bidirectional modeling between graphical elements and their
corresponding assets in the textual notation. This means that a graphical notation can
be mapped to multiple textual instances, ensuring traceability and consistency between
the different representations of the DSL.

5.2 Architecture and Domain Modeling with Eclipse Ecore

In this section, the conceptual modeling or metamodel of the performance testing
domain will be presented. The modeling was done using the Eclipse Modeling Framework
(EMF) framework and its Ecore metamodel, through the Ecore Tools tool, a plugin
installed directly from the Eclipse Marketplace.

5.2. Architecture and Domain Modeling with Eclipse Ecore 49

The metamodel of the language was designed based on the requirements and design
decisions presented in Section 5.1. The language is composed of two parts: Scenario,
Monitoring, and Scripting. These concepts were abstracted from the performance testing
domain.

Figure 8 shows a dependency diagram that illustrates how the language composi-
tion was defined, with two main metamodels: the OpenMLPerf Performance Monitoring
and OpenMLPerf Performance Scenario. Together, they form the main model of the lan-
guage, called Canopus. In addition to these two metamodels, there are three secondary
metamodels that provide support to the main metamodels: OpenMLPerf Performance
Metric, OpenMLPerf Performance Workload, and OpenMLPerf Performance Scripting.

Figure 8 – Package dependency diagram showing the main model and the six language
metamodels

Source: Author

The scenario and monitoring objects are instantiated within a ’Canopus’ object,
representing the project itself. Thus, a project can encompass one or multiple scenarios
and one or multiple monitoring instances. Additionally, various derived objects such as
script, workload, and metric can be created. Figure 9 provides a visual representation of
how the workload and script models are instantiated within the scenario, and the metric
model is instantiated within the monitoring model.

Both the monitoring and scenario models serve as diagrams for defining the el-
ements of a performance test. In each model, entities such as the System Under Test
(SUTs), monitors, load generators, and metrics are instantiated to facilitate the test.

50 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

Furthermore, the workload, user profiles, and test scripts can be defined and instantiated
within a specific test scenario

Figure 9 – Class diagram of the OpenMLPerf package

Source: Author

OpenMLPerf Performance Monitoring Metamodel

The OpenMLPerf Performance Monitoring metamodel (see Figure 10) is responsi-
ble for defining the elements related to the performance testing environment. It represents
the System Under Test (SUT), which can be desktop or web applications, load generators,
and monitoring machines, which can be physical, virtual, or cloud-hosted. Two enumer-
ators are used to define the type of SUT and hardware, providing an efficient approach
for selecting options from a list, whether it be a single choice or multiple alternatives.
Figure 10 illustrates the possible association between multiple SUTs, as well as the asso-
ciation of a monitor with multiple SUTs for monitoring purposes. A load generator can
also be associated with multiple SUTs and can be linked to a monitor as well.

This metamodel establishes the requirement of at least one SUT, one load genera-
tor, and one monitor to complete the modeling. The load generator can also be responsible
for monitoring the scenario. The SUT should have a set of associated metrics that can be
decomposed into another metric model. The metric model is defined by the OpenMLPerf
Performance Metric metamodel.

5.2. Architecture and Domain Modeling with Eclipse Ecore 51

Figure 10 – Class diagram illustrating the Performance Monitoring metamodel of the lan-
guage

Source: Author

The OpenMLPerf Performance Metric (see Appendix A) establishes all the met-
rics to be monitored, their relationships, and counters. In this model, the values to be
monitored in each of the metrics associated with the SUT are defined.

52 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

OpenMLPerf Perfomance Scenario Metamodel

The OpenMLPerf Performance Scenario metamodel (see Figure 11) is responsible
for defining user profiles and their workload. It defines the flow of scripts that represent
user activities, such as determining the percentage of time a user spends searching or
purchasing on a website. It is necessary to define one of the workload profiles to determine
which workload will be applied in the scenario. This metamodel has a relationship with the
OpenMLPerf Performance Scripting Metamodel, as the scripts representing user activities
are modeled in this metamodel.

Figure 11 – Class diagram depicting the metamodel of the performance scenario in the
language

Source: Author

The OpenMLPerf Performance Workload metamodel (see Appendix A) defines
the structure of workloads. It models the number of users in the system, the ramp-up
(increase) or ramp-down (decrease) of this population, and the time interval.

OpenMLPerf Performance Scripting Metamodel

The modeling of tasks and activities performed by the user profile is captured
in the OpenMLPerf Performance Scripting metamodel (see Figure 12). This metamodel

5.3. Language Implementation with the Eclipse Sirius Framework 53

defines the interactions between the user profile and the Systems Under Test (SUTs). Each
script consists of an initial and final milestone. In addition to activities, the metamodel
includes elements such as Think Time, which represents the time between the task being
available to the user and the execution time of that task, and Data Table, used for retrieval
and storage of information for parameterization. Parameters can be saved for reuse in
other script models. The metamodel also employs the strategy of using enumerators to
define lists of characteristics for various model properties. The supporting metamodel for
OpenMLPerf Performance Scripting, the OpenMLPerf Performance External File, is used
to define the persistence and retrieval of relevant information for the scripts.

5.3 Language Implementation with the Eclipse Sirius Framework

This section presents the implementation of the language using the Eclipse Sirius
framework. After creating a metamodel with the EMF framework and its Ecore meta-
model, specifications need to be created for the elements and properties of the metamodel.
These specifications define the graphical representations of the language. Specifications
are created for everything that needs to be represented, including diagrams, objects (e.g.,
monitors, SUTs, scripts) as nodes, and relationships (e.g., connections between SUTs and
monitors, relationships between activities in a script).

54
C

hapter
5.

G
raphicalD

om
ain-Specific

M
odeling

Language
for

Perform
ance

Testing
in

W
eb

System
s

Figure 12 – Class diagram displaying the scripting metamodel of the language

Source: Author

5.3. Language Implementation with the Eclipse Sirius Framework 55

Node Definitions

For each model based on the metamodel that requires a graphical representation, a
viewpoint specification or specification model is created in the Sirius editor. As shown in
Figure 13, three viewpoint specifications have been created, one for each of the main
models defined in the language metamodel. This allows each of these models to be
represented, edited, and modeled within the modeling framework, providing an interactive
experience for the end user.

Figure 13 – Sirius Specification Editor and the viewpoint specifications related to the
models

Source: Author

In each viewpoint specification, it is possible to create multiple representations of
the same model, called descriptions, which can be diagrams, editing tables, cross tables,
trees, and sequence diagrams. As shown in Figure 14, a diagram description was created
to represent the monitoring model (Monitoring Diagram).

The same principle is used to create a representation for each element of the model
that requires a graphical representation. For this purpose, a node is created and assigned
to a semantic element of the model. In Figure 14, we can see the three main elements
of the monitoring model: SUTNode, representing the SUT in the monitoring diagrams;
MonitoringNode, representing the monitoring servers; and LoadGenerator, responsible for
representing the load generator servers. When defining the nodes, it is possible to assign
images and icons instead of the default EMF icons. Some of the elements in the work
have icons in the representation, but they are only used for testing purposes and are not
final.

In Figure 15, the viewpoint specification for the OpenMLPerf Specification Metric
model is presented. This metrics model is associated with a SUT. When associated, the
model is expanded into a diagram for modeling these metrics, which can also be associated
with multiple SUT or monitoring models.

56 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

Figure 14 – Modeled nodes to represent the elements of the OpenMLPerf Specification
Monitoring metamodel

Source: Author

5.3.1 Definition of Relationships

To define relationships, an element of type Edge is created and assigned to a
semantic element that represents the relationship between classes in the metamodel. The
source and target of the relationship are defined, indicating the starting and ending points
of the relationship. Arrow types, source endpoint elements, and target endpoint elements
can also be defined. In this work, relationship elements were defined to express the
direction and differentiation of each relationship.

In Figure 16, you can see the differences between the elements of relationships
between the SUTs, as well as between the load generator and the SUTs.

5.3. Language Implementation with the Eclipse Sirius Framework 57

Figure 15 – Modeled nodes to represent the elements of the OpenMLPerf Specification
Metric metamodel

Source: Author

5.3.2 Modeling Diagrams

The Figure 17 presents the monitoring diagram, where it is possible to specify all
the information related to performance testing monitoring, as well as the metric associ-
ated with the element (green square box next to the element) of both the SUT and the
load generator. It is also possible to define identifiers such as IP addresses, names, and

Figure 16 – Example of graphical relationship elements (edges) between objects in the
model.

Source: Author

58 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

information about the type of machine and system, whether physical, cloud, or virtual.

Figure 17 – Monitoring Test Modeling Diagram

Source: Author

In Figure 18, wis presented the Metrics Diagram of the monitoring, where the
metrics to be monitored during the test are defined. In this diagram, it is possible to
specify the metric, define one or more counters to be monitored, determine the values and
intervals to be monitored for each metric, and create criteria for the metric values.

Figure 18 – Monitoring Metric Modeling Diagram

Source: Author

5.3. Language Implementation with the Eclipse Sirius Framework 59

As shown in Figure 19, the scenario modeling diagram allows us to visually specify
a test scenario, including user profiles, scripts, and workloads. It enables the definition
of the percentage of time allocated to each profile in a particular activity and allows the
reuse of profiles and scripts in multiple scenario models.

Figure 19 – Test Scenario Modeling Diagram

Source: Author

Figure 20 – Modeling diagram of a scenario script

Source: Author

The diagram for script specification, as shown in Figure 20, allows you to define
all the activities that simulate user interaction with the system. You can specify the time
it takes to start each activity, the probability of the user performing one activity over
another, and create parameters for each activity. For example, if the activity involves
clicking a button, filling out a field, or loading a form. You can also store parameters
or groups of parameters for reuse in other activities and scripts. The workload diagram

60 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

allows you to define the configuration of performance characteristics in a test scenario.
As shown in Figure 21, you can specify the test duration, the number of virtual users in
the test, and the user arrival and departure rate within a specific time interval.

Figure 21 – Workload modeling diagram

Source: Author

5.3.3 Modeling Menus

The Sirius framework also allows the specification of menus to be used by users
in diagram modeling. The side menu functions as a customized palette, where users
can view all the elements that can be created in the diagram, as well as all the allowed
relationships. In Figure 22 and Appendix B, you can observe how the menus for the DSL
are defined. Menu specification also includes the addition of contextual menus, which
appear alongside the mouse pointer on the modeling diagram. In contextual menus, users
can add elements to all test diagrams, just like in the side menus. The only representation
that cannot be established through contextual menus is the relationship representation
between elements. However, apart from using the side menus, it can also be established
through property editing menus.

The property editing menus, as shown in Figure 23, allow users to edit attributes
related to the elements of the diagram and associated models. Users can modify com-
ponents, edit appearance, and establish new relationships between various models of the
same metamodel, as long as these relationships are already specified in the metamodel.

5.4 Code Generation

The code generation phase of the OpenMLPerf DSL involves the transformation of
the performance testing models created using the DSL into executable code artifacts. This
process is facilitated by integrating the Acceleo code generator, which provides powerful
capabilities for template-based code generation.

5.4.0.1 Acceleo Template Development

To generate code from the OpenMLPerf models, we leverage the Acceleo framework
to define templates that specify how the models should be transformed into code. These

5.4. Code Generation 61

Figure 22 – Menu for creating the Scripting diagram

Source: Author

Figure 23 – Properties editing menu

Source: Author

templates consist of a combination of static text and dynamic expressions written in the
Acceleo language.

The first step in implementing the code generation process is to develop the Acceleo
templates. These templates, which is presented in the Figure 5.1 define the structure and
content of the generated code artifacts, including the necessary components, functions,
and configurations for executing performance tests. The templates can be tailored to the
specific requirements of the target system and the performance testing scenarios being
modeled.

62 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

In the context of OpenMLPerf, the Acceleo templates should be designed to handle
the various elements of the DSL, such as performance testing scenarios, metrics, work-
loads, and other related components. The templates should extract relevant information
from these models and use it to generate the corresponding code representations.

5.4.0.2 Integration with OpenMLPerf DSL

The integration of the Acceleo code generator with the OpenMLPerf DSL involves
establishing a seamless connection between the DSL models and the Acceleo templates.
This integration allows for the automatic transformation of DSL models into executable
code.

In the implementation, the DSL models serve as the input for the Acceleo code
generator. The generator processes these models and applies the defined templates to
produce the desired code output. The generator utilizes the information contained in
the DSL models to determine the appropriate code generation logic, ensuring that the
generated code accurately reflects the specified performance testing scenarios.

To facilitate this integration, it is necessary to establish mappings between the
elements of the DSL models and the corresponding sections of the Acceleo templates.
This mapping ensures that the relevant information is extracted and correctly used in the
code generation process. Additionally, any necessary transformations or computations
required for code generation can be implemented within the Acceleo templates.

5.4.0.3 Customization and Extension

One of the advantages of using Acceleo for code generation is the flexibility it
provides for customization and extension. The generated code artifacts can be tailored to
meet specific requirements and constraints of the target system and performance testing
scenarios.

In the context of OpenMLPerf, customization may involve configuring the gener-
ated code to accommodate specific hardware or software environments, setting up per-
formance monitoring libraries or tools, and defining integration points with other system
components. These customizations can be implemented within the Acceleo templates,
allowing for a high degree of flexibility in adapting the generated code to different testing
contexts. Furthermore, the Acceleo code generator allows for the extension of the tem-
plates to incorporate additional functionality or support new features. This extensibility
enables the OpenMLPerf DSL to evolve and adapt as new requirements arise in the field
of performance testing.

5.4. Code Generation 63

5.4.0.4 Generated Code Artifacts

The output of the code generation process is a set of executable code artifacts
that can be used to conduct performance tests. These artifacts encompass the necessary
scripts, configurations, and components to simulate user interactions, generate workloads,
collect metrics, and analyze system performance.

The generated code artifacts should adhere to best practices and coding standards
to ensure their quality, maintainability, and reusability. Proper documentation should
be provided to guide users in executing the generated code and interpreting the results
of the performance tests. It is important to note that while the Acceleo code generator
automates the process of generating code from the OpenMLPerf DSL models, it is still
necessary to validate and verify the generated code.

5.4.0.5 Generation of Scala Code for JMeter

One specific aspect of the code generation process with Acceleo in the context of
OpenMLPerf is the generation of Scala code for the JMeter tool. This feature allows for
the automatic transformation of performance testing models into Scala code that can be
executed by JMeter, a popular open-source load testing tool. By leveraging the Acceleo
templates, the OpenMLPerf DSL can generate Scala code that defines JMeter test plans,
including HTTP requests, assertions, and other necessary configurations. This integration
provides users with the ability to seamlessly generate JMeter scripts directly from the
DSL models, reducing manual effort and ensuring consistency between the models and
the generated code. The Acceleo code generator presented in the Figure 5.1, is invoked
with the following parameters:

• generate module: Specifies the metamodels to be used in the code generation pro-
cess. The OpenMLPerf metamodels are imported and used to define the structure
and behavior of the generated code. The metamodels include:

– openmlperf

– openmlperfPerformanceExternalFile

– openmlperfPerformanceMetric

– openmlperfPerformanceMetricMonitoring

– openmlperfPerformanceScenario

– openmlperfPerformanceWorkload

– openmlperfPerformanceScripting

• org::unipampa::openmlperf::acceleo::services::services import: Imports
the necessary Acceleo services for performing code generation tasks.

64 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

The main entry point for code generation is the generateElement template, which
takes a scenario as a parameter and generates the corresponding Scala code. The gener-
ated code is then written to a Scala source file with the same name as the scenario, but
with the .scala extension.

The generated Scala code follows the Gatling DSL (Domain-Specific Language)
for load testing. It defines a class that extends the Simulation class provided by Gatling.
The class name is derived from the scenario name, with the first letter capitalized. Within
the generated class, individual Gatling scenarios are defined for each scripting element
in the scenario model. These scenarios correspond to the activities performed during the
load testing, such as sending HTTP requests and processing responses. For each scripting
element, a scenario object is created with a name matching the scripting element’s name.
Within the scenario object, HTTP requests are defined using the exec method, which
specifies the request method, action, and any associated parameters. The details of the
requests are derived from the activities defined within the scripting element.

Additionally, the generated code includes sections for defining user profiles and
workloads. These sections are currently commented out, as they require further cus-
tomization based on your specific requirements. The generated code also includes the
necessary configuration for the Gatling HTTP protocol, such as the base URL, headers,
and other settings. These configurations can be customized as needed for your load testing
scenarios.

The generated Scala code for JMeter can be executed within the JMeter environ-
ment, enabling users to conduct performance tests based on the defined scenarios and
workloads specified in the OpenMLPerf DSL. This integration enhances the usability and
practicality of the OpenMLPerf framework by leveraging the capabilities of JMeter and
Scala for performance testing. It is important to note that while the Acceleo code gener-
ator automates the process of generating code from the OpenMLPerf DSL models, users
should still validate and verify the generated code to ensure its correctness and suitabil-
ity for their specific testing requirements. Proper understanding of JMeter and Scala is
necessary to make the most effective use of the generated code artifacts.

[comment encoding = UTF -8 /]

[module generate (’http :// www. unipampa .lesse.org/ openmlperf ’,

’http :// www. unipampa .lesse.org/

openmlperfPerfoamnceExternalFile ’, ’http :// www. unipampa .

lesse.org/ openmlperfPerformanceMetric ’, ’http :// www.

unipampa .lesse.org/ openmlperfPerformanceMetricMonitoring ’,

’http :// www. unipampa .lesse.org/

openmlperfPerformanceScenario ’, ’http :// www. unipampa .lesse.

org/ openmlperfPerformanceWorkload ’, ’http :// www. unipampa .

lesse.org/ openmlperfPerformanceScripting ’)]

[import org :: unipampa :: openmlperf :: acceleo :: services ::

5.4. Code Generation 65

services /]

[template public generateElement (aScenario : Scenario)]

[comment @main /]

[file (aScenario .name. concat (’.scala ’), false , ’UTF -8’)]

package [aScenario . projectLabel . toLower ().trim ()/]

import scala. concurrent . duration ._

import io. gatling .core. Predef ._

import io. gatling .http. Predef ._

import io. gatling .jdbc. Predef ._

class [aScenario .name. toUpperFirst ().trim ()/] extends

Simulation {

[for (scripting : Scripting | aScenario . scripting)]

object [scripting .name /] {

[for (datatable : DataTable | scripting . datatables)]

[retornaTable (datatable)/]

[/ for]

val [scripting .name. toLowerCase ()/] = scenario ("

RecordedSimulation ")

[for (activity : Activity | scripting .

activities)]

.exec(http(" request_0 ")

.[activity . method . toString (). toLowerCase

() /]("[activity . action /]")

[returnTableParam (activity)/]

[/ for]

}

[/ for]

[for (user : UserProfile | aScenario .users)]

//[user.name /] [user. percentage /]%

[/ for]

[for (work : Workload | aScenario . workloads)]

//[work.name /] : [work. virtualUsers /] virtual users

[work. rampUpTimer .time /]

[work. rampUpUsers . virtualUsers /]

[/ for]

val httpProtocol = http

. baseUrl ("[aScenario . baseURL /]")

. inferHtmlResources ()

. acceptEncodingHeader ("gzip , deflate ")

66 Chapter 5. Graphical Domain-Specific Modeling Language for Performance Testing in Web Systems

. acceptLanguageHeader ("pt -BR ,pt;q=0.9,en -US;q=

0.8,en;q=0.7,sv;q=0.6")

. userAgentHeader (" Mozilla /5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit /537.36 (KHTML , like

Gecko) Chrome /84.0.4147.125 Safari /537.36 ")

val headers_0 = Map(

" Accept " -> "text/html , application /xhtml+xml ,

application /xml;q=0.9, image/webp ,image /apng

,*/*;q=0.8, application /signed - exchange ;v=b3;q=

0.9",

"Sec -Fetch -Dest" -> " document ",

"Sec -Fetch -Mode" -> " navigate ",

"Sec -Fetch -Site" -> "none",

"Sec -Fetch -User" -> "?1",

"Upgrade -Insecure - Requests " -> "1")

}

[/ file]

[/ template]

Listing 5.1 – SCALA Template Generator

5.4.1 Chapter Lessons

In this chapter, we presented the requirements and design decisions for Open-
MLPerf. Each requirement was discussed, and design decisions were presented to address
them. We also described the implementation of the language, including the architec-
ture structure using package diagrams created with EMF. EMF was used to create the
language’s metamodel, which defines the structural, conceptual, and relationship aspects
that the language must adhere to. Additionally, we implemented a code generator for the
DSL. The code generator translates the models created with OpenMLPerf into executable
performance testing artifacts. This allows users to seamlessly move from modeling to ex-
ecution, automating the generation of test scripts, workload configurations, and other
necessary artifacts.

In the next chapter, we will present the evaluation conducted to assess the ef-
fort required for performance testing modeling using OpenMLPerf compared to a Unified
Modeling Language (UML) profile for performance testing. We will discuss the results
obtained from the modeling activities and a post-experiment survey, in which partici-
pants answered questions related to the effectiveness, ease of use, and intuitiveness of the
approach. These insights will provide valuable feedback for further improvements and
enhancements of OpenMLPerf.

67

6 EMPIRICAL EVALUATION
This chapter presents the results and discussions of an empirical evaluation con-

ducted to assess the effort required to use OpenMLPerf. The evaluation compared the
modeling efforts with OpenMLPerf against the modeling efforts using a UML-based ap-
proach for performance testing.

The empirical evaluation is organized as follows: Section 6.1 presents the experi-
ment definition, research questions, and objectives. Section 6.2 describes the experiment
planning, including the hypotheses, research questions, and variables. It also discusses the
participant selection, evaluation design, and threats to the validity of the evaluation. In
Section 6.3, the steps of preparation and execution during the experiment are discussed.
Section 6.3.3 presents the findings of the evaluation. Finally, Section 6.3.4 discusses the
results, execution, and improvements of the evaluation.

6.1 Evaluation Definition

This section presents the research questions, evaluation definition, and research
objectives for the evaluation. It also outlines the hypotheses for the research questions,
as well as the instruments and design of the evaluation.

6.1.1 Research Questions

The objective of this experiment is to gather quantitative or qualitative data re-
garding the effort required to model performance testing scenarios using OpenMLPerf and
compare it with the effort required when using a UML profile (RODRIGUES et al., 2015)
for performance testing. Creating test scenarios and the tests themselves can be one of
the most time-consuming tasks during software development. Using activities related to
MDE, such as MBT and DSLs, becomes a promising alternative in terms of time and
cost savings. This approach provides the automatic generation of test scripts after mod-
eling the scenarios, specific to the domain being tested, without the need to understand
the technologies responsible for executing the tests. On the other hand, this approach
requires a high level of knowledge about the domain being tested and the performance
testing domain.

Thus, it was decided to conduct this experiment to gather information about the
effectiveness, ease of use, and effort related to modeling performance tests using a DSL and
using a UML profile. To do so, the research strategy chosen was to define the questions
based on the tasks that would be assigned to the evaluation participants, simulating
scenario modeling in a typical industry environment using OpenMLPerf and the UML
profile. This way, the aim is to identify the effort required for both types of modeling and
compare the two approaches.

The evaluation contains the following research questions (RQs) to be answered:

68 Chapter 6. Empirical Evaluation

RQ1. What is the effort required to model performance tests using a UML profile and
OpenMLPerf?

RQ2. How effective is the modeling of performance tests using a UML profile and Open-
MLPerf?

RQ3. How intuitive/easy is it to model performance tests using a UML profile and Open-
MLPerf?

6.1.2 Objective Definition

The research objectives of this evaluation are to measure the effort and intuitive-
ness in using OpenMLPerf and the UML profile for performance testing. The effort,
measured in time, combined with the intuitiveness and ease, which is measured based on
the users’ opinions of the tools, during the modeling of test scenarios, help to understand
the practicality of constructing models and the time required for it.

6.2 Planning

In this section, the evaluation planning, research questions, and their hypotheses
will be presented. The selection of participants, experiment design, and threats to validity
will also be discussed.

6.2.1 Context

The evaluation context can be divided into four concepts:

• Process: An in-vitro approach was used in a semi-controlled environment, as the
participants used their personal machines without online activities.

• Participants: The participants are undergraduate students in computer science
courses.

• Reality: The evaluation addresses real-world problems, such as modeling test
scripts.

• Generality: This evaluation is conducted in a specific context, but the results can
be applied to questions regarding the use of DSLs in different environments, i.e.,
environments configured for the use of DSLs.

6.2.2 Hypothesis Formulation

In this section, we will present the hypotheses and the measures used to evaluate
the response to RQ1. The notations used for each hypothesis are as follows:

6.2. Planning 69

Φ𝑑𝑠𝑙: Represents the measure when using OpenMLPerf for modeling performance
testing scenarios.

Φ𝑢𝑚𝑙: Represents the measure when using the UML profile for modeling perfor-
mance testing scenarios.

The research questions, previously presented, and their hypotheses are as follows:
+RQ1. What is the effort required to model performance tests using a UML profile

and OpenMLPerf?
Null Hypothesis, H0: Φ𝑑𝑠𝑙 == Φ𝑢𝑚𝑙: The effort is the same when using the

UML profile and OpenMLPerf to create performance test models.
Alternative Hypothesis, H1: Φ𝑑𝑠𝑙 < Φ𝑢𝑚𝑙: The effort is lower when using the

UML profile compared to using OpenMLPerf to create performance test models.
Alternative Hypothesis, H2: Φ𝑑𝑠𝑙 > Φ𝑢𝑚𝑙: The effort is higher when using the

UML profile compared to using OpenMLPerf to create performance test models.

6.2.3 Participant Selection

The participants of the evaluation are undergraduate students in Software Engi-
neering and Computer Science courses at the Federal University of Pampa (UNIPAMPA).
Regularly enrolled students without any restrictions regarding the current semester in the
course were invited to participate. To level the participants’ knowledge, they had to re-
spond to a survey (see Appendix D) with questions related to their level of knowledge
in software modeling techniques, both with UML and DSLs. Questions were also asked
about the participants’ technical knowledge in performance testing and modeling lan-
guages. As a result of this survey, a balanced level of knowledge among the participants
was identified, with no participants outside the knowledge curve of the group.

6.2.4 Evaluation Design

The evaluation framework adheres to the following guidelines:
Randomization: Participants were randomly assigned to perform the tasks using

OpenMLPerf or the UML profile.
Grouping: Since there was no significant difference in the participants’ knowledge

levels, individuals were divided into two homogeneous groups.
Balancing: Participants were grouped into two groups, where each group was

required to perform the task using one of the approaches.

6.2.5 Instrumentation

To support the participants in the evaluation, technical specifications, use cases,
and performance requirements documents were provided. Additionally, two supporting
tools were used, one for each approach. The Astah Professional modeling tool(ChangeVision,

70 Chapter 6. Empirical Evaluation

2023) was used for modeling use cases and activity diagrams using the UML approach.
An adapted version of the Eclipse IDE with support for the DSL metamodels was used
for modeling the representation diagrams of the DSL models.

A training session was conducted, where the concepts related to OpenMLPerf and
the UML profile for performance testing were presented to the participants. A practical
tutorial demonstrating how to create performance models using the Astah tool and the
UML profile was provided. Along with the tutorial, a manual with details about the UML
profile and instructions on how to use the Astah modeling tool was provided. Similarly,
a tutorial allowed participants to observe the application of OpenMLPerf for creating
performance test models. A manual with information on how to install the necessary
models for the execution of the language and how to perform performance test modeling
was also provided.

In the experiment execution session, the participants interacted with a web applica-
tion called Moodle. To perform the modeling tasks, the previously mentioned documents
with detailed technical specifications of the tests were used. Based on these documents,
the participants had to create the performance models.

The effort of each participant to complete the modeling task was collected, aiming
to answer RQ1. To answer RQ1 and RQ2, data was collected through a survey conducted
after the experiment.

6.2.6 Threats to Validity

In this section, the threats to the validity of the evaluation and the mitigating
actions taken will be described. The classification scheme presented by Hyman (HYMAN,
1982), which categorizes threats into four types, was adopted in this evaluation. The
following are the threats:

Conclusion validity: The participants’ profile is a significant threat to the study,
as there were no representatives from the industry, and the small group of academic
participants did not have considerable experience with modeling languages, performance
testing, and UML profiles. The researcher’s bias when analyzing the results is also a
threat to consider. To mitigate this threat, the effort was analyzed in a non-human way
through statistical time data analysis. Another threat was conducting the evaluation on
participants’ personal machines instead of machines with the same configuration, such as
lab machines. To mitigate this, a unique build of the DSL was developed, and the same
version of Astah Professional was provided.

Internal validity: The training session and the evaluation session were conducted
on separate days, which is a threat to the internal validity of the study. As there was a
one-day gap between the two sessions, participants may forget what was presented in the
training. To mitigate this, manuals and guides for each approach were distributed. To
ensure balance between participant groups, a survey was conducted, allowing for sample

6.3. Evaluation Operation 71

grouping.
External validity: The selection of participants for the experiment is a threat to

the evaluation, as it was not possible to invite participants with considerable experience
to participate.

Construct validity: One threat to construct validity was using only one appli-
cation and system for modeling, limiting the number of variables.

6.3 Evaluation Operation

In this section, the activities of preparation and execution of the evaluation oper-
ation will be discussed.

6.3.1 Preparation

The preparation of the experiment began with the selection of applications and
possible scenarios to serve as a model for creating performance test scenarios. Specifica-
tions, requirements, and use case documents were made available to all participants, as
well as manuals for both approaches and executable versions of the two modeling tools
used, Astah and Eclipse IDE. Additionally, a survey was conducted to gather information
and profile the participants. This allowed us to identify that there were no discrepancies
in participants’ knowledge levels, indicating a very homogeneous group.

6.3.2 Execution

The evaluation of the modeling feature and graphical notation was planned to be
executed before the development of the code generator. This sequencing ensures that
the code generator templates can be accurately tailored to the PT domain. A training
session was held in the days leading up to the evaluation, during which both approaches
were applied to offer an overview of both tools and address participants’ questions. Each
approach required a modeling task, specifically focused on the performance scenario, which
needed to be expanded to include performance script modeling. During the training
session, participants had to model a performance scenario representing the interaction
between two user profiles and the LimeSurvey online survey system: the student profile
and the professional profile, both responding to a survey. The scenario included a workload
of one thousand virtual users, a test duration of four hours, and the execution of a script
named "Answer the Survey", composed of 20 activities representing the user’s interaction
while answering each question of the survey.

Table 1 presents the distribution of participants in the execution of the approaches.
Nine participants were divided into two groups, with five participants performing the tasks
with the UML approach and four participants completing the tasks with the OpenMLPerf
approach.

72 Chapter 6. Empirical Evaluation

Approach Participants
UML 5
OpenMLPerf 4

Table 1 – Number of participants per approach.

During the execution phase, participants performed a task using the assigned
approach for each group. Each task can be described as follows:

• UML: Performance models were to be constructed according to the provided speci-
fications using the UML profile for performance testing.

– Scenario Modeling: In this task, each participant built a model based on the
performance requirements using Astah. Use case diagrams could represent the
performance scenario model and the user profiles, which included two actors:
students and teachers. Three use cases, which could be represented with ac-
tivity diagrams, could be associated with the scenario users.

– Script Modeling: For the script task, participants could refer to the information
found in the provided use case specifications. Performance-related information
could be added to each activity within the script.

• OpenMLPerf: Performance models were to be constructed according to the provided
specifications using OpenMLPerf for performance testing.

– Scenario Modeling: To perform this task, each participant had to use Open-
MLPerf and build OpenMLPerf Performance Scenario Models. The Eclipse
IDE was used as the platform, with the addition of plugins containing the
necessary models and metamodels for the DSL execution. Within each sce-
nario model, participants could add workload models containing performance
information such as test duration and number of virtual users.

– Script Modeling: In this task, the constructed OpenMLPerf Performance Script
Model would simulate the interaction between the user and the system.

In Figure 24, the results obtained from the survey conducted for knowledge as-
sessment are presented. Participants responded to this survey before the evaluation. It
is noticeable that all participants mentioned having regular knowledge of UML, and the
majority stated having low knowledge about DSL, as well as in modeling PT using UML
or other modeling languages. Most participants reported having regular knowledge about
PT.

It is important to mention that out of the nine participants who responded to
the knowledge assessment survey, signed the participation agreement, and completed the
training session, only 8 participants took part in the evaluation, as one of the participants

6.3. Evaluation Operation 73

Approach Group Average Time (MM:SS) Median Time (MM:SS)
UML 1 63:15 63:15
OpenMLPerf 2 66:48 65:30

Table 2 – Effort of Participants (Average and Median)

was absent during the evaluation session. Also, one of the participants requested to be
withdrawn from the experiment, even though they had completed the modeling task using
the UML profile. The participant did not feel confident enough with their knowledge to
share their models for the evaluation, and thus, this participant was excluded from the
study. Another participant was excluded due to technical issues with their equipment,
which resulted in corruption of the models they had created using the UML profile. The
effort values from these two excluded participants were not included in the experiment’s
results.

Figure 24 – Results of the leveling questions

0 3 6 9

PT Modeling with UML
PT Modeling (non-UML)

PT
DSL

UML

2
2

6
2

9

7
7

3
7

K
no

w
le

dg
e

Le
ve

ls Low
Regular
Medium

High

6.3.3 Results

In this section, the results obtained during the execution of the empirical evaluation
will be presented and discussed.

RQ1. What is the effort required to model performance tests using a UML profile
and OpenMLPerf?

Table 2 presents a summary of the data related to the effort of each participant
in performing the modeling task, as described in Section 6.3.2. In the column "Average
Time," the effort, measured as the average time, taken by each participant to complete
the tasks can be observed. For the UML approach, participants took an average of
1h02min56s to model the proposed scenario and script for the system. This time is
shorter compared to the average time of 1h06min40s taken by participants to complete
the task using OpenMLPerf.

In Table 3, the individual effort of each participant in performing the modeling
task is presented. It can be observed that there is a close proximity between the modeling
times using both approaches. Figure 6.3.3 provides a statistical summary of the datasets.
The median execution time for the UML approach was 63.5 minutes, which is lower than

74 Chapter 6. Empirical Evaluation

UML DSL Total
45

60

70

80

90

Approach

M
in

ut
es

Effort of Participants

Figure 25 – Effort of participants

the median time for the OpenMLPerf approach, which was 66 minutes. The UML ap-
proach also had a lower standard deviation of 2.12 minutes compared to the OpenMLPerf
approach, which had a standard deviation of 13.11 minutes.

Table 3 – Effort per participant

Participant Approach Time (MM:SS)
P01 UML 64:01
P03 DSL 61:50
P05 UML 65:32
P06 DSL 51:10
P07 DSL 65:32
P08 DSL 84:32

Since there was no sufficiently large sample size, it was not possible to perform
normalization and hypothesis testing. Therefore, we considered only the basic statistical
values presented in the results.

RQ2. How effective is it to model a performance test using a UML profile and
OpenMLPerf? RQ3. How intuitive/easy is it to model performance tests using a UML
profile and OpenMLPerf?

To answer these two questions, participants were asked to complete a survey after
the evaluation, where they were questioned about concepts related to expressiveness, ease
of use, intuitiveness, completeness, scalability. Conceptually, these terms can be defined
as follows: Expressiveness - The ability of the DSL to adequately express functional and

6.3. Evaluation Operation 75

non-functional requirements related to the system and performance; Ease of use - The
ease and clarity of modeling performance tests using the DSL; Completeness - The ability
to model test scenarios with the DSL without the need for additional support materials;
Scalability - Whether it is possible to increase the complexity of the modeled scenarios.
Participants also answered open-ended questions regarding modeling with OpenMLPerf
and provided suggestions for improving the experiment.

The questions were structured to be answered using the Likert scale for ques-
tionnaire responses. After each question, participants were asked to choose one of the
following statements: 1 - Strongly Disagree, 2 - Disagree, 3 - Neither Agree
nor Disagree, 4 - Agree, 5 - Strongly Agree.

Figure 26 shows the data obtained from the survey. Based on the compiled re-
sponses, we can affirm that: 60% (40% - Agree, 20% - Strongly Agree) of participants
consider that the DSL is expressive, and likewise, 60% (40% - Agree, 20% - Strongly
Agree) of participants found it easy to use the DSL. Regarding intuitiveness, 80% (40% -
Agree, 40% - Strongly Agree) of respondents found OpenMLPerf intuitive for modeling.
60% (40% - Agree, 20% - Strongly Agree) of respondents did not feel the need to consult
documentation in order to perform modeling with the DSL. Meanwhile, 100% of partici-
pants perceived a good level of scalability during the modeling process (33% - Agree, 67%
- Strongly Agree).

Figure 26 – Results of questions about OpenMLPerf

0 25 50 75 100

Expressiveness
Ease of Use

Intuitiveness
Completeness

Scalability

20
20

40
20

67

40
40

40
40

33

40
20

20
20

20

20Q
ue

st
io

ns

1 - Strongly Disagree 2 - 3 - 4 - 5 - Strongly Agree

The Figure 27 presents the result of the question asking whether the participant
would recommend the use of OpenMLPerf to a colleague or manager. 80

Among the benefits of using the OpenMLPerf approach, participants mentioned
ease of use, intuitiveness, and practicality when inserting parameters, as it was not nec-
essary to enter tagged values for each parameter and performance property. As a disad-
vantage, participants mentioned some usability issues when defining parameters. Some
suggestions for improvement were also mentioned, such as changing the images that rep-
resent the initial and final activities in the activity diagram, which is the representation
of the scripts. Participants also reported performance issues when running the DSL in

76 Chapter 6. Empirical Evaluation

the Eclipse development environment. Some participants found the task a bit challenging
and suggested simpler and more concise scenarios and use cases.

Yes

80%

No

20%

Figure 27 – Results regarding the recommendation of using the DSL

6.3.4 Discussion

In this section, we will discuss the results obtained regarding OpenMLPerf and also
the execution of the evaluation, as well as improvements that can be applied to enhance
a future execution of the evaluation.

There is a noticeable similarity between the results obtained with modeling using
both approaches, as there is no significant difference in the measured effort between the
UML profile and OpenMLPerf. When analyzing the data obtained from the evaluation,
we can observe that the modeling effort was lower with the UML profile compared to mod-
eling with OpenMLPerf. However, we must take into consideration certain factors that
may have influenced the results. One example is the reported issues such as performance
drops, freezing, and very slow loading screens in the Eclipse development environment.
Although this problem can be mitigated in an empirical evaluation by using controlled
environments and standardized machines, it indicates that for individual use or in corpo-
rate environments that do not have adequate machines, the Eclipse environment may not
be the best option for using the developed language. Another contributing factor is the
participants’ familiarity with the development environment of the profile and UML itself.

As seen in Table 4, the lack of uniformity in the effort results with the OpenMLPerf
approach is also noteworthy. The standard deviation was almost 13 times higher between
the two approaches (13.58096094 - DSL, compared to 1.767766953 - UML profile). As
an explanation for this, we can mention a few factors, such as the participant with the
longest time, who experienced serious performance issues with the Eclipse environment
and had no prior experience with DSLs and performance testing. On the other hand, the

6.3. Evaluation Operation 77

Approach Group Standard Deviation
UML 1 1.767766953
OpenMLPerf 2 13.58096094

Table 4 – Standard deviation for participant effort

participant with the shortest time had regular knowledge in both DSLs and performance
testing.

Another aspect to be addressed in a future evaluation is the execution of multiple
sessions or tasks, which would allow for the cross-referencing of results from the execution
of different approaches. This would enable one group to use both approaches and compare
the modeling of different aspects of the language, such as scenarios and scripts. Model
verification could also be performed to identify modeling errors, including syntax errors
and activity modeling. Additionally, as suggested by the participants, simplifying and
compacting the scenarios and requirements would help maintain participants’ focus and
optimize the available time for task completion. To mitigate the effects of the learning
curve, it would be beneficial to increase the time and training sessions for both approaches
and performance testing concepts, as it is unlikely that we will have experts in this area
available again.

As part of the ongoing development of the language, a new evaluation is planned
to be conducted in the future with computer science and software engineering courses at
UNIPAMPA.

6.3.5 Chapter Lessons

In this chapter, an evaluation of OpenMLPerf was presented, focusing on factors
such as effort, effectiveness, and ease of use. Through the answers to the research ques-
tions, improvements to be implemented in both the DSL and future experiments were
identified. Regarding the DSL, aspects such as graphical elements representing perfor-
mance testing domain objects, parameter creation, and performance-related questions of
the LW that impact the execution of the language were observed in the obtained results.
The experiment’s execution allowed us to verify the importance of participants’ profiles
and the impact of this aspect on the results. In the next chapter, the final considerations
of this work will be presented, along with the lessons learned during the development and
evaluation of OpenMLPerf. Future work and research directions will also be discussed.

79

7 CONCLUSION
In this chapter, we will discuss the final considerations of this work. Furthermore,

we will explore future work possibilities.
Testing complex systems and having the necessary knowledge of the technologies

required for these tests can be a costly task for a software team. Thus, having a team
member who understands and is capable of modeling the domain and the system, re-
gardless of the technology used at a lower layer in the testing activity, is an attractive
alternative to address testing-related issues. MDE activities, such as MBT, using DSLs,
emerge as viable and practical options for testing large-scale systems, both established
and new, during the conception phase.

In this work, we presented the implementation of a DSL for performance testing
modeling of web systems, OpenMLPerf. After discussing the concepts related to the do-
main of specific modeling languages, we presented the requirements and design decisions
for the language project. A brief description of a systematic literature review, which was
performed to assist in choosing the most appropriate tools for language implementation,
was also presented and detailed in this work. Finally, an empirical evaluation was con-
ducted to quantify the user’s effort in modeling with the DSL, allowing a comparison with
performance testing modeling using a UML profile.

7.1 Lessons Learned

Some challenges were encountered in choosing suitable technologies and learning
about their proper use during the course of this work. The execution of the SMS helped,
among other things, to understand the DSLs DSL and the functionalities offered by
Language Workbenches (LWs). Thus, limiting the number of suitable tools and deciding
which one would best fit the research needs became a less costly activity in terms of
implementation effort. However, it does not mean that the implementation itself became
easier.

Working with cutting-edge technologies, which are often still in development and
lack adequate or even non-existent support, is one of the burdens of trying to implement
innovative and relevant systems. In this work, we faced the challenge of establishing con-
cepts related to the necessary syntax for building the language. This includes metameta-
modeling elements such as Ecore, as well as modeling elements like UML. Thus, it was
necessary to remodel the entire performance testing domain since the original metamodels
of Canopus could not be reused, as MetaEdit+ uses the concept of GOPPRR (Graph,
Object, Port, Property, Relationship, and Role), while Ecore has its different concept,
based on classes and relationships, just like UML. As a result, all the metamodels had to
be redeveloped.

The implementation of the language with the Sirius framework cannot be consid-
ered a difficult task since the purpose of LWs is to facilitate this activity, but it cannot

80 Chapter 7. Conclusion

be considered trivial either, mainly due to the limitations of the LW itself, which is con-
stantly evolving. Thus, much of the difficulty encountered results from the learning curves
and lack of support for certain features, such as dynamically creating models generated
through resources available in other models (e.g., metric model allocated in Systems Under
Test). There are also common limitations in Eclipse environments, such as slow loading,
errors, and exceptions.

The empirical evaluation conducted in this work, despite its limitations, cannot be
discarded, as it serves as a basis and can be considered a trial or pilot for a new execution
of the evaluation. This would allow for the correction of errors found and improvement
in the generality of samples, as well as detecting limitations beyond the control of the
developer, such as LWs performance and usability limitations. However, it is important
to mention that only the modeling functionality was put under evaluation, while the code
generation will be evaluated in future works.

7.2 Future Work

One of the main activities to be carried out in the future is the execution of a
new empirical evaluation of OpenMLPerf. This should aim to ensure a larger and more
diverse number of participants, thus allowing for a more robust, accurate, and satisfactory
statistical analysis. Another evaluation activity to be conducted is the assessment of code
generation in the language, enabling a comparison with manual code writing.

Regarding the language itself, it is expected that in the future, it can be integrated
with a textual notation for performance testing, using the Xtext framework and generating
code in both notations bidirectionally.

81

BIBLIOGRAPHY
ABBORS, F. et al. Mbpet: a model-based performance testing tool. In: 2012 Fourth
International Conference on Advances in System Testing and Validation
Lifecycle. [S.l.: s.n.], 2012. Citated in page 35.

All4Tec. Matelo. 2019. Disponível em: <https://all4tec.com>. Citated in page 28.

Apache Foundation. Apache JMeter. 2023. Available in: <https://jmeter.apache.org/
>. Citated in page 22.

Austrian Institute of Technology. MoMut. 2019. Disponível em: <https://momut.org/>.
Citated in page 28.

BERNARDINO, M. Canopus: a domain-specific language for modeling performance
testing. Pontifícia Universidade Católica do Rio Grande do Sul, 2016. Citated 3 time in
the pages 21, 35, and 47.

BERNARDINO, M.; ZORZO, A. F.; RODRIGUES, E. M. Canopus: A Domain-Specific
Language for Modeling Performance Testing. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST’16). [S.l.:
s.n.], 2016. p. 157–167. Citated in page 34.

BUDINSKY, F. et al. Eclipse modeling framework: a developer’s guide. [S.l.]:
Addison-Wesley Professional, 2004. Citated in page 31.

ChangeVision. Astah Modeler. 2023. Disponível em: <https://astah.net/>. Citated
in page 70.

Eclipse Foundation. Ecore model description. 2018. Available in: <http:
//download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/
package-summary.html#details>. Citated in page 32.

Eclipse Foundation. Framework XText. 2018. Available in: <https://www.eclipse.
org/Xtext/>. Citated in page 44.

Eclipse Foundation. Acceleo. 2023. Https://eclipse.dev/acceleo/overview.html. Citated
2 time in the pages 32 and 33.

Eclipse GEMOC Research Consortium. GEMOC. 2023. Available in:
https://gemoc.org/. Citated in page 44.

EL-FAR, I. K.; WHITTAKER, J. A. Model-based software testing. Encyclopedia of
Software Engineering, Wiley Online Library, 2002. Citated in page 27.

ERDWEG, S. et al. The state of the art in language workbenches. In: Software
Language Engineering. Cham: Springer International Publishing, 2013. ((SLE’13)),
p. 197–217. ISBN 978-3-319-02654-1. Citated in page 44.

ERDWEG, S. et al. Evaluating and comparing language workbenches: Existing results
and benchmarks for the future. Computer Languages, Systems & Structures,
Elsevier, v. 44, p. 24–47, 2015. Citated in page 44.

82 Bibliography

FERME, V.; PAUTASSO, C. A declarative approach for performance tests execution in
continuous software development environments. In: ACM. Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering. [S.l.],
2018. p. 261–272. Citated in page 36.

FOWLER, M. Domain-specific languages. [S.l.]: Pearson Education, 2010. Citated
2 time in the pages 21 and 29.

FRANCE, R.; RUMPE, B. Model-driven development of complex software: A research
roadmap. In: IEEE COMPUTER SOCIETY. 2007 Future of Software Engineering.
[S.l.], 2007. p. 37–54. Citated 2 time in the pages 21 and 27.

FUENTES-FERNÁNDEZ, L.; VALLECILLO-MORENO, A. An introduction to uml
profiles. UML and Model Engineering, v. 2, 2004. Citated in page 29.

Gatling. Gatling Stress Tool. 2018. Disponível em: <http://gatling.io/>. Citated in
page 37.

Hewlett Packard. Software HP LoadRunner. 2018. Disponível em: <https:
//software.microfocus.com/pt-br/products/loadrunner-load-testing/free-trial>.
Citated 2 time in the pages 21 and 37.

HYMAN, R. Quasi-experimentation: Design and analysis issues for field settings (book).
Journal of Personality Assessment, Taylor & Francis, v. 46, n. 1, p. 96–97, 1982.
Citated in page 70.

IUNG, A. et al. Systematic mapping study on domain-specific language development
tools. Empirical Software Engineering, Springer, v. 25, p. 4205–4249, 2020. Citated
2 time in the pages 39 and 45.

JetBrains. Meta Programming System. 2023. Available in: <https://www.jetbrains.
com/mps/>. Citated in page 44.

JOHNSON, R. E. Frameworks = (components + patterns). Communications of
ACM, ACM, New York, NY, USA, v. 40, n. 10, p. 39–42, out. 1997. ISSN 0001-0782.
Citated in page 29.

KELLY, S.; TOLVANEN, J.-P. Domain-Specific Modeling: Enabling Full Code
Generation. New York, NY, USA: John Wiley & Sons, 2007. ISBN 0470036664.
Citated in page 29.

KENT, S. Model driven engineering. In: SPRINGER. International Conference on
Integrated Formal Methods. [S.l.], 2002. p. 286–298. Citated in page 27.

KORENKOV, Y.; LOGINOV, I.; LAZDIN, A. Peg-based language workbench. In:
Open Innovations Association (FRUCT), 2015 17th Conference of. Yaroslavl,
Russia: [s.n.], 2015. v. 2015-June, p. 75 – 81. ISSN 23057254. Citated in page 29.

LE, D. M.; DANG, D.-H.; NGUYEN, V.-H. On domain driven design using annotation-
based domain specific language. Computer Languages, Systems & Structures,
Elsevier, 2018. Citated in page 21.

Bibliography 83

MARK, K.; CSABA, L. Analyzing customer behavior model graph (cbmg) using markov
chains. In: 2007 11th International Conference on Intelligent Engineering
Systems. [S.l.: s.n.], 2007. p. 71–76. Citated in page 35.

MEIER, J. et al. Performance testing guidance for web applications: patterns
& practices. [S.l.]: Microsoft press, 2007. Citated in page 28.

MERNIK, M.; HEERING, J.; SLOANE, A. M. When and how to develop domain-specific
languages. ACM computing surveys (CSUR), ACM, v. 37, n. 4, p. 316–344, 2005.
Citated in page 29.

MetaCase. MetaEdit+ Modeler. 2018. Disponível em: <https://www.metacase.com/
mep/>. Citated 3 time in the pages 22, 34, and 44.

MOLYNEAUX, I. The art of application performance testing: from strategy to
tools. [S.l.]: " O’Reilly Media, Inc.", 2014. Citated in page 21.

NAKAMURA, H. et al. Qoral: An external domain-specific language for mining software
repositories. In: Proceedings of the 2012 Fourth International Workshop
on Empirical Software Engineering in Practice. Washington, DC, USA: IEEE
Computer Society, 2012. ((IWESEP’12)), p. 23–29. ISBN 978-0-7695-4866-1. Citated in
page 35.

PEREZ, F.; VALDERAS, P.; FONS, J. A domain-specific language for enabling doctors
to specify biomechanical protocols. In: 2013 IEEE Symposium on Visual Languages
and Human Centric Computing. [S.l.: s.n.], 2013. ((IEEE-VL/HCC’13)), p. 99–102.
ISSN 1943-6092. Citated in page 35.

PETERSEN, K. et al. Systematic mapping studies in software engineering. 12th Int.
Conf. on Evaluation and Assessment in Software Engineering, British Computer
Society, v. 17, n. 1, p. 1–10, 2008. Citated in page 39.

RIBIĆ, S. et al. Redosplat: A readable domain-specific language for timetabling
requirements definition. Computer Languages, Systems & Structures, Elsevier,
v. 54, p. 252–272, 2018. Citated 2 time in the pages 21 and 35.

RODRIGUES, E. et al. Pletsperf-a model-based performance testing tool. In: IEEE.
2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST). [S.l.], 2015. p. 1–8. Citated in page 67.

RUFFO, G. et al. Walty: a user behavior tailored tool for evaluating web application
performance. In: IEEE. Third IEEE International Symposium on Network
Computing and Applications, 2004.(NCA 2004). Proceedings. [S.l.], 2004. p.
77–86. Citated 2 time in the pages 35 and 36.

SMITH, C. U.; WILLIAMS, L. G. Software performance engineering: A case study
including performance comparison with design alternatives. IEEE Transactions on
software engineering, IEEE, v. 19, n. 7, p. 720–741, 1993. Citated in page 28.

SPAFFORD, K. L.; VETTER, J. S. Aspen: a domain specific language for performance
modeling. In: IEEE COMPUTER SOCIETY PRESS. Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. [S.l.], 2012. p. 84. Citated in page 37.

84 Bibliography

STEINBERG, D. et al. EMF: eclipse modeling framework. [S.l.]: Pearson
Education, 2008. Citated in page 31.

SUN, Y.; WHITE, J.; EADE, S. A model-based system to automate cloud resource
allocation and optimization. In: SPRINGER. International Conference on Model
Driven Engineering Languages and Systems. [S.l.], 2014. p. 18–34. Citated 2 time
in the pages 36 and 37.

TANG, W. Meta object facility. In: . Encyclopedia of Database Systems.
Boston, MA: Springer US, 2009. p. 1722–1723. ISBN 978-0-387-39940-9. Citated in page
30.

Test Optimal. Test Optimal. 2019. Disponível em: <http://mbt.testoptimal.com/
index.html>. Citated in page 28.

UTTING, M.; LEGEARD, B. Practical model-based testing: a tools approach.
[S.l.]: Elsevier, 2010. Citated in page 27.

VIYOVIĆ, V.; MAKSIMOVIĆ, M.; PERIŠIĆ, B. Sirius: A rapid development of DSM
graphical editor. IEEE 18th International Conference on Intelligent Engineering
Systems, Proceedings (INES’14), p. 233–238, 2014. Citated in page 31.

WACHSMUTH, G. H.; KONAT, G. D. P.; VISSER, E. Language design with the
spoofax language workbench. IEEE Software, v. 31, n. 5, p. 35–43, Sept 2014. ISSN
0740-7459. Citated in page 29.

WACHSMUTH, G. H.; KONAT, G. D. P.; VISSER, E. Language design with the
spoofax language workbench. IEEE Software, v. 31, n. 5, p. 35–43, 2014. ISSN
07407459. Citated in page 44.

ZHAO, T.; HUANG, X. Design and implementation of deepdsl: A dsl for deep learning.
Computer Languages, Systems & Structures, Elsevier, v. 54, p. 39–70, 2018.
Citated in page 21.

Appendix

87

APPENDIX A – APÊNDICE A

Figure 28 – Class diagram displaying the monitoring metamodel of the language

Source: Author

88 APPENDIX A. Apêndice A

Figure 29 – Class diagram showing the metamodel of the workload

Source: Autor

89

APPENDIX B –

Figure 30 – Modeling diagram of the language’s scripts

Source: Autor

91

APPENDIX C –

package scenariolabel

import scala. concurrent . duration ._

import io. gatling .core. Predef ._

import io. gatling .http. Predef ._

import io. gatling .jdbc. Predef ._

class Scenario1 extends Simulation {

object Edit {

val feederAllCategoriescsv (" AllCategories .csv"). random

val feederAllBookscsv (" AllBooks .csv"). random

val edit = scenario (" RecordedSimulation ")

.exec(http(" request_0 ")

.get(" Testset ")

92 APPENDIX C.

.exec(http(" request_0 ")

.get("")

.exec(http(" request_0 ")

.get("")

.feed(feederAllCategoriescsv)

.exec(http(" request_0 ")

.get("")

.feed(feederAllCategoriescsv)

.exec(http(" request_0 ")

.get("")

.feed(feederAllBookscsv)

.exec(http(" request_0 ")

.get("")

}

93

object Browser {

val feederSubjectcsv (" Subject .csv"). random

val feederBooksByCategorycsv (" BooksByCategory .csv"). random

val feederSearchResultscsv (" SearchResults .csv"). random

val browser = scenario (" RecordedSimulation ")

.exec(http(" request_0 ")

.get("")

.exec(http(" request_0 ")

.get("")

.feed(feederSubjectcsv)

94 APPENDIX C.

.exec(http(" request_0 ")

.get("")

.feed(feederSubjectcsv)

.exec(http(" request_0 ")

.get("")

.feed(feederBooksByCategorycsv)

.exec(http(" request_0 ")

.get("")

.exec(http(" request_0 ")

.get("")

.feed(feederSearchResultscsv)

}

// Shopping 25%

// Browsing 15%

// Load Testing : 10000 virtual users

0

5000

// Endurance Testing : 2000 virtual users

95

2000

500

val httpProtocol = http

. baseUrl ("")

. inferHtmlResources ()

. acceptEncodingHeader ("gzip , deflate ")

. acceptLanguageHeader ("pt -BR ,pt;q=0.9,en -US;q=

0.8,en;q=0.7,sv;q=0.6")

. userAgentHeader (" Mozilla /5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit /537.36 (KHTML , like

Gecko) Chrome /84.0.4147.125 Safari /537.36 ")

val headers_0 = Map(

" Accept " -> "text/html , application /xhtml+xml ,

application /xml;q=0.9, image/webp ,image/apng

,*/*;q=0.8, application /signed - exchange ;v=b3;q=

0.9",

"Sec -Fetch -Dest" -> " document ",

"Sec -Fetch -Mode" -> " navigate ",

"Sec -Fetch -Site" -> "none",

"Sec -Fetch -User" -> "?1",

"Upgrade -Insecure - Requests " -> "1")

}

Listing C.1 – Code snippet generated by the OpenMLPerf

97

APPENDIX D –

Questionário Pré-Experimento
Introdução
Gostaríamos de convidá-lo a participar de um estudo referente a pesquisa de Linguagens Específica
de Domínio (DSL) para modelagem de teste de desempenho. Este estudo irá prover uma avaliação
empírica para nossa DSL.

Por favor leia este formulário e pergunte qualquer questão que você possa ter antes de concordar
em participar deste estudo.

Este estudo está sendo conduzido por: João Batista Pedroso Carbonell, graduando no curso de
Engenharia de Software da Unipampa, orientado pelo Prof. Dr. Elder de Macedo Rodrigues, com a
colaboração do Prof. Dr. Fabio Paulo Basso e Prof Dr. Maicon Bernardino da Silveira, professores
na Unipampa.

Contexto: O objetivo deste survey é avaliar o perfil do entrevistado para mapear e randomizar os
participantes do experimento entre os tratamentos do experimento.

Procedimentos: Se você aceitar participar neste estudo, será convidado a responder questões a
respeito de seu conhecimento e habilidades em aspectos técnicos. As questões são de múltipla
escolha. Deve levar entre 5-10 minutos para completar o survey.

Riscos: Ser um participante neste estudo na possui riscos previsíveis.

Benefícios: O pesquisador espera avaliar a DSL para modelagem de testes de desempenho
comparando-a uma abordagem baseada em UML. Isto pode ajudar a profissionais de teste de
desempenho a realizarem modelagens de cenários e scripts mais eficientes. Como um participante,
você pode ter acesso ao resultado desta pesquisa.

Confidencialidade: As informações e arquivos deste estudo serão mantidos em privado. Qualquer
tipo de publicação não deve conter qualquer informação que possibilite a identificação de um
participante. Apenas os pesquisadores primários deverão ter acesso aos arquivos.

Contato e perguntas: O pesquisador condutor desta pesquisa é João Cabonell. Por favor, contate-o
com qualquer pergunta.

 joaocarbonellpc@gmail.com

Se você deseja participar, por favor inicie o survey respondendo a seguinte questão:

*Obrigatório

1. Endereço de e-mail *

2. Escreva seu nome *

3. Escreva o nome da instituição onde realizou
ou realiza a graduação *

4. Qual o curso de graduação? *
Marcar apenas uma oval.

 Engenharia de Software

 Ciência da Computação

 Engenharia da Computação

 Sistemas da Informação

 Analise e Desenvolvimento de Sistemas

 Outro:

5. Quantos anos de experiencia você tem em engenharia de software? *
Marcar apenas uma oval.

 14+

 11 -- 13

 8 -- 10

 5 -- 7

 2 -- 4

 0 -- 1 ano

6. Como você classifica seu conhecimento técnico em modelagem de software com UML? *
Marcar apenas uma oval.

 Baixo, sem conhecimento prévio

 Regular, leitura de livro ou realizado algum curso

 Médio, alguma experiencia industrial (menos de 6 meses)

 Alto, experiencia industrial

7. Como você classifica seu conhecimento em Linguagens Específicas de Domínio (DSL)? *
Marcar apenas uma oval.

 Baixo, sem conhecimento prévio

 Regular, leitura de livro ou realizado algum curso

 Médio, alguma experiencia industrial (menos de 6 meses)

 Alto, experiencia industrial

8. Como você classifica seu conhecimento em Teste de Desempenho? *
Marcar apenas uma oval.

 Baixo, sem conhecimento prévio

 Regular, leitura de livro ou realizado algum curso

 Médio, alguma experiencia industrial (menos de 6 meses)

 Alto, experiencia industrial

Powered by

9. Como você classifica seu conhecimento em modelagem de teste de desempenho com
notações ou linguagens de modelagem? *
Marcar apenas uma oval.

 Baixo, sem conhecimento prévio

 Regular, leitura de livro ou realizado algum curso

 Médio, alguma experiencia industrial (menos de 6 meses)

 Alto, experiencia industrial

10. Como você classifica seu conhecimento em modelagem de teste de desempenho com
UML? *
Marcar apenas uma oval.

 Baixo, sem conhecimento prévio

 Regular, leitura de livro ou realizado algum curso

 Médio, alguma experiencia industrial (menos de 6 meses)

 Alto, experiencia industrial

Autorização

Eu concordo em participar neste experimento nas condições que foram propostas. Eu garanto que
irei realizar este experimento da melhor maneira que eu puder, garantindo que todas as informações
incluídas aqui são reais.

11. Por favor, escolha uma das seguintes respostas: *
Marcar apenas uma oval.

 Concordo

 Não Concordo

18/06/2019 Laboratory of Empirical Studies in Software Engineering - LESSE - Pós-Experimento DSL Canopus

file:///C:/Users/João/AppData/Local/Temp/Temp1_printable_survey_Ps-Experimento DSL Canopus_814876.zip/questionnaire_814876_pt-BR.html 1/3

Pós-Experimento DSL Canopus
Introdução
Gostaríamos de convidá-lo a participar de um estudo referente a pesquisa de Linguagens Específica de Domínio (DSL) para modelagem de teste de desempenho.
Este estudo irá prover uma avaliação empírica para nossa DSL.

Por favor leia este formulário e pergunte qualquer questão que você possa ter antes de concordar em participar deste estudo.

Este estudo está sendo conduzido por: João Batista Pedroso Carbonell, graduando no curso de Engenharia de Software da Unipampa, orientado pelo Prof. Dr. Elder
de Macedo Rodrigues, com a colaboração do Prof. Dr. Fabio Paulo Basso e Prof Dr. Maicon Bernardino da Silveira, professores na Unipampa.

Contexto: O objetivo deste survey é avaliar a percepção sobre o experimento empírico conduzido por ambas as abordagens: DSL e UML para modelagem de teste
de desempenho.

Procedimentos: Se você concordar em participar deste estudo, será solicitado a você que complete um questionário destinado a responder 2 questões de pesquisa: 1)
 O quanto é efetivo construir modelos de teste de desempenho quando utilizando UML ou DSL Canopus? 2) O quão intuitivo/fácil é construir modelos de teste de
desempenho quando utilizando UML ou DSL Canopus? A maioria das questões são de múltipla escolha, usando a escala Likert. Entretanto, há um outro conjunto
de questões que são respondidas em forma de redação, por exemplo, sugestões ou comentários sobre as vantagens e desvantagens, sob o seu ponto de vista sobre
cada uma delas. Isto levará em torno de 15-30 minutos para completar suas questões.

Se você aceitar participar neste estudo, será convidado a responder questões a respeito de seu conhecimento e habilidades em aspectos técnicos. As questões são de
múltipla escolha. Deve levar entre 5-10 minutos para completar o survey.

Riscos: Ser um participante neste estudo na possui riscos previsíveis.

Benefícios: O pesquisador espera avaliar a DSL para modelagem de testes de desempenho comparando-a uma abordagem baseada em UML. Isto pode ajudar a
profissionais de teste de desempenho a realizarem modelagens de cenários e scripts mais eficientes. Como um participante, você pode ter acesso ao resultado desta
pesquisa.

Confidencialidade: As informações e arquivos deste estudo serão mantidos em privado. Qualquer tipo de publicação não deve conter qualquer informação que
possibilite a identificação de um participante. Apenas os pesquisadores primários deverão ter acesso aos arquivos.

Contato e perguntas: O pesquisador condutor desta pesquisa é João Cabonell. Por favor, contate-o com qualquer pergunta.

 joaocarbonellpc@gmail.com

Se você deseja participar, por favor inicie o survey respondendo a seguinte questão:

Existe(m) 14 questão(ões) neste questionário.

Nome do participante: *

Por favor, coloque sua resposta aqui:

Ao modelar com perfil UML para teste de desempenho, a linguagem forneceu todos os elementos necessários à modelagem de
cenários e scripts de teste de desempenho. *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

Os modelos de teste de desempenho criados com a abordagem utilizando a DSL Canopus expressam mais adequadamente os
requisitos funcionais e não funcionais. *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

É mais fácil modelar o teste de desempenho aplicando a abordagem com a DSL Canopus do que aplicando a abordagem com o perfil
UML para teste de desempenho. *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

18/06/2019 Laboratory of Empirical Studies in Software Engineering - LESSE - Pós-Experimento DSL Canopus

file:///C:/Users/João/AppData/Local/Temp/Temp1_printable_survey_Ps-Experimento DSL Canopus_814876.zip/questionnaire_814876_pt-BR.html 2/3

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

É mais intuitivo aplicar a representação do domínio de teste de desempenho utilizando a abordagem com a DSL Canopus do que
utilizando a abordagem com o perfil UML para teste de desempenho. *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

A abordagem com o perfil UML para teste de desempenho descreve todas as informações necessárias para a modelagem dos
cenários de teste, sem consultar outras fontes (i.e. a documentação de suporte da referência). *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

A abordagem com a DSL Canopus descreve todas as informações necessárias para a modelagem dos cenários de teste, sem consultar
outras fontes(i.e. a documentação de suporte da referência). *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

A abordagem com o perfil UML para teste de desempenho apoia o aumento da complexidade dos cenários de teste (i.e. aumentar o
teste ou tamanho do modelo, aumentar a quantidade de teste). *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

A abordagem com a DSL Canopus apoia o aumento da complexidade dos cenários de teste (i.e. aumentar o teste ou tamanho do
modelo, aumentar a quantidade de teste). *

Favor escolher apenas uma das opções a seguir:

1
2
3
4
5

1 - Discordo fortemente, 2 - Discordo, 3 - Nem concordo ou discordo, 4 - Concordo, 5 - Concordo fortemente

Descreva abaixo quais os pontos positivos identificados durante a modelagem de teste de desempenho utilizando a abordagem com
perfil UML para teste de desempenho. *

Por favor, coloque sua resposta aqui:

18/06/2019 Laboratory of Empirical Studies in Software Engineering - LESSE - Pós-Experimento DSL Canopus

file:///C:/Users/João/AppData/Local/Temp/Temp1_printable_survey_Ps-Experimento DSL Canopus_814876.zip/questionnaire_814876_pt-BR.html 3/3

Descreva abaixo quais os pontos positivos identificados durante a modelagem de teste de desempenho utilizando a abordagem com a
DSL Canopus. *

Por favor, coloque sua resposta aqui:

Descreva abaixo quais os pontos negativos identificados durante a modelagem de teste de desempenho utilizando a abordagem com a
DSL Canopus. *

Por favor, coloque sua resposta aqui:

Você recomendaria a abordagem com a DSL Canopus para a modelagem de teste de desempenho a algum colega ou convenceria um
gerente a investir? Se não, porquê? Se sim, argumente o porquê você usaria? *

Escolha uma das seguintes respostas:
Favor escolher apenas uma das opções a seguir:

Sim
Não

Comente aqui sua escolha:

Quais sugestões você traz para melhorar a execução deste experimento?

Por favor, coloque sua resposta aqui:

Obrigado pela sua contribuição
26.04.2019 – 23:55

Enviar questionário
Obrigado por ter preenchido o questionário.

