UNIVERSIDADE FEDERAL DO PAMPA

VINÍCIUS FONTELA FACCIN

APLICAÇÃO DE UM MODELO MATEMÁTICO PARA USO DE SISTEMAS MULTIMODAIS NO ESCOAMENTO DA SAFRA DE SOJA PRODUZIDA NO RIO GRANDE DO SUL

VINÍCIUS FONTELA FACCIN

APLICAÇÃO DE UM MODELO MATEMÁTICO PARA USO DE SISTEMAS MULTIMODAIS NO ESCOAMENTO DA SAFRA DE SOJA PRODUZIDA NO RIO GRANDE DO SUL

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Produção da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Produção.

Orientador: Dr. Marcelo Xavier Guterres

F785a Fontela Faccin, Vinícius

APLICAÇÃO DE UM MODELO MATEMÁTICO PARA USO DE SISTEMAS MULTIMODAIS NO ESCOAMENTO DA SAFRA DE SOJA PRODUZIDA NO RIO GRANDE DO SUL / Vinícius Fontela Faccin.

54 p.

Trabalho de Conclusão de Curso(Graduação) -- Universidade Federal do Pampa, ENGENHARIA DE PRODUÇÃO, 2017.

"Orientação: Marcelo Xavier Guterres".

1. Multimodal. 2. Pesquisa Operacional. 3. Rede de Transporte. 4. Soja. 5. Transbordo. I. Título.

VINÍCIUS FONTELA FACCIN

APLICAÇÃO DE UM MODELO MATEMÁTICO PARA USO DE SISTEMAS MULTIMODAIS NO ESCOAMENTO DA SAFRA DE SOJA PRODUZIDA NO RIO GRANDE DO SUL

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Produção da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Produção.

Trabalho de Conclusão de Curso defendido e aprovado em: 11 de Dezembro 2017.

Banca examinadora:

Prof. Dr. Marcelo Xavier Guterres
Orientador
Universidade Federal do Pampa (UNIPAMPA)

Prof. Me. Elizangela Dias Pereira
Universidade Federal do Pampa (UNIPAMPA)

Eng. Cainã Lima Costa Universidade Federal do Rio Grande do Sul (UFRGS)

Este trabalho é dedicado a todos que acreditaram no meu sonho.

AGRADECIMENTOS

À Deus por me iluminar, guiar nas escolhas da vida e cuidar dos meus passos.

Aos meus pais, Cleuza e Fábio, pelo apoio incondicional em todos momentos da graduação e da vida.

A minha namorada, Ananda, pelo companheirismo e compreensão nas horas difíceis e ausentes pelo estudo.

Ao meu orientador, Prof. Dr. Marcelo Xavier Guterres, pelo conhecimento transmitido e orientado para realização deste trabalho.

As amizades criadas na universidade e fora dela, que em algum momento me ajudaram direta ou indiretamente a alcançar este objetivo.

Quero deixar neste registro a minha gratidão a todos, muito obrigado.

RESUMO

O Brasil é o segundo maior produtor de soja no mundo e o primeiro em exportação do grão. O commodity deve ser transportado das áreas rurais até o porto, e o valor recebido pela venda é predeterminado para todos. Com isso, a distância interfere no faturamento do produtor devido ao alto custo do transporte pelas rotas rodoviárias usuais. Uma alternativa é a combinação de malhas capazes de transportar maiores volumes, como os trens. Sendo assim, uma rede de transporte multimodal adequada se mostra fundamental para que o custo seja minimizado. Diante disso, o estudo busca analisar os custos para escoamento da safra no Rio Grande do Sul, terceiro Estado que mais cultiva o grão no cenário nacional e que possui o segundo maior porto em embarcação do grão de soja a granel do país, o Porto de Rio Grande. Nesse contexto, o trabalho busca aplicar técnicas de Pesquisa Operacional, por meio de um Problema de Programação Linear, com o intuito de analisar as soluções dos sistemas multimodais rodoferroviário. Os dados foram coletados em históricos e informativos de empresas privadas, bem como, de órgãos governamentais do setor. Foram criados três cenários com diferentes cidades destino para transbordo rodoferroviário. No final, após aplicado o Problema de Programação Linear em recursos computacionais, foi traçada uma rede ótima capaz de minimizar o custo, respeitando as limitações de cada cenário apresentado.

Palavras-Chave: Multimodal. Pesquisa Operacional. Rede de Transporte. Soja. Transbordo.

ABSTRACT

Brazil is the second largest producer of soybeans in the world and is also the first one to export the grain. The commodity must be transported from rural areas until the port and the charge received in the sale is all predetermined. As a result, the distance interferes in the producer's income, due to the high cost of transportation on usual road routes. An alternative to this is a combination of meshes capable of carrying larger volumes, such as trains. Therefore, an adequate multimodal transport network is essential for minimizing costs. Therefore, the study aims to analyze the costs for the crop's disposal in Rio Grande do Sul – the third state that grows grains the most in the national scenario, and which has the second largest port in bulk grain ship of the country, that is located in Rio Grande. In this context, the work aims to apply Operational Research techniques, through a Linear Programming Problem, with the purpose of analyzing the solutions of the modal rail or road systems, as well as a multimodal road-rail system. The data will be collected in historical and informative from private companies, as well as from government agencies of the sector. Three scenarios were created with different destination cities for road and rail transhipment. In the end, after applying the Linear Programming Problem in computational resources, an optimal network was designed to minimize the cost, respecting the limitations of each presented scenario.

Keywords: Multimodal. Operational Research. Transport Network. Soy. Transhipment.

LISTA DE FIGURAS

Figura 1 – Evolução histórica da safra de soja no Brasil	11
Figura 2 – Contribuição por estado na safra brasileira	12
Figura 3 – Evolução da área de soja plantada no Brasil	12
Figura 4 – Mapa modal do Rio Grande do Sul	14
Figura 5 – Utilização de modal no RS	15
Figura 6 – Ilustração de um modelo genérico de transporte	21
Figura 7 – Modelo básico de maximização em linguagem AMPL	23
Figura 8 – Fluxograma para resolução do estudo	24
Figura 9 – Modelo genérico da rede de transporte	26
Figura 10 – Distribuição geográfica das cidades origens	29
Figura 11 – Mapa ferroviário do RS	31
Figura 12 - Algoritmo utilizado para obtenção das soluções	32
Figura 13 - Escoamento do Cenário 1	34
Figura 14 - Escoamento do Cenário 2	36
Figura 15 - Escoamento do Cenário 3	37

LISTA DE TABELAS

Tabela 1 – Cidades que plantam área igual ou superior a 40mil hectares e total	
colhido (kg)	30
Tabela 2 - Cidades destinos ferroviários	33
Tabela 3 - Comparativo dos cenários	38
Tabela 4 - Matriz de custo transporte rodoviário entre as origens	44
Tabela 5 - Matriz custo rodoviário até ferroviário	47
Tabela 6 - Matriz de custo transporte ferroviário	48
Tabela 7 - Quantidade a ser transportada de i para j	49
Tabela 8 - Quantidade a ser transportada de i para j	50
Tabela 9 - Quantidade a ser transportada de i para j	51

LISTA DE ABREVIATURAS E SIGLAS

AMPL – A Mathematical Programming Language

CPLEX - IBM ILOG CPLEX Optimization Studio

CONAB - Companhia Nacional de Abastecimento

DNIT - Departamento Nacional de Infraestrutura e Transporte

MDIC – Ministério da Indústria, Comércio Exterior e Serviços

EMATER – Empresa de Assistência Técnica e Extensão Rural

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária

GLPK - GNU Linear Programming Kit

ha – hectare

km - Quilômetros

MTPA - Ministério dos Transportes, Portos e Aviação Civil

PELT-RS – Plano Estadual de Logística e Transporte do Rio Grande do Sul

PL – Programação Linear

PO - Pesquisa Operacional

PPL – Problema de Programação Linear

SIFRECA – Sistema de Informações de Fretes

SUMÁRIO

1 INTRODUÇÃO	11
1.1 Relevância do tema	13
1.2 O Problema de pesquisa	15
1.3 Justificativa	15
1.4 Objetivo geral	16
1.4.1 Objetivos específicos	16
1.5 Limitação do tema	17
1.6 Estrutura do trabalho	17
2 REVISÃO BIBLIOGRÁFICA	18
2.1 Pesquisa Operacional	18
2.2 Programação Linear	19
2.3 Problema de Transporte	20
2.3.1 Problema de Transbordo	22
2.4 Resolução Computacional	22
3 METODOLOGIA	24
3.1 Definir o problema	25
3.2 Selecionar os dados	25
3.3 Construção do modelo	26
3.4 Obtenção da solução	28
4 RESULTADOS E DISCUSSÕES	29
4.1 Identificação das cidades origens	29
4.2 Identificação das cidades destinos	31
4.3 Frete	32
4.4 Algoritmo	32
4.5 Dados	33
4.6 Construção dos cenários	34
4.6.1 Cenário 1	34
4.6.2 Cenário 2	35
4.6.3 Cenário 3	37
5 CONSIDERAÇÕES FINAIS	40
REFERÊNCIAS BIBLIOGRÁFICAS	41
ANEYO A	11

ANEXO B	49
ANEXO C	50
ANEXO D	51

1 INTRODUÇÃO

O primeiro registro da produção brasileira de soja data o biênio de 1969/1970, sendo a safra da ordem de 12,1 milhões de toneladas segundo a Companhia Nacional de Abastecimento – CONAB, 2017. O *commodity* começou a ter maior destaque no Brasil a partir da década de oitenta devido às condições climáticas mostrarem-se a favor para colheita na entressafra americana – Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, 2017. Quarenta anos depois, na safra 2016/2017, foram colhidos cerca de 114 milhões de toneladas, (CONAB, 2017). O histórico de colheitas pode ser visto na Figura 1.

Figura – Evolução histórica da safra de soja no Brasil

Fonte: CONAB (2017), editado pelo autor (2017).

Conforme a CONAB (2016), o país ocupa a segunda posição de maior produtor de soja do mundo, sendo o maior exportador com um total de 44,3 milhões de toneladas exportadas a granel em 2016. Na safra 2015/2016 foram colhidas mais de 95,4 milhões de toneladas. Três estados brasileiros dividem cerca de 62% desta produção, como mostrado na Figura 2, da seguinte maneira: Mato Grosso responsável por 27,2% ou 26 milhões de toneladas, Paraná com 17,7% ou 16,9 milhões de toneladas e Rio Grande do Sul com 16,9% ou 16,2 milhões de toneladas.

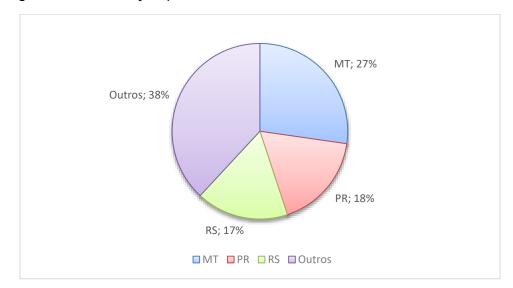


Figura - Contribuição por estado na safra brasileira

Fonte: Conab (2016), editado pelo autor (2017).

Esses valores são factíveis devido à ampliação da área plantada, como mostrado na Figura 3, e a novas tecnologias que contribuem com constantes evoluções na rentabilidade da colheita.

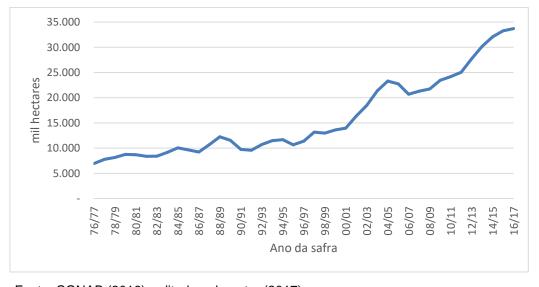


Figura – Evolução da área de soja plantada no Brasil

Fonte: CONAB (2016), editado pelo autor (2017).

Tal conjuntura faz com que o *commodity* seja de suma importância para o Brasil, pois representa 14% das exportações segundo o Ministério da Indústria, Comércio Exterior e Serviços - MDIC (2017). Para que a soja alcance esses mercados internacionais é necessário contar com uma infraestrutura adequada para o escoamento da safra. Assim, depara-se com custos de transporte até os portos e a

dependência, muitas vezes, de apenas um sistema de transporte. Salin (2016) estima que os custos do transporte até seus destinos finais giram em torno de 27%, sendo que somente a entrega nos portos de exportação do Brasil possuem custos próximos de 20% no faturamento da venda da soja produzida no país.

Segundo Mascarenhas (2015), o modal rodoviário é o principal meio de transporte, mesmo que em grandes quilometragens, para o escoamento da safra brasileira de qualquer grão, formando um gargalo no sistema. Essa dificuldade faz com que os custos se tornem elevados quando os portos ficam distantes das regiões produtoras.

O Departamento Nacional de Infraestrutura e Transporte - DNIT (2017), informa que o valor do frete pelo modal ferroviário é cerca de 50% mais barato que o rodoviário, tornando-se assim uma alternativa para operadores responsáveis pelo transporte da colheita até o porto destino de embarque.

Uma infraestrutura adequada para o transporte multimodal oferece a oportunidade de diminuir os custos dos fretes para o aumento da competitividade da soja brasileira no cenário mundial perante outros países que utilizam esse conjunto melhor otimizado.

Esse contexto revela que o uso de métodos científicos podem ser aliados para planejamento da rede de transportes. Sendo assim, as técnicas de Pesquisa Operacional (PO) são ferramentas que auxiliam na tomada de decisão para definição da malha a ser usada que tenha o menor custo de escoamento do *commodity*.

1.1 Relevância do tema

O conteúdo abordado neste trabalho começou a ser explorado mais intensivamente nas últimas décadas devido à importância mostrada na gerência de logística e melhoria da competitividade com alusão à redução de custos. O Rio Grande do Sul, terceiro maior Estado brasileiro em produção de soja, além da infraestrutura rodoferroviária, possui o porto de Rio Grande, segundo porto com maior volume de exportação do grão no país conforme o Ministério dos Transportes, Portos e Aviação Civil – MTPA (2017). Deste modo o Estado evidência grande relevância para o agronegócio brasileiro.

Por outro lado, paralelamente a ascensão do cultivo nos anos setenta, as ferrovias, até então um dos principais meios de transporte para grandes volumes,

estagnam-se definitivamente no tempo por causa da evolução das rodovias federais, estaduais e municipais, que se tornam o principal meio para escoamento da produção, (SILVEIRA, 2002).

No Estado, devido as redes modais serem bem distribuídas, conforme mapa modal na Figura 4, com as maiores regiões produtoras, existe a possibilidade de utilização do transporte intermodal ferroviário e rodoviário na maior parte do Estado. A extensão ferroviária é de 3165 km no total, sendo em pleno funcionamento 1858 km e somente durante a safra mais 250 km, totalizando 2108 km ativos. Em contrapartida, as rodovias somam 143.587 km de extensão entre todos tipos de estradas (pavimentadas ou não, federais, estudais e/ou municipais), conforme o Plano Estadual de Logística e Transporte do Rio Grande do Sul – PELT-RS (2014), do Governo do Estado do Rio Grande do Sul.

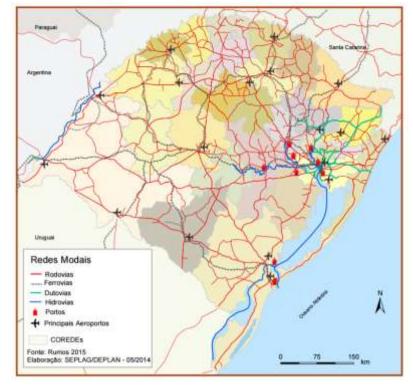


Figura – Mapa modal do Rio Grande do Sul

Fonte: Governo do Estado do Rio Grande do Sul, PELT-RS (2014).

Frente a alternativa de enviar a soja para exportação por mais de um modal o gestor deve tomar a decisão da combinação de vias que deve utilizar para que o custo seja minimizado.

1.2 O Problema de pesquisa

Com a motivação de propor uma rede ótima de transporte para aumento do lucro do produtor de soja e com os dados existentes, este estudo busca responder qual a rede multimodal para escoamento da safra que deverá ser utilizada para obter o menor custo possível.

Para tanto, serão consideradas as hipóteses de que não há restrições de capacidade dos armazéns intermediários e dos veículos que fazem o transporte pois será ponderado que a quantidade produzida pertence a uma entidade que possui infraestrutura para estocar e transportar os grãos.

Logo, qual a rede de transporte deve ser utilizada para que os custos de escoamento da produção sejam os menores possíveis frente a possibilidade de utilização de sistemas multimodais?

1.3 Justificativa

A Secretaria de Planejamento, Governança e Gestão (2014), do Estado do Rio Grande do Sul, estima em seu Atlas Socioeconômico o uso de cada modal como preferência para transporte de cargas conforme Figura 5.

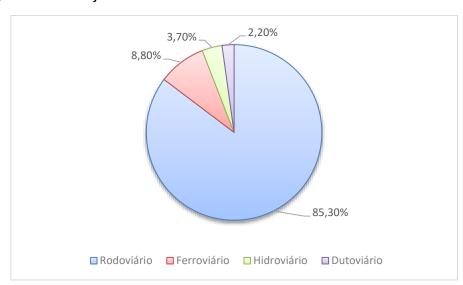


Figura – Utilização de modal no RS

Fonte: Atlas socioeconômico do RS (2014), editado pelo autor (2017).

Nessas circunstâncias e como exposto nas seções anteriores, a utilização da rede intermodal oferece a possibilidade de redução do valor de transporte. Diante disso, o presente estudo tem como instrução o melhor aproveitamento da rede intermodal, a fim de contribuir para que o agronegócio gaúcho possa explorar melhores sistemas e, consequentemente, aumentar a competitividade uma vez que, o valor por tonelada a ser pago é o mesmo independentemente da distância que os veículos percorram.

1.4 Objetivo geral

Em termos gerais, o objetivo deste trabalho é modelar uma rede que possa ser utilizada pelas maiores regiões que plantam soja no Rio Grande do Sul. As rotas serão traçadas por sistemas multimodais em regiões que possibilitem esse trajeto. Sendo assim, o intuito é descobrir qual rede intermodal a entidade detentora do *commodity* deve utilizar para que o custo mínimo com transporte seja obtido.

1.4.1 Objetivos específicos

Delimitou-se os seguintes objetivos específicos para que os objetivos gerais fossem alcançados, são eles:

- Selecionar as cidades que mais produzem soja no Rio Grande do Sul e traçar os modais para escoamento da produção até o porto de Rio Grande;
- Criar cenários que possam ser comparados em relação ao custo da rota de transporte utilizado;
- Modelar um problema de programação linear com base na conjuntura do Estado;
- Usar métodos de pesquisa operacional para encontrar o melhor itinerário do transporte e consequentemente o menor custo para vazão da soja destinada ao mercado externo;

1.5 Limitação do tema

Este estudo se limita a ponderar apenas os custos de transporte e as distâncias do porto de Rio Grande até as cidades produtoras ou que possuem capacidade de embarque ferroviário no Rio Grande do Sul. Ressalta-se que não serão considerados custos com instalações e capacidade dos armazéns intermediários aos transbordos e de estocagem, bem como pedágios.

1.6 Estrutura do trabalho

O trabalho estrutura-se em cinco capítulos assim divididos: neste primeiro capítulo teve-se a introdução ao tema abordado, justificativa e delimitação dos objetivos a serem alcançados. No próximo capítulo têm-se a revisão bibliográfica de pesquisa operacional aplicada a modelos de transporte e transbordo ao qual este trabalho será sustentado. No terceiro capítulo encontra-se a metodologia para construção dos cenários e o modelo de programação linear a ser desenvolvido a fim de alcançar os objetivos propostos. No capítulo quatro serão apresentados os resultados obtidos, as discussões e ponderações do modelo e resultados. E por fim, no quinto capítulo as considerações finais a serem feitas.

2 REVISÃO BIBLIOGRÁFICA

Esta seção está destinada a elucidar as teorias e metodologias que englobam a Pesquisa Operacional por meio da aplicação da Programação Linear em problemas de transporte.

2.1 Pesquisa Operacional

Andrade (2014) define que "um estudo de Pesquisa Operacional consiste, basicamente, na construção de um modelo para um sistema real que sirva como instrumento de análise e compreensão do comportamento desse sistema."

Esse processo pode ser simplificado em cinco fases de acordo com Taha (2008), Marins (2011) e Andrade (2014), como sendo:

- a) formular o problema a primeira etapa é definir o problema, identificando três principais elementos que consistem em: descrever as alternativas de decisão, especificar as limitações que o sistema possui e determinar o objetivo do estudo, Taha (2008);
- b) construção do modelo matemático baseia-se na tentativa de modelar matematicamente o problema de forma a representar o mais próximo da situação real;
- c) obter a solução para resolver o problema para Taha (2008), esta etapa é a mais simples devido ao uso de recursos computacionais para obtenção do resultado por meio da utilização de algoritmos que representam a situação, como: programação linear, teoria das filas e programação em redes entre outros;
- d) validar o modelo Andrade (2014) declara que um método comum para validar o modelo é analisando o histórico de dados do sistema com o intuito de verificar se o teste conseguiu reproduzir o comportamento esperado;
- e) implementar a solução a implementação consiste em traduzir a solução obtida em atividades ou regras operacionais para que a função objetivo seja posta em prática.

Em outros termos, PO é um conjunto de técnicas para determinar uma solução ótima de problemas estruturados por meio da modelagem matemática em torno do objetivo que este se aplica, (MARINS, 2011). O sistema mais utilizado é o de programação linear, onde sua aplicação se dá em modelos cuja função objetivo e suas restrições são lineares.

Lachtermacher (2007) destaca que entre os tipos de problemas que a PO pode ser utilizada para ajudar no processo de decisão, encontram-se os problemas de otimização de recursos, localização, roteirização e transporte.

Este estudo poderia ser descrito, também, como de otimização de redes, pois o problema pode ser modelado como uma rede de transporte, porém para obter a solução será aplicado um problema de programação linear.

2.2 Programação Linear

A Programação Linear (PL) é aplicada a problemas caracterizados por empregar, da melhor forma, os recursos disponíveis para alcançar os objetivos, que sobretudo possam ser representados por expressões lineares, MARINS (2011). Em outras palavras, Araújo (2012) afirma que os problemas de PL se referem ao uso eficiente de recursos limitados para cumprir determinado objetivo.

A PL segundo Bazaraa et. al. (2010) é um ramo da otimização que busca maximizar ou minimizar uma função linear sujeita as restrições de igualdade e/ou desigualdade lineares. Essas funções podem ser exemplificadas como maximização de lucros ou minimização de custos.

Segundo Araújo (2012) o problema de transporte foi um dos que mais incentivaram a Programação Linear. Taha (2008) esclarece que o problema de transporte é uma classe de Programação Linear (PL) que tem como objetivo a minimização do custo total de expedição atendendo as limitações de capacidade.

Andrade (2014) explica que em problemas de alocação de recursos, como o de transporte, utiliza-se o Método Simplex para obter a resposta. Marins (2011) afirma que para resolução de qualquer Problema de Programação Linear (PPL) pode ser aplicado o Método Simplex, como feito por Araújo (2012) e Lopes, Ferreira e Lima (2015), para que a solução ótima do modelo seja encontrada.

Taha (2008) complementa que, para empregar este método na resolução de problemas, são necessários recursos computacionais para que os objetivos sejam alcançados sem tornar o processo tedioso e maçante. Além disso, Lyra e Queiroz (2015) concluem em seu estudo que para problemas maiores, o auxílio de software matemático oferece vantagens na velocidade de obtenção do resultado.

2.3 Problema de Transporte

Andrade (1989) propõe, de forma geral, que o problema de transporte visa determinar a carga que deve ser conduzida da fonte ao destino para que o custo total seja minimizado.

As etapas que o algoritmo do problema de transporte seguem são iguais as etapas do método simplex, que consistem em determinar uma primeira solução viável e usar as condições de otimização para determinar qual variável deve entrar em estudo e qual deverá sair do estudo, ANDRADE (2014).

Oliveira (2007) destaca duas abordagens gerais para a modelagem no transporte de cargas: modelos econométricos e modelos de redes. Modelos econométricos utilizam os dados de suprimento e demanda para descrever os cenários econômicos. Modelos de redes utilizam as unidades de peso e valor para prever o fluxo de tráfego na rede.

Glover et. al. (1992) apud Marins e Filho (1996), declaram que modelos de redes são mais utilizados devido a três propriedades que observaram no estudo:

- a) fácil visualização para uma rápida identificação, o problema pode ser representado por meio de imagens (grafos);
- b) flexibilidade do modelo devido a diversidade de áreas que podem ser aplicados para resolução de problemas;
- c) facilidade de solução existem diferentes métodos para solução de modelos em redes.

Em seu estudo, Oliveira (2007) salienta que algumas informações devem ser consideradas para fundamentar a formulação do problema e identificar os componentes para caracterização do sistema de transporte atual e criação de cenários futuros. Aplicados ao contexto do estudo, são relevantes: a definição dos principais canais de fluxos de cargas, e a especificação dos principais modais e rotas que permitam a análise dos impactos na mudança dos cenários.

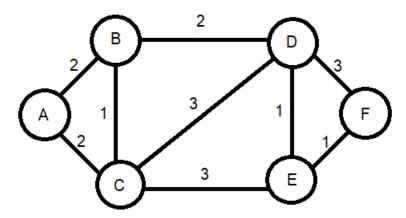
Feofiloff (2013) coloca em sua pesquisa que existem os problemas de caminho mínimo e de custo mínimo. Ambos analisam o percurso entre dois pontos (nós), a diferença é que um analisa a rota de menor distância enquanto o outro busca a rota de menor custo. Existem outros modelos que podem representar problemas de transporte, um deles é o PPL básico, modelado por Mascarenhas (2015) na seguinte nomenclatura de equações:

$$Minimizar \sum_{i \in I} \sum_{j \in J} C_{ij} X_{ij}$$
 (1)

Sujeito a:

$$\sum_{j \in J} X_{ij} = O_i \tag{2}$$

$$\sum_{i \in I} X_{ij} = D_j \tag{3}$$


Sendo o conjunto I formado pelos locais de origem e J formado pelo conjunto dos destinos da demanda; C_{ij} é o custo de transporte de i para j; X_{ij} é a quantidade transportada de i para j; O_i é a quantidade ofertada por i e D_j é a quantidade demandada por j.

Logo, a equação (1) é a função objetivo que busca minimizar o custo do transporte, e as restrições (2) e (3) garantem que a quantidade máxima de oferta e de demanda sejam respeitadas.

Andrade (2014) esclarece que as cidades destinos e origens podem se tornar pontos intermediários de fornecimento ou demanda, caracterizando um sistema de transbordo, como utilizado por Lopes et. al. (2015). Desta forma, existem particularidades em cada conjunto estudado que diferem os cenários.

A Figura 6 ilustra um problema de transporte genérico, que deve ser resolvido conforme o problema adotado, caminho mínimo ou custo mínimo. Onde o objetivo é sair do nó A e chegar ao nó F conforme o modelo adotado, podendo ser modelos econométricos ou de rede, sujeito ao peso multiplicador da linha que é o valor do fluxo.

Figura – Ilustração de um modelo genérico de transporte

Fonte: Elaborado pelo autor (2017).

2.3.1 Problema de Transbordo

Andrade (2014) esclarece que o problema de transbordo é semelhante ao modelo clássico de transporte, porém toda origem ou destino pode se tornar um ponto intermediário de fornecimento ou demanda. Ainda Andrade (2014), informa que o quadro do modelo de transporte deve ser completado para que cada localidade funcione como ponto de suprimento ou recebimento.

Para isso, como toda demanda pode então ser concentrada em qualquer nó, uma demanda fictícia igual ou superior a demanda original deve ser adicionada a cada um dos nós, seja de origem ou destino.

2.4 Resolução Computacional

De Araújo e Rangel (2014) dividem os recursos computacionais em dois tipos: ferramentas de modelagem e ferramentas de resolução. As ferramentas de modelagem referem-se as linguagens de programação, as planilhas de cálculo e as linguagens algébricas de modelagem. Nas ferramentas de resolução, os algoritmos e os sistemas de resolução.

As linguagens algébricas de modelagem proporcionam a clareza do processo de comunicação entre o usuário e os sistemas de resoluções. Entre as diversas linguagens disponíveis, De Araújo e Rangel (2014) citam e exemplificam na prática a linguagem *A Mathematical Programming Language* (*AMPL*). Ainda segundo os autores, os sistemas de resoluções utilizam algoritmos para otimização do problema, como citado por eles o *IBM ILOG CPLEX Optimization Studio* (*CPLEX*).

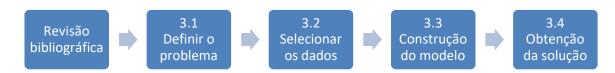
Amaral et. al. (2012) avaliam em seu estudo o desempenho dos *softwares AMPL/CPLEX* e *GLPK*, ambos com linguagem de programação *AMPL*. Nas simulações processadas, o *AMPL/CPLEX* foi aproximadamente 215 vezes mais rápido, inclusive com o aumento do número de variáveis. Já, Bahia et. al. (2008) utilizam a ferramenta *Solver* do *Microsoft Excel®*, pois a programação é mais clara e o modelo elaborado por eles não excede o limite de variáveis de decisão e restrições que o suplemento do programa consegue processar.

Taha (2008) afirma que o *Solver* é mais atraente devido a interface gráfica, enquanto o *AMPL* requer maiores conhecimentos técnicos de linguagens de programação. Um modelo básico de programação linear com função objetivo de

maximização, segundo Fourer, Gay e Kernighan (2003), na linguagem do *AMPL* é apresentado na Figura 7.

Figura - Modelo básico de maximização em linguagem AMPL

```
set P;
param a {j in P};
param b;
param c {j in P};
param u {j in P};
var X {j in P};
maximize Total_Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];</pre>
```


Fonte: Fourer et. al. (2003), editado pelo autor (2017).

Na Figura 7 o modelo tem como função objetivo maximizar o lucro, sujeito a uma restrição de tempo e outra de limite inferior e superior. Os parâmetros são usados de um arquivo externo.

3 METODOLOGIA

Neste capítulo encontram-se os procedimentos metodológicos que o trabalho segue para alcançar os objetivos delimitados na introdução, conforme Figura 8.

Figura – Fluxograma para resolução do estudo

Fonte: Elaborado pelo autor (2017).

A Figura 8 representa, resumidamente, o fluxograma de um estudo de Pesquisa Operacional necessárias para que esta pesquisa seja concluída. Com minúcia, segundo Gil (2010), a pesquisa aqui exposta é classificada de acordo com os procedimentos técnicos a serem utilizados e os objetivos almejados.

Conforme os procedimentos técnicos podem ser classificados como:

- bibliográfica pois tem como base livros e artigos científicos publicados em fontes confiáveis;
- documental mesmo que n\u00e3o haja of\u00edicios em primeira m\u00e3o, ainda existem materiais que podem receber melhor tratamento anal\u00edtico;
- experimental significa que os procedimentos podem ser práticos.
 Porém não necessariamente de laboratórios, mas que apresentem as propriedades de manipulação, controle e distribuição aleatória dos elementos;
- estudo de caso descreve a situação do contexto em que está sendo feita determinada investigação.

Ainda segundo Gil (2010), com base nos objetivos, a pesquisa pode ser classificada como:

- exploratória pois busca elucidar o problema, construir hipóteses e aprimorar as ideias em torno do objetivo;
- descritiva tem como característica a utilização de técnicas padronizadas, mas ajustadas ao contexto real do cenário.

Desta maneira, foi exposta a revisão bibliográfica no capítulo anterior e nas próximas seções deste capítulo serão descritas as demais etapas para resolução do problema de PO. Para isso, será necessário consultar relatórios e materiais de fontes relevantes que contenham as informações necessárias para classificar e manipular dos dados.

3.1 Definir o problema

De forma geral, esta etapa consiste em formular o problema, pesquisar e identificar os dados necessários para resolução do estudo.

Como exposto no capítulo dois, definir o problema significa (a) descrever as variáveis de decisão, (b) reconhecer as limitações e restrições e (c) identificar a função objetivo. Desta maneira, aplicado a conjuntura do trabalho, pode-se determinar:

- a) as variáveis de decisão são formadas pela quantidade de toneladas que devem ser transportadas, das cidades produtoras as cidades destinos ou direto ao porto de Rio Grande.
- b) as restrições que existem se referem a garantia de que toda soja produzida seja transportada até o porto. As cidades produtoras também podem ser cidades destinos, por isso outra restrição é de números nãonegativos para que toda soja produzida e recebida seja escoada.
- c) a função objetivo deste problema é minimizar o custo total para escoamento da safra.

3.2 Selecionar os dados

Com os elementos do problema definidos no item anterior, esta etapa consiste em selecionar as informações para, posteriormente, prover o modelo matemático.

Desta forma, os dados selecionados para resolução do problema representam as cidades produtoras de soja, nomeadas de origens, e as cidades que disponibilizem infraestrutura para embarcar o *commodity* por modal ferroviário, denominadas destinos.

As cidades originárias do grão serão selecionadas de acordo com dados informados por órgãos governamentais agrícolas. As cidades destinos serão refinadas de acordo com a sobreposição da rota ferroviária até o porto de Rio Grande.

Com as cidades origens e destinos definidas, serão utilizadas as ferramentas Google Earth® e Google Maps® para mensurar as distâncias entre elas, sempre optando pela rota mais curta, independentemente de pedágio ou tempo de percurso. No final deste passo, os custos de transporte em cada modal serão coletados a partir de indicadores do setor.

3.3 Construção do modelo

Após ter classificado quantitativamente os dados e com o problema esclarecido, é possível propor o modelo matemático que melhor descreva a situação real. Para o primeiro entendimento deste, a Figura 9 ilustra de forma genérica a rede de transporte.

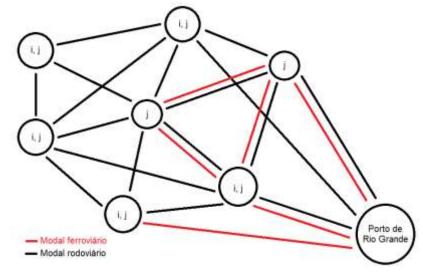


Figura – Modelo genérico da rede de transporte

Fonte: Elaborado pelo autor (2017).

Onde os nós *i,j* representam as cidades origens e destinos simultaneamente; *j* as cidades destinos.

Portanto, como já descrito na definição do problema, as variáveis de decisão são descritas como a quantidade que o nó deve enviar por cada modal até o porto de Rio Grande. Assim, satisfaz-se a etapa (a), exposta na seção anterior.

As restrições devem ser de acordo com a quantidade produzida para que não seja transportado volume maior ou menor, assegurando assim que toda produção será escoada até o porto de Rio Grande. Consequentemente, a primeira restrição é o

somatório da quantidade produzida que deve ser igual ao somatório da quantidade escoada por rodovias e ferrovias. Representada matematicamente pela equação 4.

$$\sum_{i=1}^{m} Q_{i} = \sum_{i=1}^{m} \sum_{j=1}^{n} Q_{ij}$$
 (4)

Onde **m** é o número de cidades origens; **n** é o número de cidades destinos; Q_i é a quantidade total produzida; Q_{ij} é a quantidade enviada da origem *i* para o destino *j*.

Para que toda a produção enviada seja recebida no porto de Rio Grande, temse a restrição de suprir a demanda, conforme equação 5.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} Q_{ij} <= D \tag{5}$$

Onde **D** é a demanda do porto.

Para que as variáveis de decisão sejam reais positivas, outra restrição é de não-negatividade, conforme equação 6.

$$\mathbf{Q_{ii}} \ge 0 \tag{6}$$

Com isso satisfaz-se a etapa (b) da formulação do problema definido nas seções anteriores.

Logo, o passo (c) refere-se a modelagem da função objetivo. Como exposto por Oliveira & Caixeta Filho (2007) apud Anghinoni (2015), o problema de transporte, em geral, tem como função objetivo a minimização de custos e do outro lado da igualdade, o somatório da distância das cidades origens até as cidades destinos multiplicados pelo custo. Sendo assim, a equação 7 representa a função objetivo adequada ao cenário definido nas seções anteriores.

Min
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} Q_{ij} C_{ij}$$
 (7)

Onde $\min \mathbf{Z}$ representa o objetivo da função; c_{ij} é o custo de transporte por modal.

3.4 Obtenção da solução

Com as etapas de formulação do problema, identificação dos elementos necessários e modelagem matemática para obtenção da solução concluídas, serão analisados os resultados obtidos no software.

Sendo assim, com as informações estruturadas para obter a rede ótima, serão empregados recursos computacionais como os *softwares* livres *GNU Linear Programming Kit* (GLPK), que utiliza linguagem de programação AMPL, e *Lindo 6.1* para processamento dos dados, e para ordenação dos dados, as ferramentas disponíveis na planilha eletrônica do *Microsoft Excel 2013®*. Apesar do *AMPL/CPLEX* ter melhor desempenho na velocidade de processamento, o software não é livre, sendo disponível de forma gratuita a versão demo que, segundo o site do fabricante, é limitada a 500 variáveis e restrições.

Por fim, com o resultado de cada cenário processado, será estimado o cenário que proporcione o menor custo para entidade transportadora do grão.

4 RESULTADOS E DISCUSSÕES

Neste capítulo serão expostos os resultados e discussões gerados pela manipulação dos dados.

4.1 Identificação das cidades origens

A Empresa de Assistência Técnica e Extensão Rural - EMATER-RS (2017), disponibiliza os dados da quantidade total produzida e total da área plantada no Estado, sendo a média de rendimento de 2.892 kg/ha. Nas limitações municipais são disponibilizados a área plantada e a média de rendimento por hectare.

Tendo em vista que as médias de rendimento podem ser próximas ou iguais em todas cidades que cultivam o grão, para classificação das cidades originárias foram considerados municípios que tenham plantado área superior ou igual a 40mil ha. Essa medida faz com que sejam estudadas 30 cidades, classificadas em ordem alfabética conforme Tabela 2, representando 35% do total de cidades produtoras, distribuídas conforme Figura 10.

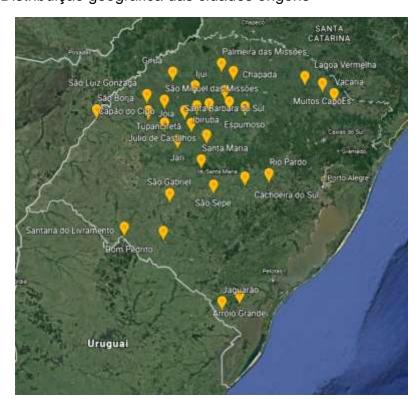


Figura – Distribuição geográfica das cidades origens

Fonte: Google Earth (2017), editado pelo autor (2017).

Tabela – Cidades que plantam área igual ou superior a 40mil hectares e total colhido (kg)

	Cidade	Área Plantada (ha)	Colhido (kg)
AGR	Arroio Grande	40000	115680
BVC	Boa vista do cadeado	40150	116114
BOS	Bossoroca	45000	130140
CDS	Cachoeira do Sul	138000	399096
CDC	Capão do Cipó	62000	179304
CHA	Chapada	42000	121464
CRA	Cruz Alta	93500	270402
DOP	Dom Pedrito	76000	219792
ESP	Espumoso	49000	141708
GIR	Giruá	63700	184220
IBI	Ibirubá	41500	120018
IJU	ljuí	45500	131586
JAG	Jaguarão	45000	130140
JAR	Jari	40000	115680
JOI	Jóia	88800	256810
JDC	Júlio de Castilhos	89000	257388
LAV	Lagoa Vermelha	42500	122910
MTC	Muitos Capões	55000	159060
PDM	Palmeira das Missões	95000	274740
RIP	Rio Pardo	55000	159060
SBS	Santa Barbara do Sul	68500	198102
SAM	Santa Maria	44100	127537
SAL	Santana do Livramento	40000	115680
SAB	São Borja	55000	159060
SAG	São Gabriel	97000	280524
SLG	São Luiz Gonzaga	74000	214008
SMM	São Miguel das Missões	71700	207356
SSE	São Sepé	55000	159060
TUP	Tupanciretã	144000	416448
VAC	Vacaria	48000	138816

Fonte: Emater-RS (2017), editado pelo autor(2017).

4.2 Identificação das cidades destinos

Os destinos partem da identificação de cidades que possuem estruturas de ligações rodoferroviárias. A malha férrea do Rio Grande do Sul possibilita a classificação de 21 cidades, distribuídas conformes Figura 11.

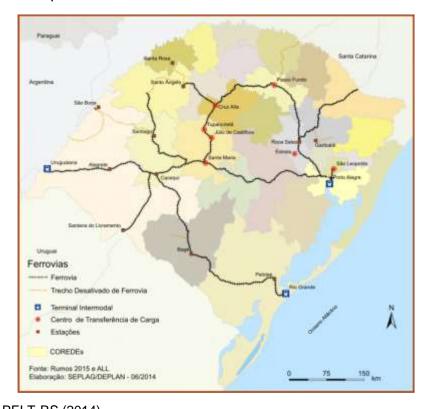


Figura - Mapa ferroviário do RS

Fonte: PELT-RS (2014).

Como visto no mapa, nem todas as cidades possuem infraestrutura para embarque de cargas, existindo apenas a estação férrea, mas que podem fazer parte do estudo devido ao trajeto.

Portanto, as cidades destinos para o modal ferroviário foram definidas pela disponibilização da distância entre cada terminal. Logo, as cidades de Bagé, Cacequi, Cruz Alta, Júlio de Castilhos, Passo Fundo, Rio Grande, Santa Maria, Santiago, Santo Ângelo e Tupanciretã fazem parte do estudo como as cidades destinos para transbordo rodoferroviário.

Para os cenários do estudo, os destinos serão variados conforme a distância entre os terminais ferroviários.

4.3 Frete

Segundo o Sistema de Informações de Fretes (SIFRECA, 2017), o preço médio de transporte rodoviário de soja numa rota entre Palmeira das Missões e Rio Grande era de R\$73,20/ton e R\$0,1273/ton.km. Logo, este será o valor adotado para os cálculos devido ao deslocamento entre estas cidades ser um dos maiores nos cenários.

O preço do frete ferroviário segundo a Resolução nº 5.326 da ANTT (2017), é de R\$20,92/ton mais o preço médio de R\$0,1009975/ton.km

4.4 Algoritmo

O exemplo clássico de algoritmo para obter as soluções computacionais do modelo proposto é descrito conforme ilustrado na Figura 12.

Figura - Algoritmo utilizado para obtenção das soluções

```
1
       #Conjuntos de dados (origens e destinos)
 2
       set ORI;
 3
      set DEST;
 4
 5
      #Parâmetros (produção da origem, capacidade do destino e custo de transporte)
 6
      param PROD(i in ORI);
 7
      param CAP(j in DEST);
8
      param CUSTO(i in ORI, j in DEST);
9
10
      #Variáveis de decisão (quantidade a ser transportada)
11
      var x{i in ORI, j in DEST} >=0;
12
13
       #Função objetivo (minimizar o custo total de transporte)
14
       minimize total cost: sum{i in ORI, j in DEST} x[i,j]*CUSTO[i,j];
15
       # ·Restrições · (toda · produção · é · enviada, · demanda · é · atendida)
16
17
       subject to producao(i in ORI): sum(j in DEST) x[i,j] = PROD[i];
18
       subject to demanda(j in DEST): sum(i in ORI) x[i,j] <= CAP[j];</pre>
19
20
       solve;
21
       display x;
22
       end;
23
```

Fonte: Elaborado pelo autor, (2017).

Neste exemplo o conjunto de dados e os parâmetros são armazenados em um arquivo externo de acordo com o modelo proposto. Logo, cada cenário utiliza um conjunto diferente.

4.5 Dados

Os dados utilizados no programa foram das cidades originárias da produção, as cidades destinos para transbordo, a distância entre as cidades e o valor de transporte de cada tipo de modal, tendo assim a matriz de custo conforme Tabela 4 do Anexo A.

A quantidade produzida pela origem foi obtida por meio da multiplicação das hectares plantadas pela média estadual.

A matriz do custo de transporte foi gerada por meio da distância multiplicada pelo custo do frete no modal.

Para os transbordos rodoferroviários acrescentou-se a letra "F", a fim de diferenciar quando a cidade fosse também produtora. A Tabela 2 esclarece as siglas adotadas.

Tabela - Cidades destinos ferroviários

	Cidade
BAGF	Bagé
CACF	Cacequi
CRAF	Cruz Alta
JDCF	Júlio de Castilhos
PFUF	Passo Fundo
RGRF	Rio Grande
SAMF	Santa Maria
STGF	Santiago
SANF	Santo Ângelo
TUPF	Tupanciretã

Fonte: Elaborado pelo autor (2017).

Desta maneira os dados estarão distintos na Tabela 5 do Anexo A. Sendo assim, existem informações suficientes para a criação dos cenários.

4.6 Construção dos cenários

Os cenários foram estruturados conforme os destinos que possuem ligação rodoferroviária, para isso alterou-se as cidades conforme a distância entre os terminais.

4.6.1 Cenário 1

O primeiro cenário considera todas cidades origens e destinos definidas para fazerem parte do estudo. O custo mínimo encontrado nestas condições é de R\$57.145.385,65. A quantidade enviada de cada cidade origem para cidade destino é demonstrada na Tabela 7 do Anexo B e a rede é ilustrada pela Figura 13.

Urugual Google*

Figura - Escoamento do Cenário 1

Fonte: Google Earth, editado pelo autor (2017).

Na Figura 13 o tracejado em amarelo representa o envio da carga por modal rodoviário, enquanto o tracejado azul o modal ferroviário. O terminal de Passo Fundo recebe de cinco cidades por modal rodoviário, enquanto Cruz Alta e Santo Ângelo recebem o grão de quatro cidades, cada. Essas condições absorvem mais de 40% das cidades selecionadas. Por outro lado, o terminal rodoferroviário de Cacequi recebe por modal rodoviário a produção de apenas um munícipio, São Gabriel. Já a cidade de Arroio Grande é o único ponto de transbordo rodoviário, recebendo a soja de Jaguarão.

4.6.2 Cenário 2

Neste cenário considerou-se os destinos que possuem mais de 100km de percurso nas linhas férreas, permanecendo então: Bagé, Cacequi, Cruz Alta, Passo Fundo, Rio Grande, Santa Maria, Santiago e Santo Ângelo. As cidades origens foram mantidas. O custo encontrado para minimizar a função é de R\$63.919.478,53. A quantidade transportada para cada destino é descrito na Tabela 8 do Anexo C e o itinerário representado pela Figura 14.

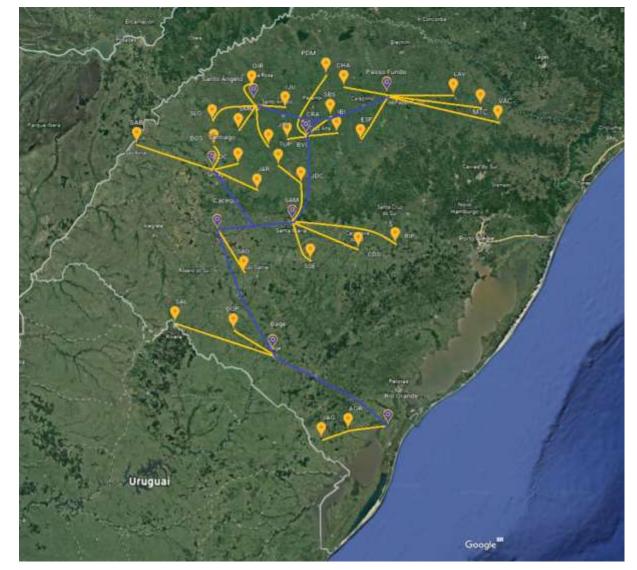


Figura - Escoamento do Cenário 2

Fonte: Google Earth, editado pelo autor (2017).

A Figura 14, análoga a apresentada no cenário anterior, tem as rotas rodoviárias representadas em amarelo enquanto as ferroviárias são representadas em azul. Este cenário, apesar da redução de destinos para transbordo rodoferroviário, revela que partes permanecem inalteradas, como o caso de Cacequi receber soja de apenas uma cidade. No entanto, o terminal de Santo Ângelo aumenta o recebimento da safra para cinco cidades, igualando-se a Passo Fundo. Logo, este contexto pode refletir em outros custos.

4.6.3 Cenário 3

No terceiro cenário considerou-se as cidades destinos como as que possuem terminais com mais de 150km de distância, sendo definidas: Bagé, Cacequi, Júlio de Castilhos, Passo Fundo, Rio Grande, Santiago e Santo Ângelo. As cidades origem permaneceram inalteradas. O trajeto correspondente a função objetivo do PPL calcula um custo mínimo de R\$ 70.508.351,53 para estas condições. A quantidade enviada para cada destino está descrita na Tabela 9 do Anexo D e representada graficamente pela Figura 15.

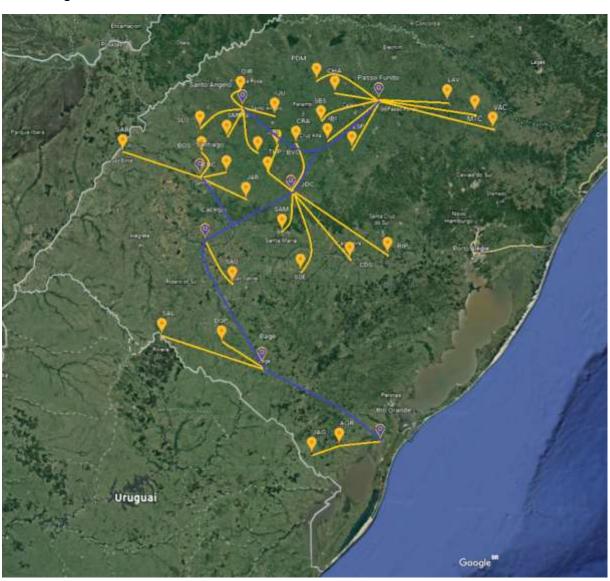


Figura - Escoamento do Cenário 3

Fonte: Google Earth, editado pelo autor (2017).

A Figura 15, similar as dos cenários anteriores, onde o tracejado amarelo representa as rodovias e o tracejado azul as ferrovias, corrobora com o cenário dois de que, com a redução dos pontos de transbordo, o custo final aumenta. Percebe-se o aumento da utilização da cidade de Passo Fundo como transbordo rodoferroviário, passando a receber a produção de oito origens. O transbordo rodoviário neste cenário acontece, além de Arroio Grande, em Tupanciretã que recebe a soja de Jóia.

Os cenários possuem pontos idênticos em qualquer situação. Uma resposta pode ser a distribuição geográfica das cidades selecionadas para serem origens, estarem concentradas em uma região e próximas a linha férrea, essa questão já era possível perceber antes da resolução computacional. Como não existe demanda nos pontos de transbordo e nem o tempo gasto para executar o serviço, as origens enviam toda produção para o mesmo destino.

A diferença do custo total entre os cenários é significativo, conforme apresentados na Tabela 3, levando em consideração que uma entidade é detentora do total produzido.

Tabela - Comparativo dos cenários

	Cenário 1	Cenário 2	Cenário 3
Função objetivo	R\$57.145.385,65	R\$63.919.478,53	R\$70.508.351,53
Cidades origens	30	30	30
Destinos ferroviários	10	8	7
Diferença entre		100km	150km
terminais ferroviários	-	TOOKITI	ISOKIII

Fonte: Elaborado pelo autor (2017).

Conforme o comparativo dos cenários criados, nas condições impostas, o primeiro seria o indicado para implementar. A função objetivo de diminuir o custo foi de aproximadamente 10% menor em relação ao segunda cenário, que por sua vez foi cerca de 9% menor que o terceiro.

As cidades origens não variam, para que a quantidade produzida seja a mesma em todas situações. A diferença é obtida pela alteração das cidades destinos para transporte ferroviário. No primeiro cenário não possui limite mínimo de distância entre os terminais de transbordo rodoferroviário, fazendo com que possua mais pontos de

transbordo. No entanto, no cenário dois é imposto a condição de que necessite haver uma diferença de no mínimo 100km entre os terminais. Com isso, o cenário dois possui oito pontos de transbordo. No terceiro cenário, a condição é de que exista mais de 150km de distância entre os terminais, reduzindo para sete cidades destino. Comparado ao primeiro cenário, houve uma redução de 30% nas cidades de transbordo rodoferroviário enquanto o valor da função objetivo aumentou cerca de 19%.

5 CONSIDERAÇÕES FINAIS

Este trabalho teve como objetivo modelar uma rede de transporte multimodal que minimizasse o custo de escoamento da soja para exportação. Para isso foram realizadas coletas de dados em indicadores do setor agrícola e de transporte, afim de conhecer as maiores cidades produtoras do grão no Rio Grande do Sul, bem como as cidades capazes de realizar o transbordo para embarque ferroviário, distâncias entre elas e custo do frete no modal. Com estas informações, foi possível modelar os dados para criação dos cenários. Em seguida, utilizou-se recursos computacionais para obtenção dos resultados. Desta maneira, a metodologia mostrou-se de acordo para realização do estudo.

Portanto, no que tange o objetivo de traçar uma rede que possa ser utilizada com o intuito de minimizar o custo foi atingido, uma vez que os cenários criados apresentaram resultados diferentes, logo pode-se indicar o primeiro cenário como apropriado para contemplar esse objetivo devido ao fato de apresentar o menor custo da função objetivo.

Ficou claro que a redução de cidades para transbordo rodoferroviário provoca o aumento na distância que algumas cidades origens devem percorrer e consequentemente implica no aumento do custo. Percebe-se ainda que em todas situações existem pontos de transbordo rodoferroviários que recebem a produção de poucas cidades origens. Porém, essas medidas não podem ser confirmadas devido ao fato da utilização de uma parcela das cidades origens e destinos.

Sendo assim, uma perspectiva para trabalhos futuros é agregar todas as cidades produtoras do Estado e portos mais próximos, além de separar a quantidade total produzida para exportação e para abastecimento do mercado interno, capacidade dos veículos e tempo de viagem entre outras restrições que possam influenciar no resultado final.

No geral, o trabalho foi de suma importância para o desenvolvimento acadêmico e pessoal, tanto na magnitude de conclusão desta etapa da vida como no enriquecimento da matéria estudada e aplicada.

REFERÊNCIAS BIBLIOGRÁFICAS

AMARAL, M.; ALMEIDA, M. S.; MORABITO, R. **Um modelo de fluxos e localização de terminais intermodais para escoamento da soja brasileira destina à exportação.** Revista Gestão e Produção. São Carlos, 2012. v.19, n. 2, p. 717-732.

ANDRADE, E. L. Introdução à pesquisa operacional: métodos e técnicas para análise de decisão. Rio de Janeiro: LTC – Livros Técnicos e Científicos, 1989.

ANDRADE, E. L. Introdução à pesquisa operacional: métodos e modelos para análise de decisões. 4 ed. Rio de Janeiro: LTC – Livros Técnicos e Científicos, 2014.

ANGHINONI, B. Estudo da Localização de Armazéns Intermodais para Escoamento da Produção de Soja Para exportação no Estado do Paraná. Universidade Estadual de Maringá, Centro de Tecnologia, Departamento de Engenharia de Produção, 2015.

ANTT – Agência Nacional de Transporte Terrestre. **Resolução № 5.326.** 2017 DE 26 DE ABRIL DE 2017

ARAÚJO, P. F. S. **Programação linear e suas aplicações: definição e métodos de soluções**. Dissertação (Mestrado) — Universidade Federal de Goiás, Instituto de Matemática e Estatística, 2012.

BAHIA, P. Q.; BOTELHO, M. A.; DAYAN, P. R.; Análise logística de redes de transportes de grãos de soja para exportação por portos brasileiros a partir do estado do Mato-Grosso. In: Simpósio de Excelência em Gestão e Tecnologia, 2008.

BAZARAA, M. S.; JARVIS, J. J.; SHERALI, H. D. Linear programming and network flows. 4 ed., 2010.

CAIXETA FILHO, J. V.; BULHÕES, R. **Análise da distribuição logística da soja na região centro-sul do Brasil através de um modelo de equilíbrio espacial**. Revista Teoria e Evidência Econômica. Passo Fundo – RS, 2000. v.8, n.15, p. 11-23.

CONAB - Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira**. Monitoramento Agrícola, CONAB safra 2015/16, 2016. v.3, n. 10.

CONAB - Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira**. Monitoramento Agrícola, CONAB safra 2016/17, 2017. v.4, n. 17.

DE ARAÚJO, S. A.; RANGEL, M. S. N. **Matemática Aplicada ao Planejamento da Produção e Logística.** Notas em Matemática Aplicada. São Carlos, 2014. v. 76.

DNIT - Departamento Nacional de Infraestrutura e Transporte. **Histórico Ferroviário**. Disponível em historico.asp. Acesso em: 15 mar. 2017.

- DNIT Departamento Nacional de Infraestrutura de Transporte. **Infraestrutura Ferroviária**. Disponível em http://dnit.gov.br/diretorias/capa-infraestrutura-ferroviaria> Acesso em: 15 mar. 2017.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. **História da Soja.** Disponível em https://www.embrapa.br/soja/publicacoes>. Acesso em: 18 mar. 2017.
- EMATER/RS Empresa de Assistência Técnica e Extensão Rural RS. **Série Histórica da soja.** Disponível em < http://www.emater.tche.br/site/servicos/serie-historica.php#soja> Acesso em: 22 mar. 2017.
- FEOFILOFF, P. **Fluxo em Redes.** Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação, 2013.
- FOURER, R.; GAY, D. M.; KERNIGHAN, B. **AMPL: A Modeling Language for Mathematical Programming**. 2 ed., 2003.
- GIL, A. C. Como elaborar projetos de pesquisa. 4 ed. São Paulo: Atlas, 2002.
- GOVERNO DO ESTADO DO RIO GRANDE DO SUL. **Plano Estadual de Logística de Transportes do Estado do Rio Grande do Sul.** Disponível em: http://www.pelt-rs.seinfra.rs.gov.br/. Acesso em: 15 mar. 2017.
- LACHTERMACHER, G. Pesquisa operacional na tomada de decisões: modelagem em Excel. 4 ed., Rio de Janeiro: Elsevier, 2007.
- LYRA, M. S.; QUEIROZ, T. A. **Programação Linear: Uma Contextualização a partir de Sistemas Lineares**. Revista Ciência e Natura. ed. especial, Santa Maria, 2015. v.37, p. 103-112.
- LOPES, H. S.; FERREIRA, R. C.; LIMA, R. S. Logística da soja brasileira para exportação: modelo de otimização orientado para a minimização de custos logísticos. XXIX Congresso Nacional de Pesquisa em Transporte da ANPET, 2015.
- MARINS, F. A. S. **Introdução à Pesquisa Operacional.** Cultura Acadêmica: Universidade Estadual Paulista, Pró-Reitoria de Graduação, 2011. 176 p. ISBN 978-85-7983-167-6.
- MARINS, F. A.; FILHO, C. P. **Programação linear por partes: revisão teórica e aplicações.** Revista Produção, 1996. vol. 6, n. 2, pg. 146 -163.
- MASCARENHAS, C. S. **Modelo de localização para o arranjo espacial estático de armazenagem de soja no estado do Mato Grosso.** Tese (mestrado) Universidade Estadual de Campinas. Faculdade de Ciências Aplicadas, 2015.
- MDIC Ministério da Indústria, Comércio Exterior e Serviços. **Comex Vis: Brasil (Geral).** Disponível em: http://www.mdic.gov.br/comercio-exterior/estatisticas-decomercio-exterior/comex-vis. Acesso em: 25 mar. 2017.

MTPA – Ministério dos Transportes, Portos e Aviação Civil. **Corredores Logísticos Estratégicos**. Disponível em: < http://www.transportes.gov.br>. Acesso em: 28 mar. 2017.

OLIVEIRA, E. P. Modelo Conceitual de um Sistema de Apoio à Decisão para Gestores de Logística e Transporte em Canais de Exportação Agrícola. Tese (Doutorado) – UFSC, Centro Tecnológico. Santa Catarina, 2007.

SALIN, D. **Brazil Soybean Transportation Indicator Reports**. Department of Agriculture, Agricultural Marketing Service. U.S. 2015. Disponível em: http://dx.doi.org/10.9752/TS052.01-2015>. Acesso em: 22 mar. 2017.

SECRETARIA DE PLANEJAMENTO, GOVERNANÇA E GESTÃO. Atlas Socioeconômico do Rio Grande do Sul. Disponível em: http://www.atlassocioeconomico.rs.gov.br/modais-de-transporte. Acesso em: 25 mar. 2017.

SIFRECA, SISTEMA DE INFORMAÇÕES DE FRETES. Indicadores de fretes Rodoviários. Disponível em: http://sifreca.esalq.usp.br/mercado-de-fretes/soja. Acesso em: 03 nov. 2017.

SILVEIRA, M. R. **Transporte e logística – as ferrovias no Brasil**. Geosul, Florianópolis, 2002. v.17, n.34, p 63-86.

TAHA, H. A. **Pesquisa operacional: uma visão geral**. 8 ed. São Paulo: Pearson Prentice Hall, 2008.

Anexo A

Tabela - Matriz de custo transporte rodoviário entre as origens

	AGR	BVC	BOS	CDS	CDC	СНА	CRA	DOP	ESP	GIR
AGR	0	67.469	74.4705	47.6102	74.2159	78.5441	64.6684	36.4078	67.9782	79.5625
BVC	67.469	0	24.0597	31.9523	14.3849	19.8588	6.1104	53.466	17.9493	15.5306
BOS	74.4705	24.0597	0	43.5366	7.1288	33.9891	23.6778	45.7007	35.5167	19.3496
CDS	47.6102	31.9523	43.5366	0	38.8265	40.736	28.7698	38.9538	27.1149	43.9185
CDC	74.2159	14.3849	7.1288	38.8265	0	31.4431	21.2591	45.5734	33.098	19.9861
CHA	78.5441	19.8588	33.9891	40.736	31.4431	0	14.1303	64.5411	13.8757	23.2959
CRA	64.6684	6.1104	23.6778	28.7698	21.2591	14.1303	0	50.2835	11.2024	15.4033
DOP	36.4078	53.466	45.7007	38.9538	45.5734	64.5411	50.2835	0	60.9767	60.8494
ESP	67.9782	17.9493	35.5167	27.1149	33.098	13.8757	11.2024	60.9767	0	26.8603
GIR	79.5625	15.5306	19.3496	43.9185	19.9861	23.2959	15.4033	60.8494	26.8603	0
IBI	70.2696	11.5843	30.6793	34.6256	28.1333	13.1119	6.365	56.1393	5.6012	22.2775
IJU	70.015	6.1104	18.4585	34.371	16.4217	15.276	7.7653	55.7574	19.4769	10.9478
JAG	6.365	69.7604	80.199	53.2114	76.38	87.5824	73.7067	42.1363	77.1438	88.9827
JAR	58.558	15.4033	16.9309	26.8603	9.0383	30.8066	17.5674	34.8802	27.2422	24.9508
JOI	68.8693	6.2377	19.2223	33.7345	9.5475	22.4048	12.2208	49.5197	23.9324	12.3481
JDC	56.012	12.0935	29.279	22.7867	15.9125	23.1686	9.1656	41.7544	17.6947	24.187
LAV	75.6162	36.917	51.9384	48.7559	49.5197	23.0413	32.0796	80.0717	22.914	43.6639
MTC	77.3984	42.5182	57.5396	52.8295	55.1209	28.6425	37.5535	85.6729	28.8971	49.2651
PDM	76.5073	17.6947	31.6977	40.8633	29.279	4.5828	12.3481	62.2497	19.2223	19.3496
RIP	42.9001	33.3526	49.5197	8.4018	51.3019	35.8986	30.1701	44.3004	25.46	45.4461
SBS	71.288	14.003	27.8787	35.644	25.46	7.0015	8.5291	57.0304	9.0383	19.2223
SAM	47.8648	19.4769	26.9876	15.7852	20.2407	30.552	16.9309	33.3526	27.1149	31.6977
SAL	47.2283	50.92	43.282	44.9369	43.0274	61.9951	47.8648	12.0935	58.558	62.1224
SAB	84.7818	32.9707	18.8404	53.2114	23.9324	42.9001	32.5888	50.6654	44.4277	28.5152
SAG	47.6102	42.1363	35.3894	26.9876	35.1348	54.2298	39.9722	23.8051	50.6654	54.2298
SLG	79.3079	18.4585	5.6012	46.8464	14.2576	28.3879	18.0766	47.101	29.9155	13.6211
SMM	80.199	14.003	5.9831	44.555	8.4018	26.0965	15.9125	53.466	27.6241	11.457
SSE	40.4814	27.3695	34.2437	15.9125	34.1164	38.5719	24.3143	31.825	35.1348	39.7176
TUP	63.7773	7.7653	21.3864	30.6793	10.5659	25.3327	11.2024	49.5197	21.8956	16.9309
VAC	73.0702	48.2467	61.7405	47.6102	59.3218	32.9707	41.7544	83.2542	33.098	53.466

	IBI	IJU	JAG	JAR	JOI	JDC	LAV	MTC	PDM	RIP
AGR	70.2696	70.015	6.365	58.558	68.8693	56.012	75.6162	77.3984	76.5073	42.9001
BVC	11.5843	6.1104	69.7604	15.4033	6.2377	12.0935	36.917	42.5182	17.6947	33.3526
BOS	30.6793	18.4585	80.199	16.9309	19.2223	29.279	51.9384	57.5396	31.6977	49.5197
CDS	34.6256	34.371	53.2114	26.8603	33.7345	22.7867	48.7559	52.8295	40.8633	8.4018
CDC	28.1333	16.4217	76.38	9.0383	9.5475	15.9125	49.5197	55.1209	29.279	51.3019
CHA	13.1119	15.276	87.5824	30.8066	22.4048	23.1686	23.0413	28.6425	4.5828	35.8986
CRA	6.365	7.7653	73.7067	17.5674	12.2208	9.1656	32.0796	37.5535	12.3481	30.1701
DOP	56.1393	55.7574	42.1363	34.8802	49.5197	41.7544	80.0717	85.6729	62.2497	44.3004
ESP	5.6012	19.4769	77.1438	27.2422	23.9324	17.6947	22.914	28.8971	19.2223	25.46
GIR	22.2775	10.9478	88.9827	24.9508	12.3481	24.187	43.6639	49.2651	19.3496	45.4461
IBI	0	12.73	37.0443	22.5321	19.095	14.7668	26.3511	31.9523	12.8573	30.9339
IJU	12.73	0	75.8708	19.7315	7.5107	16.549	33.3526	38.9538	13.1119	35.7713
JAG	37.0443	75.8708	0	64.1592	74.4705	65.1776	81.2174	83.1269	82.1085	48.6286
JAR	22.5321	19.7315	64.1592	0	13.2392	11.2024	46.4645	52.0657	28.6425	33.6072
JOI	19.095	7.5107	74.4705	13.2392	0	11.0751	40.4814	46.0826	20.2407	42.2636
JDC	14.7668	16.549	65.1776	11.2024	11.0751	0	40.4814	45.9553	20.8772	28.7698
LAV	26.3511	33.3526	81.2174	46.4645	40.4814	40.4814	0	5.7285	28.5152	36.7897
MTC	31.9523	38.9538	83.1269	52.0657	46.0826	45.9553	5.7285	0	34.2437	39.2084
PDM	12.8573	13.1119	82.1085	28.6425	20.2407	20.8772	28.5152	34.2437	0	41.3725
RIP	30.9339	35.7713	48.6286	33.6072	42.2636	28.7698	36.7897	39.2084	41.3725	0
SBS	4.4555	9.2929	53.5933	23.4232	16.4217	17.1855	24.9508	30.6793	8.911	24.187
SAM	22.2775	23.9324	57.0304	11.0751	20.7499	8.4018	47.9921	53.466	28.3879	21.7683
SAL	53.8479	53.5933	52.9568	35.644	50.5381	39.2084	79.4352	85.0364	60.2129	50.2835
SAB	39.5903	27.4968	90.5103	26.8603	29.9155	39.7176	60.8494	66.5779	40.8633	58.9399
SAG	46.0826	45.828	53.3387	26.4784	42.7728	31.3158	71.5426	77.1438	52.3203	32.3342
SLG	25.0781	12.9846	84.9091	21.3864	13.6211	26.0965	46.3372	52.0657	26.3511	48.1194
SMM	22.7867	10.8205	85.9275	16.4217	8.4018	20.4953	44.1731	49.7743	24.187	45.828
SSE	30.1701	30.0428	46.0826	18.4585	28.7698	15.7852	55.7574	61.3586	36.5351	21.3864
TUP	17.0582	13.7484	72.9429	9.5475	5.4739	3.3098	41.1179	46.5918	23.1686	36.6624
VAC	36.0259	44.555	82.1085	58.6853	50.2835	50.2835	10.6932	4.5828	38.4446	39.2084

	SBS	SAM	SAL	SAB	SAG	SLG	SMM	SSE	TUP	VAC
AGR	71.288	47.8648	47.2283	84.7818	47.6102	79.3079	80.199	40.4814	63.7773	73.0702
BVC	14.003	19.4769	50.92	32.9707	42.1363	18.4585	14.003	27.3695	7.7653	48.2467
BOS	27.8787	26.9876	43.282	18.8404	35.3894	5.6012	5.9831	34.2437	21.3864	61.7405
CDS	35.644	15.7852	44.9369	53.2114	26.9876	46.8464	44.555	15.9125	30.6793	47.6102
CDC	25.46	20.2407	43.0274	23.9324	35.1348	14.2576	8.4018	34.1164	10.5659	59.3218
CHA	7.0015	30.552	61.9951	42.9001	54.2298	28.3879	26.0965	38.5719	25.3327	32.9707
CRA	8.5291	16.9309	47.8648	32.5888	39.9722	18.0766	15.9125	24.3143	11.2024	41.7544
DOP	57.0304	33.3526	12.0935	50.6654	23.8051	47.101	53.466	31.825	49.5197	83.2542
ESP	9.0383	27.1149	58.558	44.4277	50.6654	29.9155	27.6241	35.1348	21.8956	33.098
GIR	19.2223	31.6977	62.1224	28.5152	54.2298	13.6211	11.457	39.7176	16.9309	53.466
IBI	4.4555	22.2775	53.8479	39.5903	46.0826	25.0781	22.7867	30.1701	17.0582	36.0259
IJU	9.2929	23.9324	53.5933	27.4968	45.828	12.9846	10.8205	30.0428	13.7484	44.555
JAG	53.5933	57.0304	52.9568	90.5103	53.3387	84.9091	85.9275	46.0826	72.9429	82.1085
JAR	23.4232	11.0751	35.644	26.8603	26.4784	21.3864	16.4217	18.4585	9.5475	58.6853
JOI	16.4217	20.7499	50.5381	29.9155	42.7728	13.6211	8.4018	28.7698	5.4739	50.2835
JDC	17.1855	8.4018	39.2084	39.7176	31.3158	26.0965	20.4953	15.7852	3.3098	50.2835
LAV	24.9508	47.9921	79.4352	60.8494	71.5426	46.3372	44.1731	55.7574	41.1179	10.6932
MTC	30.6793	53.466	85.0364	66.5779	77.1438	52.0657	49.7743	61.3586	46.5918	4.5828
PDM	8.911	28.3879	60.2129	40.8633	52.3203	26.3511	24.187	36.5351	23.1686	38.4446
RIP	24.187	21.7683	50.2835	58.9399	32.3342	48.1194	45.828	21.3864	36.6624	39.2084
SBS	0	24.5689	56.1393	36.7897	48.374	22.2775	20.1134	32.4615	19.3496	34.8802
SAM	24.5689	0	30.9339	37.4262	23.0413	31.825	28.006	7.7653	15.6579	53.3387
SAL	56.1393	30.9339	0	48.1194	23.9324	44.555	50.92	35.2621	40.736	88.9827
SAB	36.7897	37.4262	48.1194	0	44.9369	14.5122	20.8772	44.8096	31.825	70.7788
SAG	48.374	23.0413	23.9324	44.9369	0	40.2268	42.7728	17.3128	32.8434	71.288
SLG	22.2775	31.825	44.555	14.5122	40.2268	0	6.1104	39.2084	19.7315	56.2666
SMM	20.1134	28.006	50.92	20.8772	42.7728	6.1104	0	40.0995	12.73	53.9752
SSE	32.4615	7.7653	35.2621	44.8096	17.3128	39.2084	40.0995	0	23.5505	56.5212
TUP	19.3496	15.6579	40.736	31.825	32.8434	19.7315	12.73	23.5505	0	50.7927
VAC	34.8802	53.3387	88.9827	70.7788	71.288	56.2666	53.9752	56.5212	50.7927	0

Tabela - Matriz custo rodoviário até ferroviário

	BAGF	CACF	CRAF	JDCF	PFUF	RGRF	SAMF	STGF	SANF	TUPF
AGR	27.6241	61.2313	64.6684	56.012	73.4521	21.1318	47.8648	68.4874	75.3616	63.7773
BVC	50.1562	31.6977	6.1104	12.0935	25.5873	66.3233	19.4769	19.3496	11.3297	7.7653
BOS	51.4292	20.1134	23.6778	29.279	39.9722	73.1975	26.9876	7.0015	15.1487	21.3864
CDS	30.1701	30.552	28.7698	22.7867	35.644	46.4645	15.7852	36.6624	39.5903	30.6793
CDC	50.7927	19.8588	21.2591	15.9125	37.4262	72.6883	20.2407	7.638	15.5306	10.5659
CHA	61.3586	45.3188	14.1303	23.1686	11.2024	77.2711	30.552	36.2805	21.1318	25.3327
CRA	47.101	30.4247	1	9.1656	18.8404	63.2681	16.4217	26.0965	11.0751	11.2024
DOP	10.184	25.9692	50.2835	41.7544	68.742	41.6271	33.3526	39.7176	60.2129	49.5197
ESP	56.7758	40.8633	11.2024	17.6947	10.4386	66.8325	27.1149	37.8081	22.6594	21.8956
GIR	62.377	38.9538	15.4033	24.187	31.6977	78.5441	31.6977	25.7146	4.4555	16.9309
IBI	52.9568	36.2805	6.365	14.7668	13.2392	69.1239	22.2775	32.9707	17.822	17.0582
IJU	54.739	35.7713	7.7653	16.549	22.7867	70.9061	23.9324	23.4232	7.1288	13.7484
JAG	36.7897	70.3969	73.7067	65.1776	82.6177	30.1701	57.0304	77.5257	84.3999	72.9429
JAR	41.1179	12.73	17.5674	11.2024	35.8986	57.285	11.0751	10.5659	20.4953	9.5475
JOI	51.4292	27.3695	12.2208	11.0751	28.3879	67.5963	20.7499	15.0214	8.2745	5.4739
JDC	38.4446	22.5321	9.1656	1	27.4968	54.6117	7.7653	23.4232	19.8588	6.2377
LAV	74.4705	62.7589	32.0796	40.4814	12.9846	74.3432	47.9921	54.4844	39.3357	41.1179
MTC	81.7266	68.2328	37.5535	45.9553	18.4585	76.2527	53.466	59.9583	44.8096	46.5918
PDM	59.0672	43.1547	12.3481	20.8772	15.7852	75.2343	28.3879	34.1164	18.9677	23.1686
RIP	35.5167	36.5351	30.1701	28.7698	30.8066	41.7544	21.7683	42.6455	40.9906	36.6624
SBS	55.2482	39.3357	8.5291	17.1855	12.9846	71.4153	24.5689	30.2974	15.1487	19.3496
SAM	30.4247	14.8941	16.9309	8.4018	35.3894	46.7191	1	21.0045	27.7514	16.1671
SAL	21.1318	23.4232	47.8648	39.2084	66.196	52.4476	30.9339	37.2989	57.6669	40.736
SAB	59.831	30.552	32.5888	39.7176	48.8832	83.6361	37.4262	17.3128	24.0597	31.825
SAG	21.5137	15.6579	39.9722	31.3158	58.4307	50.2835	23.0413	27.8787	49.9016	32.8434
SLG	56.2666	24.9508	18.0766	26.0965	34.371	78.0349	31.825	11.8389	9.6748	19.7315
SMM	62.6316	27.4968	15.9125	20.4953	32.2069	79.0533	28.006	15.1487	7.3834	12.73
SSE	23.0413	22.1502	24.3143	15.7852	42.7728	39.2084	7.7653	28.2606	35.1348	23.5505
TUP	46.3372	22.4048	11.2024	3.3098	29.5336	62.5043	15.6579	15.4033	12.6027	1
VAC	74.0886	72.4337	41.7544	50.2835	22.6594	71.6699	53.3387	64.1592	49.0105	50.7927

Tabela - Matriz de custo transporte ferroviário

	BAGF	CACF	CRAF	JDCF	PFUF	RGRF	SAMF	STGF	SANF	TUPF
BAGF	0	20.90648	0	0	0	28.1783	0	0	0	0
CACF	20.90648	0	0	0	0	0	11.21072	21.31047	0	0
CRAF	0	0	0	0	19.59352	0	0	0	10.90773	5.554863
JDCF	0	0	0	0	0	0	6.362843	0	0	2.42394
PFUF	0	0	19.59352	0	0	0	0	0	0	0
RGRF	28.1783	0	0	0	0	0	0	0	0	0
SAMF	0	11.21072	0	6.362843	0	0	0	0	0	0
STGF	0	21.31047	0	0	0	0	0	0	0	0
SANF	0	0	10.90773	0	0	0	0	0	0	0
TUPF	0	0	5.554863	2.42394	0	0	0	0	0	0

ANEXO B

Tabela - Quantidade a ser transportada de i para j

	AGR	BAGF	CACF	CRAF	JDCF	PFUF	RGRF	SAMF	STGF	SANF	TUPF
AGR							245820				
BVC				116114							
BOS									130140		
CDS								399096			
CDC									179304		
CHA						121464					
CRA				270402							
DOP		219792									
ESP						141708					
GIR										184220	
IBI				120018							
IJU										131586	
JAG	130140										
JAR											115680
JOI											256810
JDC					257388						
LAV						122910					
MTC						159060					
PDM				274740							
RIP								159060			
SBS				198102							
SAM								127537			
SAL		115680									
SAB									159060		
SAG			280524								
SLG										214008	
SMM										207356	
SSE								159060			
TUP											416448
VAC						138816					
BAGF							5376083				
CACF		5040611									
CRAF					2400504						
JDCF											2657892
PFUF				683958							
RGRF											
SAMF			4291583								
STGF			468504								
SANF				737170							
TUPF			Elaborad					3446830			

ANEXO C

Tabela - Quantidade a ser transportada de i para j

	AGR	JDC	BAGF	CACF	CRAF	PFUF	RGRF	SAMF	STGF	SANF
AGR BVC BOS CDS CDC					116114		245820	399096	130140 179304	
CHA CRA DOP			219792		270402	121464			170004	
ESP GIR IBI			213732		120018	141708				184220
IJU JAG JAR	130140				120010				115680	131586
JOI JDC LAV						122910		673836	113000	256810
MTC PDM RIP					274740	159060		159060		
SBS SAM			445000		198102			127537		
SAL SAB SAG			115680	280524					159060	04.4000
SLG SMM SSE		440440						159060		214008 207356
TUP VAC		416448				138816	537608			
BAGF CACF			504061 1				3			
CRAF PFUF					683958			265731 4		
RGRF SAMF				417590 3						
STGF SANF				584184	993980					

ANEXO D

Tabela - Quantidade a ser transportada de i para j

-	AGR	TUP	BAGF	CACF	JDCF	PFUF	RGRF	STGF	SANF
AGR							245820		
BVC		116114							
BOS								130140	
CDS					399096				
CDC								179304	
CHA						121464			
CRA					270402				
DOP			219792						
ESP						141708			
GIR									184220
IBI						120018			
IJU									131586
JAG	130140							115000	
JAR								115680	256040
JOI					257200				256810
JDC					257388	122010			
LAV MTC						122910 159060			
PDM						274740			
RIP					159060	274740			
SBS					133000	198102			
SAM					127537	130102			
SAL			115680		12/33/				
SAB								159060	
SAG				280524					
SLG									214008
SMM									207356
SSE					159060				
TUP					532562				
VAC						138816			
BAGF							5376083		
CACF			5040611						
JDCF				4175903					
PFUF					1276818				
RGRF									
STGF				584184					
SANF					993980				