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ABSTRACT 

 

The study of individual or pooled motor units’ activity by means of surface electromyography 

(sEMG) opens a window of opportunities to study human movement. However, sEMG requires 

adequate signal processing, and there are physiological and non-physiological factors that can 

bias the measurement and interpretation of sEMG signals. Examples include technical and 

methodological choices for signal processing and presentation, as well as physiological factors 

such as acute and cumulative muscle fatigue and orthopedic conditions such as persistent 

weakness after an Achilles tendon rupture. Therefore, the proper use of sEMG information relies 

not only on how the signal is acquired and processed but also on the physiological condition of 

the individuals. In this research, we aimed to determine sEMG signal segmentation, posttraumatic 

muscle weakness, and fatigue conditions influencing myoelectrical manifestations, sEMG maps, 

and motor unit decomposition obtained from sEMG measurements. The experiments conducted 

and reported here hypothesized that 1) methodological biases are introduced during typical signal 

processing procedures when analyzing electrical manifestations to estimate muscle fatigue and 

muscle activation maps, 2) sEMG maps and motor unit decomposition patterns can be 

appropriately used to identify acute and chronic muscle adaptation in conditions of inhibition 

similar to cumulative fatigue, and 3) cumulative muscle fatigue impairs neurophysiological 

characteristics (firing rate and motor unit recruitment) expressed in sEMG signals. Our main 

findings were that 1) signal processing methods to estimate fatigue and activation maps introduce 

biased electrical manifestations, 2) sEMG maps and motor unit decomposition are sensible to 

identify patterns in acute and chronic adaptations, and 3) increased firing rate and new motor unit 

recruitment are the most relevant changes in sEMG signals in response to cumulative fatigue. 

Furthermore, the results highlight the relevance of visualization techniques in the analysis of 

regional muscle activation (sEMG maps) and regional distribution and suggest the increase in 

firing rate as the most relevant marker of cumulative fatigue. We expect that our results can have 

an important impact on how to approach signal processing and define procedures to study 

different physiological conditions throughout the use of sEMG. 

 

Keywords: Muscle Activation, Exercise, Injury, Signal processing, Data Science. 
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RESUMO 

 

O estudo da atividade de unidades motoras individuais ou agrupadas por meio da eletromiografia 

de superfície (sEMG) abre uma janela de oportunidades para estudar o movimento humano. No 

entanto, a sEMG requer o processamento adequado do sinal, e existem fatores fisiológicos e não 

fisiológicos que podem enviesar a medição e interpretação de sinais de sEMG. Exemplos incluem 

escolhas técnicas e metodológicas para o processamento e apresentação do sinal, bem como 

fatores fisiológicos, como fadiga muscular aguda e cumulativa e condições ortopédicas, como 

fraqueza persistente após uma ruptura do tendão de Aquiles. Portanto, o uso adequado da sEMG 

depende não apenas de como o sinal é adquirido e processado, mas também da condição 

fisiológica dos indivíduos. Nesta pesquisa, nosso objetivo foi determinar como segmentacao da 

sinal de sEMG, debilidade muscular postraumatica e fadiga influenciam manifestacoes 

myoeletricas, mapas de sEMG e decomposicao de unidades motoras obtidas de medições de 

sEMG. Os experimentos realizados e relatados aqui basearam nas hipóteses de que 1) vieses 

metodológicos são introduzidos durante procedimentos típicos de processamento de sinal para 

analisar manifestações elétricas de fadiga muscular e mapas de ativação muscular, 2) mapas de 

sEMG e padrões de decomposição de unidades motoras podem ser usados de forma para 

identificar adaptações agudas e crônicas em condições de fadiga acumulada, e 3) a fadiga 

muscular acumulada prejudica características neurofisiológicas (taxa de disparo e recrutamento 

de unidades motoras) expressas nos sinais de sEMG. Nossas principais descobertas foram que 1) 

os métodos de processamento de sinal para estimar fadiga e mapas de ativação introduzem vieses 

na análise de manifestações elétricas, 2) mapas de sEMG e decomposição de unidades motoras 

são sensíveis para identificar padrões em adaptações agudas e crônicas, e 3) aumento da taxa de 

disparo e recrutamento de novas unidades motoras são as mudanças mais relevantes nos sinais de 

sEMG em resposta à fadiga acumulada. Além disso, os resultados destacam a relevância das 

técnicas de visualização na análise da ativação muscular regional (mapas de sEMG) e 

distribuição regional, e sugerem o aumento da taxa de disparo como o marcador mais relevante 

de fadiga cumulativa. Esperamos que nossos resultados possam ter um impacto importante em 

como abordar o processamento de sinais e definir procedimentos para o estudo de diferentes 

condições fisiológicas por meio do uso da sEMG. 

Palavras-chave: Ativação Muscular, Exercício, Lesão, Processamento de Sinais, Ciência de 

dados.  
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1 CHAPTER ONE – INTRODUCTION 

 

In this thesis, results of different experiments conducted to determine how methodological 

choices in signal processing and physiological conditions may influence the outcomes of surface 

electromyography (sEMG) measurements are reported. The development of this thesis was done 

mostly during the coronavirus pandemic. In the beginning (2020 to 2022), such public health 

conditions had a major impact on the planned experiments. For this reason, the study was first 

dedicated to understanding the influence of methodological choices in processing sEMG signals 

on the final outcomes. Despite the difficulties, this approach brought interesting and promising 

results, which were published in recognized journals. In due course of the project, it was possible 

to develop experimental studies in which physiological conditions that disturb the neuromuscular 

system were considered. Again, we found results that instigate an applied discussion on how to 

handle and present outcomes of the sEMG analysis to understand human movement. 

The content of this thesis is organized into 10 chapters. Following this chapter, Chapter 

1, Chapter 2 present the theoretical background for this study, including the statement of the 

research problem, the aims, and the hypotheses. Chapter 3 is composed of a manuscript related 

to methodological aspects in analyzing electrical manifestations of fatigue using sEMG signals. 

Chapter 4 is a manuscript related to the methodology for assessing sEMG using muscle 

activation maps. Chapter 5 is a manuscript on the applicability of muscle activation map patterns 

to assess the neuromuscular activity in a condition of chronic muscle weakness. Chapter 6 is a 

manuscript related to the applicability of muscle motor unit decomposition to quantify and 

discuss outcomes of muscle activation. Chapter 7 is a manuscript on determining the motor unit 

behavior during muscle contractions in response to cumulative fatigue. Chapter 8 includes a 

general discussion of the findings across the different studies. Chapter 9 discusses the limitations 

of the experiments composing this thesis. Finally, Chapter 10 includes a general conclusion of 

the thesis. Additional sections at the end of the document include the list of references, ethical 

approvals, and generic codes for signal processing approaches developed in the studies. 
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2 CHAPTER TWO – BACKGROUND AND STATEMENT OF THE PROBLEM 

 

2.1 Electromyography signal generation 

Electromyography is a technique that measures the electrical activity emanating from the 

depolarization of several plasmatic membranes surrounding the muscle fibers in skeletal muscle 

(Basmajian and de Luca 1985). In physiological terms, the electromyographic signal is the 

summation of trains of action potential from active motor units during a muscle contraction 

(Basmajian and de Luca 1985); see anatomic and physiologic model section of Figure 1. 

Therefore, muscle activation can be monitored using sEMG (Ladegaard et al., 2002).  

 sEMG devices allow the non-invasive voltage collection from active motor units 

(Ladegaard et al., 2002). The electromyography signals involve the voltage sum of different 

motor units, where the convolution between motor unit basis and firing rate of each active motor 

unit is the best model to explain the sEMG signal generation (Figure 1, see physiologic model 

section). In other words, the sEMG signal is the sum of voltage generated by different activated 

motor units across time. In addition to the resting action potentials, the electromyography signal 

has electrical noise associated with current traveling through surrounding tissues and electrical 

phenomena generated by electronic elements (Raez et al., 2006). The noise is summed to the 

convolution model, obtaining the final output of physiology information merged with noise 

(Figure 1, see instrumentation section). Therefore, the sEMG signal can be considered an 

interfered signal due to its different voltage sources and superposed waves, including cancelation 

(opposed waves).  

  Consequently, the sEMG signal is a window to study human movement under physiology 

or pathological conditions, reflecting any human activity at any stage of life postpartum. 

Unfortunately, several factors can interfere with sEMG interpretations. Although we can get a 

good sEMG acquisition, factors like signal processing parameters, visualization methods to refer 

to activations, inhibitory physiology mechanisms like muscle fatigue, action potential regulation 

(Figure 2), or no physiological conditions like signal processing assumptions might distort the 

true information. Identification and possible solutions to these assumptions are the main 

motivation and focus of this thesis. 
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Figure 1. A generative model of the sEMG signal (Basmajian et al.,  1985). 
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Figure 2. Regulation of membrane excitability during muscle contraction. Blue arrows 

indicate the physiological muscle contraction. The action potentials allow the release of Ca++ 

from the sarcoplasmic reticulum to activate the contractile proteins, resulting in force generation 

(protein displacement hypothesis of muscle contraction by ATP hydrolysis). Relaxation is 

associated with the pumping of Ca++ back into the sarcoplasmic reticulum by the Ca++ ATPase. 

Brown arrows indicate that repetitive action potentials result in a large K+ efflux and eventually 

increased [K+ ]e reduces action potential amplitude. Green arrows indicate that the increase in 

[Ca2+]i during contraction is involved in the closing of ClC1, possibly through the activation of 

protein kinase C. The subsequent decrease in Cl2 permeability improves action potential 

amplitude, thus counteracting the K+ -depressing effect. The events depicted by the brown and 

green arrows are expected to predominate at the onset of exercise and as long as there is no 

metabolic stress. Red arrows indicate what happens when ATP use exceeds the production rate, 

causing a decrease in ATP concentration; the resulting metabolic stress then triggers the fatigue 

mechanism, including activation of ClC1 and KATP channels. Activation of these channels will 

cause very large decreases in action potential amplitude and as a consequence, the sarcoplasmic 
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reticulum releases less Ca++ and less force is generated in order to preserve ATP (MacIntosh et 

al., 2012).  

 

2.2 Surface electromyography techniques  

 

The depolarization of α-motor unit arises from trains of potential motor units of the 

central nervous system, and the sum of the electrical activity of muscles results in the 

electromyography or myoelectrical signal (Cifrek et al. 2009; De Luca 1979). These signals can 

be acquired invasively or non-invasively, which constitutes an essential development in studying 

cumulated fatigue and muscle activation (Farina et al. 2003). Among the possible techniques to 

study electromyography are bipolar (sEMG) and high-density surface electromyography (HD-

sEMG).  

The bipolar sEMG technique is a non-invasive method to record the electrical activity of 

muscles during muscular contractions (Merletti et al., 2019). In this technique, pairs of electrodes 

are placed on the surface of the skin directly above the muscle of interest in a bipolar 

configuration (two electrodes and a reference). These surface electrodes detect the sum of voltage 

produced by motor units within the muscle fibers as they activate during muscle contractions 

(Basmajian et al., 1985). The distance between electrodes is not trivial because this determines 

the conductor volume and crosstalks (Campanini et al., 2022). sEMG electrodes allow us to 

measure the amplitude, frequency, and duration of the muscle activation by measuring signal 

features. As a non-invasive and easily applicable method, sEMG has become a valuable tool in 

understanding motor control and function (Campanini et al., 2022).  

The HD-sEMG allows the investigation of muscle activity, including spatial resolution 

with multiple voltage sources, different from traditional bipolar sEMG, which collects only one 

voltage signal (Campanini et al., 2022). This technique places a grid or array of multiple-spaced 

electrodes on the skin above the muscle of interest (Campanini et al., 2022). By capturing signals 

from multiple locations, HD-sEMG provides detailed information about the spatial distribution 

and activation patterns of muscles (Campanini et al., 2022). This technique is especially valuable 

for topography activation distribution, motor unit decomposition, or conduction velocity.  
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In the context of HD-sEMG technique, one of the most relevant applications is motor unit 

decomposition. The motor unit decomposition uses the HD-sEMG acquisition and follows the 

inverse steps of sEMG signal generation (Figure 1). Here, the motor unit basis and firing rate can 

be obtained. The most relevant methods are the Bayesian and blind source separation models. 

These are two distinct approaches used for motor unit decomposition. Bayesian models employ 

probabilistic inference to estimate the underlying sources of the observed HD-sEMG signals 

(Nawab et al., 2010). These models leverage prior knowledge about the statistical properties of 

the sources and the mixing process, making them effective in resolving spatially overlapping 

muscle activities and providing source separation (Nawab et al., 2010). By incorporating prior 

information, Bayesian models can enhance motor unit recognition (Nawab et al., 2010).  

On the other hand, blind source separation models use statistical algorithms to extract 

independent sources to identify motor unit basis (Negro et al., 2016). These models assume the 

observed HD-sEMG signals are linear convoluted mixtures of underlying muscle activities 

(Negro et al., 2016). While blind source separation techniques can efficiently separate the 

sources, they may face challenges in disentangling the complex spatial patterns of muscle 

activations, especially when muscle activities significantly overlap. 

In summary, both Bayesian and blind source separation models have strengths and 

limitations in the context of HD-sEMG analysis. Bayesian models excel in incorporating prior 

knowledge and providing robust source separation, while blind source separation techniques offer 

a data-driven approach but may struggle with spatially overlapping muscle activities. The choice 

between these approaches depends on the specific research question, the level of available prior 

information, the desired accuracy in identifying individual muscle contributions during motor 

tasks, and, in our case, the availability of the equipment. 

 

2.3 Electrical manifestations of surface electromyography 

 

 The ability to measure electrical modifications in the sEMG or myoelectric signal has 

been traditionally described in the literature (Table 1). The most common application has been 

the study of fatigue through quantitative indicators known as electrical manifestations of fatigue 

(Ament et al., 1993; E. Martinez-Valdes et al., 2016). The primary descriptors among these 
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indicators are the median, mean, and peak frequencies. These descriptors are obtained from the 

time and frequency domain (Ament et al., 1993; Raez et al., 2006; Angelova et al., 2018; Cifrek 

et al., 2009). These descriptors can be used for different applications and not exclusively for 

fatigue.  

 In the context of fatigue, the main descriptor is the median frequency due to findings 

related to its lower sensitivity to noise compared to peak and mean frequencies (Shair et al., 

2017); see Table 1. One of its foundations relies on the possibility of obtaining these indicators 

through a Fourier transformation when there are stationary signal periods (Angelova et al., 2018) 

and when the signal extension is appropriate based on repetitive statistical parameters over time. 

This supports the need to obtain instantaneous parameters of the changes in myoelectric signal 

characteristics when sEMG is used (Zhang et al., 2010).  

 The most common expected behavior of muscular fatigability over time shows a shift 

towards lower frequencies (spectral compression), accompanied by a decrease in muscular 

conduction velocity (due to a more acidic environment) and possibly an increase in indicators in 

the time domain (due to changes in the morphology of action potentials) (Xie et al., 2006; Zhang 

et al., 2010; Martinez-Valdes et al., 2016; Fujisawa et al., 2017), see Figure 3. The median 

frequency divides the spectrum in half as a measure of central tendency. The mean frequency is 

the arithmetic average of the frequencies in the spectrum, and the peak frequency represents the 

fundamental frequency of the frequency spectrum of an electrical signal (Cifrek et al., 2009).  
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Figure 3. Myoelectric manifestations of muscular fatigue (Merletti, Knaflitz, and De Luca 

1990). ARV = average rectified value. RMS = root mean square. CV = conduction velocity. 

MNF = mean frequency. MDF = median frequency. MVC = maximal voluntary contraction. % = 

percentage.  

  

Based on the observed changes regarding the leftward shift in the frequency spectrum and  

median and mean frequencies during dynamic contractions (Dimitrov et al., 2006; Angelova et 

al., 2018) as electrical manifestations of fatigue (Table 1), these descriptors have been questioned 

in sensitive and reliability in muscular fatigue (Dimitrov et al., 2006). In the same way, muscle 

activation using sEMG descriptors has been questioned (Vigotsky et al., 2017). Hence, it is 

imperative to consider appropriate sEMG methods prior to applying them. Due to that, this thesis 

starts with methodological assumptions of sEMG analysis.    
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Table 1. Electrical manifestations of sEMG described in the literature (Shair et al., 2017).  

Electrical manifestation of fatigue 

Time domain Frequency domain 

Integral EMG 

Root mean square 

Mean Absolute Value 

Modified mean absolute value type 1 

Simple integral square 

Variace of EMG 

V-order 

Log detector 

Waveform length 

Average amplitude change 

Difference absolute standard 

Deviation value 

Zero crossing 

Myopulse percentage rate 

Willison amplitude 

Slope sign change 

Mean absolute value slope 

Multiple hamming windows 

Multiple trapezoidal windows 

Histogram of EMG 

Autoregressive coefficient 

Cepstral coefficient 

Mean frequency  

Median frequency  

Peak frequency  

Mean power 

Total power 

Spectral moments 

Instantaneous frequency variance  

Averaged instantaneous frequency  

Dimitrov spectral fatigue index 

  

 

2.4 Bias in surface electromyography processing 

 

 In signal processing, bias refers to a systematic error or deviation in the processed digital 

signal that consistently causes it to differ from the true or expected value (different meaning used 

from the statistical concept of Expected value [x] of a distribution, which can correspond to a 

mean in a normal distribution). This deviation can arise due to several factors, such as 

measurement inaccuracies, signal acquisition or processing system imperfections, or 

inappropriate assumptions made during the signal analysis or treatment. Bias can significantly 

impact the accuracy and validity of the final results, leading to erroneous conclusions or 

interpretations. Because of that, it is essential to identify and mitigate bias in signal processing to 
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ensure the validity (measure that the instrument really measures) of the analyzed data and to 

achieve more accurate and meaningful insights from the processed signals. Calibration, 

normalization, and removal of known sources of bias are employed to minimize the effects of 

bias and enhance the quality of signal processing outcomes. But also, conceptual mistakes or 

underestimated procedures would affect the final results.  

 From a statistical point of view, bias can also be defined as deviation from a true value 

(ground truth) and directly affects error types I and II, validity, accuracy, and reliability. Error 

type I relates to an erroneous assignation, and error type II relates to not identifying a condition 

even when it exists. Also, it can be described as a systematic (repetitive error action) error.  

 In the case of the sEMG signal (time series), factors like signal processing parameters, 

models, and visualization methods to refer to activations might distort the true information, 

making it difficult to understand special conditions like inhibition under physiological or non-

physiological conditions like fatigue or posttraumatic muscle weakness, respectively. These 

distortions can cause both statistical type errors. In this thesis, bias will be understood as any 

signal treatment method that causes non-physiological divergence from the true or expected 

value. 

   

2.5 Muscle activation and topographical maps as muscle activation descriptors 

 Under physiological conditions, muscle activation results from action potentials from 

different motor units propagating down to motoneuron, which activates its branches to reach the 

muscle fibers in an α-motor unit. Then, when the postsynaptic membrane of a muscle fiber is 

depolarized, the depolarization propagates in both directions along with the muscle fiber. The 

membrane depolarization, accompanied by a movement of ions, generates an action potential 

with an electromagnetic field in the vicinity of the muscle fibers projected outside of the skin, 

acting in the deeper tissues as low-pass filtering (Cifrek et al., 2009; De Luca et al., 1979).  

 The muscle activation term in muscle contraction measured by sEMG classically refers to 

the period (delta of time) when the muscle contracts with sufficient intensity (amplitude) to cause 

a useful (from synergies to primary motor effector) mechanical effect for a determined task 

(voluntary or involuntary) being triggered and controlled by the nervous system. Two relevant 

properties can be quantitatively measured: the timing and intensity (amplitude) of a sEMG signal. 

The first and most classical technique to define timing was the mean and standard deviation 
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technique (Soderberg et al., 1984). However, there are better techniques like the use of the Taeger 

Keiger energy operator (TKO) (Solnik et al., 2010) or wavelets techniques (De la Fuente et al., 

2018). The amplitude of a sEMG signal can be classically measured through the root mean 

square (RMS), mean absolute value or the peak of the rectified signal (Vigotsky et al., 2017). 

However, better modern techniques like single-value decomposition can also be used (Gallina et 

al., 2018).  

 sEMG maps are visual representations that depict the spatial distribution of electrical 

muscle activity recorded through sEMG sensors (Merletti et al., 2019). These maps use colors or 

intensity gradients to illustrate the varying muscle activation levels across different regions of the 

muscle or muscle group being studied (Merletti et al., 2019). sEMG maps are valuable tools in 

surface HD-sEMG studies, providing researchers and clinicians with detailed insights into muscle 

activation and coordination patterns during various tasks and movements (Merletti et al., 2019). 

By visualizing the distribution of electrical signals on the skin, sEMG maps help understand 

muscle recruitment strategies, muscle synergies, and potential imbalances, contributing to the 

evaluation of neuromuscular function (Merletti et al., 2019). 

 

2.6 Neurophysiology of posttraumatic muscle weakness: An inhibitory neuromuscular 

model  

 Following a traumatic joint injury (that includes joint surrounding tissues like muscles), 

the immediate inability to completely contract a muscle can be attributed, in part, to acute central 

inhibitory mechanisms originating from peripheral damage (Figure 4). These mechanisms 

involve afferent signals, which subsequently lead to the downregulation of α-motor units (Rice et 

al., 2010). This response is a reflex response against structural injury and joint edema (Hart et al., 

2010). However, long-term persistent posttraumatic muscle weakness triggers a similar inhibitory 

neural circuitry (Figure 5). But, sustained muscle weakness does not necessarily require long-

term structural, edema or innervating nerve damage to be under persistent muscle weakness 

status (Lepley a et al., 2021). Here, both central inhibition and posttraumatic muscle weakness 

interact and underlie on neural adaptations that finish in a persistent downregulate α-motoneurons 

state (Hart et al., 2010).  
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 Although inhibition can be caused by posttraumatic persistent muscle weakness, muscle 

fatigue can also cause it, sharing a similar neurophysiological inhibitory mechanism that involves 

pre-synaptic inhibition via Ia, Ib, II, III, and IV afference neurons level on α-motoneurons 

activation (McPherson et al., 2023); see Figure 6-B, which shows the inhibitory mechanism 

during muscle fatigue. In this sense, posttraumatic muscle weakness caused by Achilles tendon 

ruptures on medial gastrocnemius (as the posttraumatic event) would serve as a muscle model 

capable of being explored through sEMG methods ( De la Fuente et al., 2021). 

 

 

Figure 4. Acute inhibitory mechanisms model related to proprioceptive damage (Hart et al., 

2010). AMI = arthrogenic muscular inhibition.  
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Figure 5. Persistent muscle weakness neurophysiology inhibition mechanism. A Persistent 

muscle weakness path. B Persistent muscle weakness effects (Lepley et al., 2021).  
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2.7 Muscle fatigue 

 

Fatigue is a primary consequence of sports practice and exercise. Muscle fatigue (from now 

on called fatigue) is characterized by a task-dependent decrease in the maximal force capacity 

(Enoka et al., 2008). Fatigue excludes the incapacity to maintain a force level by the central 

nervous origin or motor endplate, known as central fatigue and neuromuscular junction fatigue 

(Cifrek et al., 2009). Their acute effects are transient and result from a metabolic, structural, and 

energetic chain of events due to insufficient oxygen and nutrient supply from the bloodstream at 

the muscular level with electrical changes from the nervous system (Basmajian et al., 1985). 

Acute fatigue impairs reactive motor responses (Larson et al., 2018), increases electromechanical 

delay (Smith et al., 2017), and stimulates alterations in muscle synergies (Cowley et al., 2014).  

 In the presence of acute fatigue, a metabolic process affects the muscle concentration of 

[H+] and their clearance due to alterations in the blood supply; due to deficits of oxygen, nutrient 

supply, and metabolites clearance (Cifrek et al. 2009; Gandevia 2001), see Figure 6 and 7. 

Finally, the conduction velocity of fiber muscle is affected, altering the behavior of motor 

neurons, while there is a reduction in the ability of the muscle to generate force or power (Cifrek 

et al., 2009; De Luca et al., 1979). When fatigue is reversible, a brief rest of  ̴ 3-5 min can restore 

the blood supply and metabolite clearance, reverting the ischemic reflex. Because of that, the 

maximal voluntary force is possible to recover quickly. This phenomenon is known as acute 

muscle fatigue (Carroll et al., 2017; Gandevia 2001). However, a non-complete recovery of pre-

fatiguing levels may be observed and occurring due to excitation-contraction coupling (Allman et 

al., 2001). Thus, changes in the internal acid-base balance due to a higher accumulation of [H+] 

reduces the speed of action potential generation. Consequently, the muscular conduction velocity 

and the morphology of the action potentials from motor units that generate the myoelectric signal 

are affected (Raez et al., 2006), see Figure 7. Thus, a shift toward low frequencies in the 

frequency spectrum can be observed when the sEMG signal is transformed into the frequency 

domain, i.e. Fourier Transform. This is known as "spectral compression" (Zhang et al., 2010). 
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Figure 6. Muscle weakness by causes. (A) Peripheral (metabolic) cause. (B) Presynaptic 

inhibition during muscle fatigue (Gandevia 2001). 
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Figure 7. Factors that can affect the morphology of MUAP during muscle contraction. The 

gray boxes show the main factors in isometric contractions eliciting around 30% of maximal 

voluntary contraction. Temperature is indicated with shading to illustrate its minor weight 

compared to other factors at the same level (De Luca et al., 1979). 

 

Under acute fatigue, the force is reduced by pre-synaptic afferences (Figure 6). α-

motoneurons may be inhibited by changing the firing rate and muscle spindle “disfacilitation.” 

Then, the deficit of local blood O2 triggers the ischemic reflex, which acts on small-diameter 

muscle afferences (group III and IV), impairing the motor unit responses transitorily during the 

task (Gandevia 2001), see Figure 6. As was mentioned for posttraumatic persistent muscle 

weakness, both fatigue and inhibition share a similar neurophysiological inhibition mechanism 

that involves pre-synaptic inhibition via Ia, Ib, II, III, and IV afference neurons level on α-

motoneurons activation, which ends in the downregulation of α-motoneurons (McPherson et al., 

2023). 
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2.8 Cumulative muscle fatigue 

 

 Cumulative fatigue is a motor condition observed after a repeated bout of exercise or load, 

which may cause a decrease in the maximal capacity of force and require days to recover (Jones 

et al., 2017; Machado et al., 2018; Priego-Quesada et al., 2019). This process may have a wide 

implication on human movement, including impaired inter-limb coordination, creating a scenario 

where a worse motor response may occur, increasing muscle/joint overload and the risk of 

suffering an injury (Jones et al., 2017; Machado et al., 2018). Combinations of exercise intensity 

and duration may result in the repetitive peak of load on muscles, causing musculoskeletal 

dysfunction, not only in sports activities but also affecting working and daily life activities 

(Sjøgaard et al., 1998; Søgaard et al., 2017). Although most studies in the past focused on 

isometric muscular fatigue, the main challenge relies on understanding dynamic cumulative 

conditions, including bouts of fatigue across different days. However, the neuromuscular effects 

of cumulative fatigue on muscle force and neuromuscular behaviors, which result from repeated 

sessions of exercise, are still debatable (Machado et al., 2018). 

While a condition of acute fatigue elicits transient neural (Stock et al., 2012), mechanical, 

and cellular adaptations (McHugh 2003), cumulative fatigue may also involve tissue damage, 

inflammation, and oxidative stress (Twist et al., 2005). The impairment in force due to 

cumulative fatigue would last from hours to days until full recovery (Jones et al., 2017; Machado 

et al., 2018; Priego-Quesada et al., 2019). However, evidence of cumulative fatigue is not 

consistent and seems to depend on several factors. For example, some studies aimed to address 

cumulative fatigue but ended up discussing overreaching (Lacome et al., 2018) or considered low 

intensity efforts (Sarker et al., 2020). In this sense, four hypotheses help to explain the effects of 

cumulative fatigue: 1) the glycogen depletion hypothesis, 2) the muscle damage hypothesis, 3) 

the inflammation hypothesis, and 4) the oxidative stress hypothesis (Cheng, Jude, and Lanner 

2020).  

The glycogen depletion hypothesis relates to a low level of muscle glycogen available 

(Snyder 1998) and insufficient recovery nutrition (Alghannam et al., 2018). The other hypotheses 

involve the disruption of muscle fibers. It particularly relates to damages in the membrane and 
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sarcomeres with the release of [Ca++] by the retinaculum (Proske et al., 2001), but also a higher 

intracellular [Ca++] via stretch-activated channels and increasing the permeability of the 

membrane to extracellular [Ca++] (Kano et al., 2012). The metabolic stress of [Ca++] has toxic 

effects on the plasmatic membrane, contributing to muscle damage, signaling, and regeneration 

via apoptosis and necrosis (Horn et al., 2018; Kano et al., 2012; Schanne et al., 1979). Similar 

effects appear during cumulative fatigue associated with inflammation and the increased 

production of reactive oxygen species (Machado et al., 2018). The loss of [Ca++] homeostasis 

leads to coagulative necrosis, irreversible injury, and cellular death (Farber 1990; Schanne et al., 

1979). Therefore, cumulative fatigue may be composed of central causes, where a progressive 

reduction in voluntary activation would occur in the central nervous system, or peripheral causes, 

which would involve distal changes in the neuromuscular junction (Gandevia 2001) and likely 

motor unit thresholds.  

 Unfortunately, repetitive loads on muscle can increase fiber permeability, particularly to 

[Ca++], which can cause damage to the membrane (MacIntosh et al., 2012). Due to that, during 

fatigue, [Ca++] release at the peripheral level may cause damage to the muscle fibers membrane 

(MacIntosh et al., 2012), see Figure 8. This is a fundamental change during acute and possibly 

cumulative fatigue. Regarding that, the main kwon physiological regulation to produce force is 

the control of the contractile actin and myosin proteins by [Ca++] and myosin light chain 

phosphorylation, regulation of membrane excitability through [K+] and [Cl-2] channels, and the 

regulation of [Ca++] in the sarcoplasmic retinaculum. The regulations involve the excitation-

contraction coupling of proteins using ATP and Na+/K+-ATPase at the surface and transverse 

tubule membranes. The excitation-coupling contraction event sequence needs an action potential 

generated at the neuromuscular junction, which propagates along the membrane to reach the 

transverse tubules that connect with the sarcoplasmic retinaculum (Figure 8-A). The voltage 

sensor DHPR detects the associated depolarization and opens the RyR channel to release [Ca++] 

into the sarcoplasm. [Ca++] diffuses throughout the cell and binds to several ligands, including 

troponin and calmodulin. The binding of [Ca++] to troponin moves the tropomyosin away from 

the myosin-binding site on actin, permitting cross-bridge cycling, which uses the phosphorylation 

of ATP converting biochemical to mechanical energy (Figure 8-B). Removal of [Ca++] from the 

cytoplasm by Ca++ ATPase results in the recovery of tropomyosin to its blocked position and then 

the relaxation occurs (Calderón et al., 2014; MacIntosh et al., 2012).  
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Figure 8. Excitation–contraction coupling. (A) Action potential propagation during muscle 

contraction. (B) filament displacement contraction hypothesis. (MacIntosh et al., 2012). 

 

2.9 Action potential of Motor Unit under single-session of fatigue 

Neurophysiological characteristics of motor units, i.e. firing rate and motor units 

recruitment, permit the measurement of how the central nervous system regulates muscle force 

production during fatigue (Contessa et al., 2009; Farina et al., 2014; Farina et al., 2015). 

Previously, it was determined there is a correlation between force decrease and motor unit 

behavior (Contessa et al., 2009). Motor units under intra-session with intermittent repetitive 

contractions in an invasive set-up have shown that low- and high-threshold motor units under 

fatiguing contraction could not be individually controlled by a central drive. But can be 

influenced by motoneurons adaptation and afferent feedback from the active muscle (Carpentier 

et al., 2001). Under fatigue, motor units have electrical shape changes during intermittent 

repetitive fatigue (Carpentier et al., 2001), see Figure 9-Cc123 below. These changes clearly 

increase the pea-to-peak amplitude of the action potential of the motor units, which can explain 

why bipolar sEMG increases their amplitude (see Figure 9). But also, it is clearly appreciated the 

addition of new motor neurons at the end of the contractions to maintain the same initial force 

level (see Figure 9-ABC, please see at the beginning, there are two motor units, and at the end, 

there are three motor units). The behavior can suggest how the nervous system modified its motor 

units strategies to maintain the initial force requirement, demonstrating that electromyographical 

changes occur prior to the incapacity to maintain the force in time (mechanical failure). However, 

several factors can introduce bias to the sEMG signals and their interpretations.  
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Figure 9. Motor unit shape changes during single-session fatigue. A,B,and C forces. b. 

Intramuscular sEMG signals. c intramuscular motor unit wave basis (Carpentier et al., 2001). 

 

 

2.10 Eccentric component into dynamic contractions cause fiber muscle damage 

 

Eccentric muscle contractions cause mechanical damage to the muscle fibers (Yamaguchi 

et al., 2020), see Figure 10. The damage is not directly linked to the level of force generated; 

instead, it is related to the length of the muscle (Allen et al., 2018). Membrane and sarcomeres 

damage, releasing [Ca++] from the retinaculum (Proske et al., 2001), but also the intracellular 

[Ca++] increases via stretch-activated channels, which increases the permeability of the membrane 

to extracellular Ca++, triggering fiber apoptosis (Kano et al., 2012) (Figure 10). Therefore, 

dynamic exercising with eccentric components is not trivial because eccentric contractions may 

interact with cumulate fatigue effects. Also, their location is near to myotendinous junctions 

(Figure 10). 

The [Ca++] accumulation in the cytosol had toxic effects on the plasmatic membrane, 

leading to muscle damage, signaling, and regeneration via apoptosis and necrosis (Horn et al.,  

2018; Kano et al., 2012; Schanne et al., 1979). The loss of [Ca++] homeostasis in the cell is 
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accompanied by coagulative necrosis at the final stage; the events leading to the coagulative 

necrosis cause irreversible injury and cell death, loss of the plasma membrane’s ability to 

maintain a gradient of [Ca++], an influx and accumulation of [Ca++] in the cell, and the 

morphologic appearance of coagulative necrosis (Farber 1990; Schanne et al., 1979). Particularly, 

eccentric actions lead to more continuous high levels of intracellular [Ca++] via stretch-activated 

channels than other muscle contractions (Hody et al., 2019; Kano et al., 2012).  

 

 

Figure 10. Plasmatic membrane damage (Andrews et al., 2014). 

 

2.11 Use of reduction dimension techniques to explore activation patterns 

 

 sEMG is important to understand muscle fatigue and activation but involves a big 

dimension of the dataset because it needs high sampling frequency and time to represent the 

physiological phenomena. Understanding how to use sEMG parameters tunning to estimate 
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fatigue for dynamic muscle contractions and its visualization would require reduction dimensions 

techniques for redundant information. Often, researchers increase the number of features 

(dimensions) since they do not know the best ones beforehand. Also, when one acquires time 

series, features depend on many or all the time samples, and this dependency is unknown.  

 Nowadays, sEMG data sets have multiple features, bringing more information to users. 

However, at the same time, the raw data is noisy and may have a significant amount of redundant 

information (Huang et al., 2019; Pandian et al., 2020). Hence, transforming the original data from 

a high-dimensional space to a lower-dimensional while preserving many of the essential features 

is the objective of the dimensionality reduction techniques (Huang et al., 2019). More precisely, 

dimensionality reduction techniques find an approximation of a raw data matrix X ∈  ℂn × d into 

X ∈  ℂn × r where n is the number of samples, d is the number of features, and r ≪ d  is the 

dimension of the low-dimensional space (Pandian et al., 2020; Siva 2020). There are two main 

approaches to reducing dimensionality (Géron 2019):  

1) By Projection: These techniques project each high-dimensional data point onto a 

suitable lower-dimensional subspace such that distances between points are approximately 

preserved (Huang et al., 2019; Pandian et al., 2020; Siva 2020). Principal Components Analysis 

(PCA) is an example of this class of techniques. 

2) By Manifold Learning:  These techniques are commonly called Manifold learning, and 

they rely on the manifold hypothesis or assumption, which holds for most real-world high-

dimensional datasets. Under this hypothesis, the data is modeled by a manifold on which the 

high-dimensional data lie. The dimension of this manifold is much smaller than the dimension of 

the original space (Huang et al., 2019; Pandian et al., 2020; Siva 2020). Uniform Manifold 

Approximation and Projection (UMAP) is an example of this class of techniques (McInnes et al., 

2018).  

Examples of dimensionality reduction techniques include feature selection, variance 

threshold, ranking, correlation, Eigen-problem reduction, and non-linear reduction. In the feature 

selection method, the most straightforward dimensionality reduction approach, a subset of good 

features are selected, and the remaining features are discarded based on predefined criteria. The 

variance threshold method is a feature selection approach where features are dropped when their 

corresponding variance is below a given threshold (Pandian et al., 2020). The feature ranking 
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method assigns a rank to each variable based on a scoring function. A low score means it is less 

valuable to the outcome. Hence, features are sorted in decreasing scoring order. The least ranked 

features are removed, and the accuracy of the model is calculated again. This process is repeated 

until the accuracy of the model is significantly lost. This approach is only effective in supervised 

learning and is effective with a low number of features. The correlation method searches for 

similarities between pairs of or multiple features. If the correlation coefficient is above a given 

threshold, one of the features can be dropped since they carry similar information. The Eigen-

problem methods decompose the data along the axes of maximum variance and then keep the 

necessary components to explain a high level of the total variance. Finally, non-linear 

dimensionality reduction techniques transform the data based on the minimization of a non-linear 

cost function.  Examples of non-linear techniques are Isomap, self-organized maps (SOMs), t-

Distributed Stochastic Neighbor Embedding (tSNE), and Uniform Manifold Approximation and 

Projection (UMAP) (McInnes et al., 2018). The nonlinear nature of many datasets has shifted the 

community towards the use of nonlinear dimensionality reduction techniques. Table 2 

summarizes the cost function used by some of these methods.  
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Table 2. Classical dimensionality reduction algorithm (Huang et al., 2019).  

Algorithm Linear Supervise Objective function Parameters 

PCA Yes No J(U) =  UT ∑ U −  α (UT U

− 1) 

α is an eigenvalue 

of the covariance 

matrix and U 

contains de 

orthogonal 

projection of xi 

vectors resulting in 

un projections.  

Isomap No Yes 
J(X) =  ∑ ∑ dG(i, j)

n

j=1

n

i=1

− ‖yi − yj‖ 

dG(i, j) is a 

geodesic distance 

from i to j. 

SOM No No 
dj (X) =  ∑(xi − wji)

2

n

i=1

 
wji denotes the 

weight vector.  

PCA  = principal components analysis. 

SOM  = Self-organizing map. 

 

 

PCA is probably the most popular dimensionality reduction algorithm. The method works 

by projecting the data on the space span by the eigenvectors with the largest eigenvalues. A 

predefined criterion gives the number of eigenvectors that are kept. Two or three principal 

components are kept if one wishes to visualize the data. Another criterion is to keep the necessary 

number of components to explain 95% of the data variance.  Some drawbacks and assumptions of 

PCA are:  

• Input variables are assumed to be independent of one another. This is not necessarily true 

(uncorrelated), and other algorithms like independent component analysis try to resolve this 

assumption better.  

• PCA assumes that the principal components are a linear combination of the original 

features. If this is not true, PCA will not give sensible results.  

• The eigenvectors of the PCA have contributions from all input variables. This makes their 

interpretation difficult since a large feature value cannot be attributed to a few (ideally a 

single) input values.  
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 PCA attempts to find the largest variance through orthogonal projection (U). U matrix 

contains Un vectors as orthogonal projections of X, which is the raw data matrix 𝐗 ∈  ℂ𝐧 × 𝐝. 

PCA maximizes the objective function 𝐉(𝐔) =  𝐔𝐓 ∑ 𝐔 −  𝛂 (𝐔𝐓 𝐔 − 𝟏), where 𝐔𝐓 𝐔 = 𝟏, 𝚺 is 

the covariance matrix, and 𝛂 is an eigenvalue of the covariance matrix 𝚺 (Huang, Wu, and Ye 

2019). The direction of the first principal component 𝐮𝟏 is the direction of the maximum variance 

𝐮𝟐 is the second principal component, which is orthogonal to 𝐮𝟏, and have the second direction 

with the higher variance. This process is repeated until find the r-dimensional approximation of 

the raw matrix 𝐗 ∈  ℂ𝐧 𝐱 𝐝 into 𝐗 ∈  ℂ𝐧 𝐱 𝐫 where 𝐧 is the number of samples, 𝐝 is the number of 

features, and d > 𝐫. PCA assumes that the data is zero-mean and the fitted subspace is a linear 

projection (Huang, Wu, and Ye 2019).  

 Another algorithm is the UMAP algorithm. A high-dimensional dataset X can be 

transformed into a low-dimensional dataset using UMAP. UMAP creates a fuzzy topological 

structure using the gradient of the binary cross-entropy as the loss function where the weights are 

the existence probability of the  0-simplex (the lowest dimensional connection) or 1-simplex, 

which is a topographic representation of the connection or not-connection between neighbors 

(McInnes et al., 2018). The weight between neighbors is modeled as w =  e

−d(xi−xj)−ρi

σi  , with ρi 

the distance between the i-th data point and its first nearest neighbor (Oskolkov 2019). The 

binary cross-entropy is given by ∑ [wh(e) log
Wh(e)

Wl(e)
+ (1 − wh(e)) log(

1− Wh(e)

1− Wl(e)
) ]je ∈E . In this 

expression, it may be understood that the first term provides attractive forces to ensure 

connectivity between the points whenever a large weight is associated with the existence of the 

simplex. In contrast, it may be understood that the second term provides repulsive forces, 

generating connectivity whenever a small weight is associated with the non-existence of simplex 

since it minimizes. Wl(e) (McInnes et al., 2018). To embed the intrinsic structure of the data 

belonging to a high-dimensional space into a low-dimensional space, UMAP optimizes the 

distance of probabilities using Q(dij) = (1 + a(yi − yj)
2b)−1, by finding a and b coefficients 

from the non-linear least square fitting to the piecewise function with “min_dist” hyperparameter: 

Q(dij)  ≈  {
1                 if yi − yj  ≤ min _dist

e −(yi−yj)  if yi − yj  > min _dist
. Besides, the connectivity of the algorithm also 

defines the number of nearest neighbors as k = 2∑ piji . In general terms, the algorithm projects a 
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fuzzy topological set of high dimensions equivalent to a low-dimensional space. In other words, 

the algorithms assign almost the same low-dimensional coordinates for all points close to each 

other into the low-dimensional space to construct a topological representation of the high-

dimensional data (Ali et al., 2019; McInnes et al., 2018).  

 

2.12 Use of clustering techniques to identify data similarities 

 

 Data clustering techniques are unsupervised machine learning methods used to segment a 

dataset into distinct groups or clusters based on similarity criteria. The goal of clustering is to 

group data points that are more similar to each other within the same cluster and dissimilar to 

those in other clusters. There are various clustering algorithms, each with its approach to defining 

similarity and forming clusters. Two common clustering methods are K-means and hierarchical 

clustering. K-means partitions the data into K clusters (see annexes codes for more details), 

where each data point belongs to the cluster with the nearest mean. When the median is used, the 

algorithm is known as k-medoids. Hierarchical clustering builds a tree-like structure of clusters, 

allowing the user to choose the number of clusters. Clustering techniques find applications in 

diverse fields, such as image segmentation, customer segmentation, anomaly detection, and 

pattern recognition, aiding in understanding the underlying structure datasets. 
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2.13 Problem statement 

 

 As the former items of this thesis tried to demonstrate, there are physiological (muscle 

fatigue), pathological (posttraumatic muscle weakness), and non-physiological (sEMG signal 

segmentation) factors that can modify the interpretation of sEMG methods (myoelectrical 

manifestations, sEMG maps, and motor unit decomposition) obtained from sEMG measurements. 

For example, muscle fatigue and inhibition are the most common physiological mechanisms that 

interfere with muscle activation and human performance, and the clarity between acute and 

cumulative fatigue, as well as the influence of physiological conditions related to neuromuscular 

impairments such as persistent weakness, remains unclear. Nevertheless, the methodological 

choices (like windowing and overlapping) associated with the processing of electromyography 

signals can also interfere with outcomes interpretations and interact with physiological factors. 

Due to all the above, we identified three main research questions that drove this research:  

1. Does methodological bias in electrical manifestations influence the estimation of cumulative 

muscle fatigue? For example, the choice of data analysis methods, fatigue estimation, and 

sEMG activation maps.  

2. How do sEMG maps and motor unit decomposition behave for conditions similar to fatigue 

(inhibition and persistent weakness)? For example, to understand whether a condition of 

posttraumatic persistent muscle weakness modulates outcomes of muscle activation in a way 

that the methodological choice to describe the signal may hide or highlight outcomes. 

3. How does cumulative muscle fatigue affect neurophysiological characteristics of muscle 

contraction (firing rate and motor unit recruitment)? For example, to identify how the 

outcomes of sEMG analysis are influenced by the condition of cumulative fatigue. 
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2.14 Justification 

 

Although sEMG patterns are well described in the literature concerning general 

conditions of movement, when it comes to fatigue effects, studies present a high variability even 

when tests are performed under similar experimental conditions (Marco et al., 2017). Due to that 

and our previous statements, methodological assumptions based on whether bias in electrical 

manifestations influences the estimation of cumulative muscle fatigue support our first research 

question. 

In the past, neurophysiological characteristics of motor units, i.e., firing rate and motor 

unit recruitment, have shown a correlation with force impairments (Contessa et al., 2009). 

Because of that, after exploring our first question and based on the last developments with HD-

sEMG, questions on whether sEMG maps or motor unit decomposition techniques would be 

appropriate. Therefore, it supports our second research question regarding myoelectrical 

differences in models that highlighted inhibition and persistent weakness conditions as one 

fatigue characteristic. 

 Finally, the study of motor unit decomposition permits the discussion of the mechanisms 

of fatigue considering large populations of motor units that can be collected (Negro et al., 2016). 

This relatively new technique helps to address not only traditional aspects of muscle contraction 

(Table 1), but also allow exploring recruitment mechanism considering the different types of 

recruitment threshold. Muscle damage derived from cumulative fatigue can cause substantial 

changes at the single motor unit level, resulting in altered recruitment thresholds, discharge rates, 

motor unit conduction velocities, and synchronization. The alterations can last up to one week, 

with preferential damage to the high-threshold motor unit (Semmler 2014). Therefore, our third 

question addresses the cumulative fatigue impact on different aspects of motor control and the 

neuromuscular adaptations at the different levels of the central nervous system. Notably, there is 

also a lack of knowledge about how the motor unit firing rate and motor unit recruitment behaves 

during cumulative fatigue (Contessa et al., 2009; Farina et al., 2014; Farina et al., 2015). 

Table 3 describes the organization of the research questions and the corresponding 

manuscripts in which the results are presented.  
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2.15 Aims and Hypotheses 

 

2.15.1 General Aim 

 

To determine sEMG signal segmentation, posttraumatic muscle weakness, and fatigue 

conditions influencing myoelectrical manifestations, sEMG maps, and motor unit decomposition 

obtained from surface electromyography measurements. 

 

2.15.2 Specific Aims 

 

To identify windowing and overlap bias in the analysis of electrical manifestations to 

estimate muscle fatigue and sEMG activation maps. 

To determine the behavior of sEMG maps and motor unit decomposition for inhibition 

conditions caused by posttraumatic persistent muscle weakness. 

To determine the motor unit behavior in cumulative fatigue resulting from dynamic muscle 

contractions. 
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2.15.3 Hypotheses 

 

We hypothesize that windowing and overlap bias affect (can increase and decrease) the 

electrical manifestations to estimate muscle fatigue and muscle activation maps. 

We hypothesize that sEMG maps and motor unit decomposition identify changes sEMG 

maps (increase and decrease activation) and motor unit decomposition (increase or decrease 

motor unit recruitment and firing rate) for conditions similar to fatigue (inhibition and persistent 

weakness). 

We hypothesize that three bouts of fatiguing exercise (cumulative muscle fatigue) trigger 

neurophysiological adaptations (an increase in firing rate and motor unit recruitment) to control 

submaximal isometric contractions. 
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2.15.4 Manuscripts layout (Table 3): 

 

Table 3. Thesis criteria. Research question, Fatigue or activation setup condition, sample, period of intervention or testing, 

sEMG kind, and answered topic. 

Criteria / Manuscript number (#): # 1 # 2 # 3 # 4 # 5 

By research question: 

Research Question 1 

     

Research Question 2      

Research Question 3      

By fatigue or activation setup condition: 

Fatigue contraction on setup 

     

Activation contraction on setup      

By sample condition: 

Physiology condition 

     

Posttraumatic muscle weakness condition       

By Period of Intervention or testing: 

Single session (acute fatigue) 

     

Repeated sessions (cumulative fatigue)       

By sEMG kind: 

Bipolar sEMG signals 

     

HD-sEMG      

By answered topic: 

Electrical manifestation bias in acute fatigue  

     

sEMG maps bias in cumulative fatigue       

sEMG maps in a presynaptic inhibition model       

Acute responses using MU decomposition       

Cumulative fatigue using MU decomposition      
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3 CHAPTER THREE – UNDERSTANDING THE EFFECT OF WINDOW LENGTH 

AND OVERLAP FOR ASSESSING sEMG IN DYNAMIC FATIGUING 

CONTRACTIONS: A NON-LINEAR DIMENSIONALITY REDUCTION AND 

CLUSTERING 

 

Published as:  

 

De la Fuente, C., Martinez-Valdes, E., Priego-Quesada, J. I., Weinstein, A., Valencia, O., 

Kunzler, M. R., Alvarez-Ruf, J., & Carpes, F. P. (2021). Understanding the effect of window 

length and overlap for assessing sEMG in dynamic fatiguing contractions: A non-linear 

dimensionality reduction and clustering. Journal of Biomechanics, 125, 110598. 

https://doi.org/10.1016/j.jbiomech.2021.110598 
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ABSTRACT 

 

The Short-Time Fourier transform (STFT) is a helpful tool for identifying muscle fatigue with 

clinical and sports applications. However, the choice of STFT parameters may affect the 

estimation of myoelectrical manifestations of fatigue. Here, we determine the effect of window 

length and overlap selections on the frequency slope and the coefficient of variation from sEMG 

spectrum features in fatiguing contractions. We also determine whether STFT parameters affect 

the relationship between frequency slopes and task failure. Eighty-eight healthy adult men 

performed one-leg heel-rise until exhaustion. A factorial design with a window length of 50, 100, 

250, 500, and 1000 ms with 0, 25, 50, 75, and 90% of overlap was used. The frequency slope was 

non-linearly fitted as a task failure function, followed by a dimensionality reduction and 

clustering analysis. The STFT parameters elicited five patterns. A small window length produced 

a higher slope frequency for the peak frequency (p<0.001). The contrary was found for the mean 

and median frequency (p<0.001). A larger window length elicited a higher slope frequency for 

the mean and peak frequencies. The largest frequency slope and dispersion were found for a 

window length of 50 ms without overlap using peak frequency. A combination of 250 ms with 

50% of overlap reduced the dispersion both for peak, median, and mean frequency, but decreased 

the slope frequency. Therefore, the selection of STFT parameters during dynamic contractions 

should be accompanied by a mechanical measure of the task failure, and its parameters should be 

adjusted according to the experiment’s requirements. 

 

Keywords:  electromyography; methods; muscle activation; Fourier; gastrocnemius medialis; 

fatigue. 
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3.1 Introduction  

 

 Muscle fatigue is characterized by reducing the maximal capacity to generate force or 

power output (Vøllestad 1997). It can be assessed by reductions in maximal force or time until 

task failure (Enoka et al., 2008). Although these assessments provide information when fatigue is 

installed, evaluating changes in muscle’s electrophysiological properties extracted from 

electromyography time-series helps identify fatigue or non-fatigue status (Merletti et al., 1990). 

The myoelectric manifestations of muscle fatigue are indirectly related to reduced motor unit 

firing rate (Mettler et al., 2016) and a concomitant decrease in muscle fiber conduction velocity 

(Rampichini et al., 2020). This information can be obtained by analyzing different spectral Short-

Time Fourier Transform (STFT) patterns (Karthick et al., 2016).  

The variation in the sEMG spectrum as a function of time can be estimated by applying 

the Fourier transform to signal segments. The STFT is a sequence of Fourier transform (Cifrek et 

al., 2009; Jeon et al., 2020). The STFT provides time-localized frequency information on how the 

frequency components of a signal vary over time. The signal segments, also known as window 

length, affect the time and frequency resolution of the STFT. An increase in the widow length 

increases the frequency resolution and decreases the time resolution. Meanwhile, a decrease in 

the window length decreases the frequency resolution and increases the time resolution (Jeon et 

al., 2020). Therefore, the STFT is widely used for frequency tracking over time (K. Zhang et al. 

2020), and it is of particular interest in assessing biological signals and supporting decisions 

between fatigue or no-fatigue status (Cifrek et al., 2009; Rampichini et al., 2020). The relatively 

low computational cost allows the easy implementation of detection algorithms, i.e., features 

extraction is used to detect several conditions using machine learning algorithms (Wang et al., 

2018). 

The features median, mean, and peak frequencies extracted from the electromyography 

periodogram are commonly used to quantify the myoelectric manifestations of muscle fatigue 

(Merletti et al., 1990; Cifrek et al., 2009; Cifrek et al., 2000; Shair et al., 2017; Rampichini et al.,  

2020). These descriptors estimate the changes in the sum of motor units action potential trains 

(MUAPT) in response to fatigue when the spectrum shifts towards lower frequencies (Cifrek et 

al., 2009; Cifrek et al., 2000; Rampichini et al., 2020; Martinez-Valdes et al., 2016; Eken et al., 
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2019). Applying regressions methods to the myoelectric manifestations of muscle fatigue 

frequency parameters over time allows determining the frequency slope during a muscle 

contraction (rate of change of frequency in time) (Merletti et al., 1990). More negative slopes 

represent a larger left shifting of the spectrum (also known as compression of the spectrum), 

which is associated with higher muscle fatigue status (Merletti et al., 1990; Cifrek et al., 2009; 

Cifrek et al., 2000; Eken et al., 2019; Ament et al., 1993). However, this approach has limitations 

due to the low sensitivity for the motor unit’s discharge rate (Rampichini et al., 2020), sEMG 

amplitude cancelation (Cifrek et al., 2009; Rampichini et al., 2020), frequency leakage (Tan et 

al., 2019), and time-frequency resolution problems. The STFT time-frequency resolution 

limitations can be overcome by using more modern methods such as wavelets (Cifrek et al., 

2009; Costa et al., 2010; Waly et al., 1996). However, physiological information is available in 

the periodograms to be used for muscle fatigue (Costa et al., 2010). Previous studies using 

bipolar and HD-sEMG recordings found high variability in the chosen window length for 

analysis of isometric and dynamic contractions (Cifrek et al., 2009; Cifrek et al., 2000; Ament et 

al., 1993; Guzmán-Venegas et al., 2015; Zhu et al., 2017; Jordanić et al., 2017; Jordanic et al., 

2016; Hill et al., 2018; Angelova et al., 2018; Hegyi et al., 2019; Falla et al., 2017; do Espírito 

Santo et al., 2018; Watanabe et al., 2018; Hawkes et al., 2018). Most of these studies did not 

provide details about the windows overlap (Hill et al., 2018; do Espírito Santo et al., 2018; Lark 

et al., 2019; Hawkes et al., 2018). Furthermore, the effects of window length and overlap have 

mainly been studied for isometric contractions (Zhang et al., 2010; Xie et al., 2006), but its 

effects remain unclear for dynamic muscle contractions. The recognition of adequate parameters 

is essential to avoid bias (Waly et al., 1996; Jordanic et al., 2016). Most importantly, these 

parameters must accurately predict failure during dynamic fatiguing tasks (Cifrek et al., 2009). 

However, an improper selection of window length and overlap might worsen the sensitivity of 

sEMG parameters to assess fatigue during dynamic contractions.  

Continuous wavelet transform and STFT can provide similar muscle fatigue estimations, 

but considerably higher variability is found for STFT outcomes (Costa et al., 2010). Hence, we 

hypothesized that only a subset of the STFT parameters allows for estimating muscle fatigue 

robustly. Recently, the dimensionality reduction technique is known as UMAP, combined with 

density-based spatial clustering of applications with noise (DBSCAN) technique, has been 

successfully used to find latent information of raw data (McInnes et al., 2018). For this reason, 



 
52 

 

we considered that these same techniques are helpful in understanding the effect of STFT on the 

estimation of muscle fatigue. Also, considering that the gastrocnemius medialis muscle is highly 

susceptible to fatigue during dynamic contractions (Ament et al., 1993), we selected this muscle 

as an appropriate model to investigate the effects of the STFT parameters on sEMG outcomes in 

response to muscle fatigue. In summary, we aimed to determine the effects of STFT window 

length and overlap parameters on the frequency slope and coefficient of variation from median, 

mean, and peak frequencies from sEMG data from the gastrocnemius medialis recorded during a 

fatiguing protocol until task failure. We also determine which clusters of STFT parameters affect 

the relationship between the frequency slope and task failure.  

 

3.2 Material and Methods 

 

3.2.1. Study design 

 

The study had two factors (window length and overlap) and five levels for window length 

(50, 100, 250, 500, and 1000 ms) and overlap (0, 25, 50, 75, and 90%). The sample included 88 

healthy untrained men of age 22 ± 2 years, height 172.4 ± 2.5 cm, and body mass 71 ± 6 kg. The 

eligible participants were male adults, university students, ages between 18 and 25 years old, and 

not enrolled in regular physical activity. They were self-reported as healthy, without a life history 

of injury to the lower extremities, no history of cardiovascular or metabolic alterations, no skin 

allergy, chronic pain, or cognitive impairments. Participants were requested to avoid alcohol 

intake and perform any physical exercise and keep their regular daily routine 48 h before the 

experiment. Any participant was excluded if they reported alcohol intake, physical exercise, or 

sleep alteration on the night before the experiment. This study was approved by the local 

institutional ethics committee IRB 032019. All participants signed an informed consent form, 

agreeing to participate in the study. 

 

3.2.2. Sample size  

A sample size of 80 participants was a priori estimated considering a difference for 

factorial ANOVA with two factors (window length and overlap) and five levels for each one, 
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using the F-test family distribution, an alpha error of 5%, the statistical power of 80% (four times 

the alpha error). We considered that the sEMG differences could require a small (0.01) to 

medium effect size (0.06) due to intrinsical variability and decided for an arbitrary ŋ2 of 0.025. 

Furthermore, eight additional participants were included to anticipate possible losses (10% of 

estimation). The sample size estimation was performed using G*Power software version 3.1.9.2. 

(Kiel University, Germany). 

 

3.2.3. Fatigue protocol  

 

 Participants performed the one-leg heel-rise test on a plane surface until exhaustion 

(Figure 11). During the test, they were allowed to touch two fingers over the wall to help keep the 

balance (De la Fuente et al., 2018). Each participant was familiarized with the task one week 

before data collection. For data collection, after performing a 10 min warm-up pedaling at 60 rpm 

on a cycle ergometer (535U, SportsArt, USA) without external load, the participants performed 

the one-leg heel-rise test. They continuously lifted their heels as high as possible at a rhythm of 

45 bpm following auditory feedback provided by a metronome (Google, USA). Task failure was 

defined as the point where participants could no longer lift their heel. Constant visual supervision 

and verbal encouragement were given to each participant to control the heel's lift. The criteria to 

finish the test were the drop of the cadence or the exhaustion of volunteers, defined as the 

incapacity to lift the heel from the floor.  
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Figure 11. Experiment design. A. The figure shows the heel-rise test until task failure, where 

the time series of the electromyography signal (x [n]) is wirelessly transmitted, collected to be 

zero mean-centered, and filtered. B. Then, each burst is identified using the TKO. On each burst, 

a window manipulation of the length and the overlap (R) of the window (w [n]) is performed. C. 

From each segmented signal, the Fast Fourier Transform (FFT) is applied, and the magnitude is 

obtained. D. From each segmented signal, the frequency features mean, median, and peak can be 

extracted from spectrum, ** notice that if the sampling frequency increases the median and mean 

frequencies displace towards right frequencies (right-skewed distribution). E. Finally, the 

frequency slope (FS) is extracted from linear regression, and the dispersion of data measured as 

the coefficient of variance (CoV) also is obtained. sd = standard deviation.  
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3.2.4. Data acquisition and processing 

 

 Muscle activation was recorded continuously during the performance of the one-leg heel-

rise test by a wireless sEMG sensor placed on the skin over the gastrocnemius medialis (Delsys 

inc., USA). The skin was shaved and cleaned with alcohol before the electrode placement 

according to SENIAM guidelines (Hermens et al., 2000). The sEMG signals were acquired using 

a TrignoTM electromyography amplifier (Delsys Inc., Boston, USA) with an Avanti sensor 

(Delsys Inc., Boston, USA) with an inter-electrode distance of 10 mm (De Luca et al., 2012). 

Data were collected with a 16-bit analog-digital converter card (Vicon Motion Systems, Oxford, 

UK) and sampled at 4 kHz, analog bandpass filtered (20±5–450±50 Hz), CMRR > 80 dB, 

resolution of 168 nV/bit, basal noise of < 0.75 µV, with hardware amplification of 1000 V/V. All 

data were recorded using the software Nexus 2.0 (Vicon Motion Systems, Oxford, UK). 

 

3.2.5. Data processing and analysis 

 

 The sEMG signals were zero mean-centered, zero-padded to equal the length of the 

window used. They were filtered by a zero-lag fourth-order bandpass Butterworth filter with a 

bandpass between 20 and 450 Hz. The Teager-Kaiser energy operator threshold-based method 

was used to detect the individual sEMG muscle contraction bursts during the heel test (Solnik et 

al. 2010), see Figure 11. This operator is defined as Ψ[𝑥[𝑛]] = 𝑥[𝑛]2 − 𝑥[𝑛 + 1]𝑥[𝑛 − 1], where 

de 𝑥[𝑛] is a time series at sample 𝑛. Rest sEMG signals used for the Kaiser energy operator 

threshold-based were extracted while standing and analyzed for 500 ms.  

The STFT provides time-localized frequency information when frequency components of 

a signal vary over time (Jeon et al., 2020; Karthick et al., 2016). The discrete-time form of the 

STFT was defined as 𝑋(𝑚,𝜔) =  ∑ 𝑥[𝑛] 𝑤[𝑛 − 𝑚𝑅] ∞
𝑛=−∞ 𝑒−𝑗𝜔𝑛. The STFT was evaluated at 

sample time 𝑚, 𝑥[𝑛] was each sEMG burst time-series at sample time 𝑛, 𝑤[𝑛] was a rectangular 

window function, and 𝑅 was the hop size that determines the amount of overlap. The window 

length used were 50, 100, 250, 500, and 1000 ms. The overlap, 𝑅, was 0, 25, 50, 75, and 90% 

(Figure 11). Although there are many options for selecting the shape of the window function, we 
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used a rectangular one as a fixed and controlled experimental factor. The effect of the window 

type on myoelectric manifestations of fatigue is outside the scope of our study, and these 

limitations have been addressed in a previous publication (Tan et al., 2019). Finally, as  𝑋(𝑚,𝜔) is 

a complex quantity, the assessment of fatigue was performed using the STFT’s 

magnitude |𝑋(𝑚,𝜔)| (Karthick et al., 2016). As a result, a Fourier transformation was determined 

for each contraction burst, which allowed the extraction of median, mean, and peak frequencies 

(frequency features) from each spectrum varying the length of 𝑤[𝑛] and 𝑅, see Figure 9. 

The three frequency features combined with the five window lengths and the five overlaps 

resulted in 75 time series containing a variation of the median, mean, and peak frequencies 

obtained from each sEMG burst (Figure 11). We applied a linear regression to estimate the rate of 

change in frequency (Hz s-1) during the motor task (Horita et al., 1987; Priego-Quesada et al., 

2019), see Figure 11. From the same 75 time series, the coefficient of variation, defined as the 

ratio between standard deviation and mean and expressed as a percentage, was obtained for each 

frequency feature.  

To find the window length and overlap that minimizes the over- and sub-estimation 

(outliers) of the coefficient of variation and frequency slope, we estimated the centroid of the 

plane formed by the ratio between the frequency slopes and the coefficient of variation. This ratio 

reflects the capability to estimate the variation of a frequency feature over time normalized by its 

dispersion. The centroid was the sum of the dot product between the ratio of the frequency slope/ 

coefficient of variation and the factor level (1, 2, 3, 4, or 5), divided by the total sum of the ratio 

of the frequency slope/ coefficient of variation, expressed as the number of window and overlap 

(Jordanic et al., 2016). 

Finally, to understand the sensitivity to the task failure for all combinations of window 

length and overlap, we obtained curve patterns from the relationship between the frequency slope 

and the number of heel rise repetitions until task failure. These patterns were fitted using the non-

linear least squared method with the model  𝑦 =  𝑎 𝑒𝑏𝑥 + 𝑐 𝑒𝑑𝑥, where 𝑦 is the frequency slope 

for each combination of window length, overlap, and frequency features (a total of 75 models), 𝑥 

is the number of repetitions until task failure for each participant, and a, b, c, and d are model 

parameters (Merletti et al., 1990). Hence, one curve was fitted for each combination of window 

length, overlap, and frequency features. Therefore, if a heterogeneous curve pattern for all 
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combinations exists, there will be only one pattern. In contrast, if different patterns exist, 

different combinations would produce different patterns from the same sample.   

All computations were performed using Matlab 2020a (Matworks Inc., USA) and its 

signal processing toolbox, including the functions fft, next2power, filtfit, and butter. We also 

used basic math functions like image, surf, abs, linspace, median, fix, size, find, sum, polyfit, std, 

mean, repmat, and exp. The non-linear fitting was made through the curve fitting tool available 

on the app Matlab screen to perform the non-linear model previously described.  

 

3.2.6. Non-linear dimensionality reduction and clustering 

 

 We performed a non-linear dimensionality reduction to capture the latent data 

characteristics using the UMAP algorithm (McInnes et al., 2018). It determined the pattern from 

the relationship between the frequency slope and the heel-rise repetitions until failure for all 

parameters, features, and participants. The UMAP approximates a high-dimensional dataset (all 

relationships between the slope and the number of heel rise repetitions until failure) by a low-

dimensional dataset (a projection of the raw data from a Riemannian manifold to a space of the 

Real numbers, which we could easily refers as the UMAP domain) by creating a fuzzy 

topological structure using the gradient of the binary cross-entropy as the loss function. The 

weights are the probability of the existence of 0-simplex (lowest dimensional connection) or 1-

simplex, which is a topographic representation of the connection between neighbors (McInnes et 

al., 2018). The weight between neighbors was modeled as 𝑤 =  𝑒
−𝑑(𝑥𝑖−𝑥𝑗)−𝜌𝑖

𝜎⁄
, being 𝜌𝑖 the 

distance from i-th data points to its first nearest neighbor (Oskolkov 2019). The binary cross-

entropy was modeled as ∑ [𝑤ℎ(𝑒) log (
𝑊ℎ(𝑒)

𝑊𝑙(𝑒)
) + (1 − 𝑤ℎ(𝑒)) log  (

1− 𝑊ℎ(𝑒)

1− 𝑊𝑙(𝑒)
) ]𝑗𝑒 ∈𝐸 . The input to 

UMAP was the set of 75 patterns, each one represented by the fitted curve evaluated for 𝑥 

between 1 and 88, that is a time series that involved a dimension of 88 heel rises until task failure. 

The algorithm reduced these 75 curves of dimension 88 into 75 points of dimension 3 into the 

UMAP domain. The parameters used for the UMAP algorithm were: Euclidean metric, number 

of neighbors set to 7, learning rate set to 1, local connectivity set to 1, repulsion strength set to 1, 

and minimal distance equal 0.5 (Meehan et al., 2020).  
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DBSCAN was used after the dimensionality reduction steps described in the above 

paragraph. Each DBSCAN cluster represents a set of STFT parameters that produces a similar 

muscle fatigue model performed in the UMAP domain grouping dataset based on the density of 

the space. Then, we determined the clusters or families of parameters related to its capacity to 

identify muscle fatigue and labeled the families of the pattern (clusters). The parameter for 

DBSCAN was an epsilon set to 5. Finally, the mean of the data was used to summarize the 

behavior for each cluster. The estimations were obtained using the Matlab software 2020a 

(Mathworks, Inc., USA). 

 

3.2.7. Outcomes 

 

 The study outcomes were the frequency slope (Hz s-1) and the coefficient of variability 

(%) for the 75 possible combinations of STFT parameters, the number of heel-rise repetitions to 

failure, the clusters of STFT parameters (label of the cluster), and the patterns obtained from the 

relationship between the frequency slope and task failure (Hz s-1 no. of repetitions-1).  

 

3.2.8. Statistic analysis 

 

 Results are described as mean, standard deviation, percentage, proportions, and 

coefficients. The Shapiro-Wilk test confirmed the normality of data distribution. 

Homoscedasticity and sphericity assumptions were confirmed using the Bartlett and Mauchly 

tests, respectively. To determine the within and between groups effects and interactions, we 

conducted a two-way ANOVA with five levels for window length (50, 100, 250, 500, and 1000 

ms), and five levels for overlap (0, 25, 50, 75, and 90%) with a Tukey post-hoc test, considering a 

significance level set at .05. The proportion between myoelectric manifestations for each cluster 

was obtained using an adjusted-χ2 test with confidence of 99%, 10 K samples for Monte Carlo 

simulation, and 0.5 references of the proportions. To compare proportions, we used the 

Pearson’s-χ2 test for a contingency table of 3 x 5. All data were analyzed considering a 

significance level set at .05 using the trial SPSS software (IBM, USA). 
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3.3. Results 

 

 Window length showed a main effect on the frequency slope and the coefficient of 

variation (p < 0.001, Figure 12). The multiple comparisons showed that the smaller window 

lengths (50, 100, and 250 ms) elicited larger frequency slopes for peak frequency (p < 0.001) 

while larger window lengths (1000 and 500 ms) elicited larger frequency slopes in the median 

frequency (p < 0.001). Similarly, the largest window length (1000 ms) elicited larger frequency 

slopes for mean frequency (p < 0.001). The multiple comparisons showed that the smaller 

window length (50 and 100 ms) elicited a small coefficient of variation for peak frequency (p < 

0.001). The larger window lengths (500 and 1000 ms) elicited a smaller coefficient of variation in 

the median frequency (p < 0.001). The smaller window lengths (50, 100, and 250 ms) elicited a 

smaller coefficient of variance for mean frequency (p < 0.001).  

Overlap showed a main effect for the coefficient of variation (p < 0.001, Figure 12), but 

no effect was found for the frequency slope (p = 0.1584). The multiple comparisons showed that 

the smaller overlap (0%) elicited a smaller coefficient of variation for peak frequency (p < 0.001). 

The overlap of 25% elicited a small coefficient of variation for peak frequency (p < 0.001). The 

smaller overlap (0%) elicited a smaller coefficient of variation for mean frequency (p < 0.001). 

Interaction between window length and overlap was found for the coefficient of variation (p < 

0.001) and frequency slope (p < 0.001). 
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Figure 12. STFT parameters behavior during the heel-rise test. The figure shows how the 

frequency slope obtained by linear regression and normalized respect for its dispersion behaves 

regarding the window length and overlap for the mean, median, and peak frequency. Main effects 

for window length (p < 0.0001), overlap (p < 0.0001), and interaction between have existed (p < 

0.0001). The lowest value was found for the combination of 50 ms and overlap of 0% using the 

peak frequency, and the centroid for the three planes is located at 250 ms with 50% of overlap. 

For the same motor task performed until exhaustion, different manifestations of muscle fatigue 

depending on STFT parameters existed. 
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A 50 ms window length without overlap (0%) resulted in the minimal value for the plane 

‘frequency slope - coefficient of variation’ (Figure 12). A 250 ms window length and a 50% 

overlap were the nearest parameters to the location of the centroids for the plane ‘frequency slope 

- coefficient of variation’ (Table 4).  

Task failure occurred after 39.6 ± 13.3 heel-rise repetitions (median 45; range 18 to 63 

repetitions). The R-squares for the relationship between the frequency slope and the number of 

heel rise repetitions until failure are summarized in Table 5. There were 5 clusters of STFT 

parameters detected by DBSCAN in the UMAP domain  (Figure 13 and Table 5). The bigger 

cluster that includes higher slope frequencies was found for the fifth cluster (Figure 11 and Table 

5). The frequency features corresponding to each cluster are described in Table 6. The 

relationship between the frequency slope and task failure patterns is summarized in Figure 13.  
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Figure 13. Non-linear dimensionality reduction and clustering for the relationship between 

slope frequency and task failure (number of maximal heel rises obtained by the sample). 

The figure shows the projection of the UMAP algorithm into a tridimensional domain measured 

in weights. The dots indicate the projected families of STFT parameters, and the gray ellipsoid 

shadow delimits the recognized cluster by DBSCAN algorithm. Each dot cluster is expanded, 

showing the pattern of sensitivity to task failure as graphs; the black line of these graphs 

illustrates the cluster's mean pattern.   
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Table 4. Centroids localization in the coefficient of variation – slope 

frequency plane.  

 (Windows coordinate, Overlap coordinate) 

Median frequency 

Mean frequency 

Peak frequency 

(3.39, 3.03) 

(3.09, 2.96) 

(2.79, 2.92) 
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Table 5. Proportions of window and overlap combinations found in the 5 clusters and their goodness-of-fit statistics.   

Cluster 

 

 

 
Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 

 

Median frequency 

Mean frequency 

Peak frequency 

Total 

Adjusted- χ2   

  

28% (7/25) 

0% (0/25) 

0% (0/25) 

9.3% (7/75) 

p<0.001 

  

36% (9/25) 

0% (0/25) 

0% (0/25) 

12% (9/75) 

p<0.001 

  

36% (9/25) 

12% (3/25) 

0% (0/25) 

16% (12/75) 

p<0.001 

  

0% (0/25) 

52% (13/25) 

0% (0/25) 

17.3% (13/75) 

p<0.001 

  

0% (0/25) 

36% (9/25) 

100% (25/25) 

45.3% (34/75) 

p<0.001 

 

 

Person- χ2 : p<0.001           

Goodness-of-fit: 
 

Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 
 

R-square  0.57 ± 0.28  0.51 ± 0.25  0.36 ± 0.22  0.38 ± 0.25  0.46 ± 0.24 
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Table 6. Family parameters. 

 Median frequency 

 50 ms 100 

ms 

250 

ms 

500 

ms 

1000 

ms 

90% 3 3 3 3 3 

75% 3 3 3 3 3 

50% 2 2 2 2 2 

25% 1 1 2 2 2 

0% 1 1 1 1 1 

 Mean frequency 

 50 ms 100 

ms 

250 

ms 

500 

ms 

1000 

ms 

90% 5 5 5 5 5 

75% 4 5 5 5 5 

50% 4 4 4 4 4 

25% 4 4 4 4 4 

0% 3 3 3 4 4 

 Peak frequency 

 50 ms 100 

ms 

250 

ms 

500 

ms 

1000 

ms 

90% 5 5 5 5 5 

75% 5 5 5 5 5 

50% 5 5 5 5 5 

25% 5 5 5 5 5 

0% 5 5 5 5 5 
 

 

3.4. Discussion 

 

 We showed that STFT parameters selection affects the frequency slope of 

myoelectrical manifestations of fatigue estimated from the median, mean, and peak 

frequencies recorded from gastrocnemius medialis. This, in turn, affects the sensitivity of 

muscle fatigue estimation. The window length and overlap directly influenced the relationship 

between slope frequency and task failure, distorting different myoelectrical manifestations of 

muscle fatigue depending on the parameters selected for the STFT. 

The endurance capacity varied among the participants, most likely due to different 

levels of neuromuscular adaptations to fatigue between the individuals (Walton et al., 2002). 

An early or delayed task failure may depend on participant tolerance to fatigue. This helps to 

understand the different sensitivity patterns for the relationship between slope frequency and 
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task failure. In particular, the fitted series in each cluster with different frequency slopes and 

dispersion demonstrates how the STFT parameters change the frequency manifestation of 

muscle fatigue. For instance, some clusters show a higher electrical frequency slope for an 

earlier task failure, such as cluster 1 shows. This cluster appears to be physiologically 

consistent with individuals with poor tolerance to fatigue (higher electrical frequency slope 

for an earlier task failure) and with an individual with better tolerance to fatigue (negative 

frequency slope but lower for a delayed task failure). But, the pattern was not observed in all 

clusters. For example, cluster 5 showed a lower frequency slope for an earlier task failure in 

comparison with delayed task failure, but this cluster achieved the highest slope frequencies 

between the clusters. This suggests that STFT parameters may introduce non-linear distortion 

in the electrical manifestation of fatigue.  

Here, we found that a window length of 50 ms with 0% overlap of the peak frequency 

resulted in a higher frequency slope. However, it is essential to consider that a small window 

length elicits a high risk of overestimating muscle fatigue when the peak frequency is used. In 

contrast, large-length windows had the opposing effect. This confusion may result from noise 

(outliers) that increase the dispersion and affect the regression outcomes. Hence, we 

recommended treating the outliers before applying the regression, especially for the peak 

frequency. If it is decided to use the mean and median frequencies extracted from raw signals 

highly sampled, a decision of the band for analysis should be considered because the mean 

and median are sensitive to a right displacement in a right-skewness distribution of 

frequencies losing sensitivity to muscle fatigue. STFT parameters may easily influence 

frequency slopes, but it is worth mentioning that the frequency slope per se does not reflect 

the entire fatigue process (L. Wang et al., 2018; Ament et al., 1993; Horita et al., 1987; 

González-Izal et al., 2010). Frequency slopes mainly reflect the global electrophysiological 

processes accompanying the generation of fatigue, which depends on central and peripheral 

motor unit properties. However, these properties may be hidden by synthetic assumptions, 

such as we showed here affect the frequency slope. Moreover, non-physiological phenomena 

from the target muscle, such as cross-talk and volume conduction, may also influence the 

frequency slope (Farina et al., 2014). Therefore, the use of the frequency slope as an index of 

fatigue requires caution. 

Fourier methods have been validated to analyze sEMG signals when slow changes 

exist in the time domain (Farina et al., 2014; Srhoj-Egekher et al., 2011). Nevertheless, some 

complexities related to muscle fatigue, such as motor unit action potential changes in 
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morphology, amplitude and/or spatial distribution, can influence spectral analysis (Martinez-

Valdes et al., 2020). Indeed, these complexities can affect both time and spectrum domain 

characteristics (Rampichini et al., 2020), which may lead to misinterpretation of the 

physiological phenomenon due to fixed resolution problems (Cifrek et al., 2009; Srhoj-

Egekher et al., 2011; Singh et al., 2017). In these cases,  wavelets are suggested by its 

adaptative time-frequency resolution (Costa et al., 2010). However, Fourier decomposition 

methods generating a set of a small number of bands derived from empirical decomposition 

mode have been proposed as a better method for non-linear behavior than STFT or wavelet 

method (Singh et al., 2017). Nevertheless, more in-depth work is required to understand and 

develop better techniques that might help dynamic muscle fatigue.  

 When we compared window lengths of 50 ms, 100 ms, and 250 ms, the largest slopes 

were found when the peak frequency was considered. In contrast, the mean and median 

frequencies generated the highest frequency slope, with windows of 500 ms and 1000 ms. 

This suggests a negative covariance between the frequency components and the number of 

heel-rise repetitions, explaining the largest negative frequency slope obtained after the linear 

regression analysis (Cifrek et al., 2009). An improper parameter definition may result in 

statistical bias. For instance, the statistical type I error is induced when contractions are not 

performed to fatigue, and a negative frequency slope is found (Krzywinski et al., 2013). On 

the other hand, considering that the median and mean frequencies show small frequency 

slopes, this could be associated with an underestimation, resulting in a higher probability of 

statistical type II error (Krzywinski et al., 2013). 

 The largest dispersion found for the peak frequency agrees with a previous report 

(Srhoj-Egekher et al., 2011) and expressed a large spread of data concerning the mean and 

median frequencies. This behavior also means that the sum of squares is large. Therefore, to 

avoid the statistical type II error when the peak frequency is used, a larger number of samples 

is needed compared to the mean and median frequencies (Krzywinski et al., 2013). Peak 

frequency may be affected by a small number of samples despite its better capacity to 

generate a more negative frequency slope, as found herein. 

 Larger overlaps increased the dispersion of data for peak and mean frequencies. 

Median and peak frequencies showed similar behavior, except for the 0% overlap showing the 

highest dispersion. As we discussed for selecting window length, we need to be careful with 

the sample size to avoid statistical type II error due to increased data dispersion (Krzywinski 

et al., 2013). Finally, the centroid method used here tends to smooth small or large values in 



 
68 

 

the intensity-dispersion plane, acting as a low-pass filter. However, this does not guarantee 

the best sensitivity to predict task failure, and therefore, a more conservative selection of 

parameters could be considered (250 ms with 50% overlap).  

 We acknowledge the limitation of windowing and overlapping being set only in a 

forward manner.  Another limitation was our incapacity to consider metabolic markers of 

peripheral fatigue to estimate fatigue intensity and correlate them with different stationary 

parameters from the sEMG signals.  

 

3.5. Conclusion 

 

 In conclusion, 50 ms without overlap using peak frequency provides the highest 

frequency slope but generates a large dispersion of data. Instead, 250 ms with 50% of overlap 

for the mean, median, and peak frequency reduces the data dispersion but decreases the 

frequency slope during dynamic contractions. Therefore, we recommend that the selection of 

STFT parameters during dynamic contractions be accompanied by a mechanical measure of 

task failure. The parameters should be adjusted according to the experiment’s requirements. 
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ABSTRACT 

 

The instantaneous spatial representation of the electrical propagation produced by the muscle 

contraction may introduce bias in the sEMG activation maps. Here, we described the effect of 

instantaneous spatial representation (sEMG segmentation) on embedded fuzzy topological 

polyhedrons and image features extracted from sEMG activation maps. We analyzed 73,008 

topographic sEMG activation maps from seven healthy participants (age 21.4 ± 1.5 years and 

body mass 74.5 ± 8.5 kg) who performed submaximal isometric plantar flexions with 64 

surface electrodes placed over the Medial Gastrocnemius muscle. Windows lengths of 50, 

100, 150, 250, 500, and 1000 ms and overlap of 0, 25, 50, 75, and 90% to change the sEMG 

map generation were tested in a factorial design (grid search). Shannon entropy and volume of 

global embedded tri-dimensional geometries (polyhedron projections), and Shannon entropy, 

location of the center (LoC), and image moments of maps were analyzed. The polyhedron 

volume increased when the overlap was <25% and >75%. Entropy decreases when overlap 

was <25% and >75%, and when window length was <100 ms and >500 ms. The LoC in the x-

axis, entropy, and the histogram moments of maps showed effects for overlap (p<0.001), 

while LoC in the y-axis and entropy showed effects for both overlap and window length 

(p<0.001). In conclusion, the instantaneous sEMG maps are first affected by outer parameters 

of overlap followed by the length of the window. Thus, choosing window length and overlap 

parameters can introduce bias in sEMG activation maps, resulting in distorted regional muscle 

activation. 

Keywords: sEMG, data science, dimension reduction, HD-sEMG. 
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4.1 Introduction 

 

 Physical therapists, biomechanists, and engineers regularly infer (quantitative or 

qualitative interpretation) neuromuscular adaptations from sEMG activation maps (Merletti et 

al., 2020; Vieira et al., 2011; Campanini et al., 2020). sEMG activation map represents the 

discrete distribution of the voltage propagation elicited from the train sum of motor unit 

action potentials (MUAPs) collected from an array of electrodes on the skin (Merletti et al.,  

2020; Botter et al., 2015; Guzmán-Venegas et al., 2015; Jordanić et al., 2017; Merletti et al.,  

2019; Vigotsky et al., 2017; Ghaderi et al., 2017). Thus, multiple electrodes allow for 

obtaining sEMG activation maps that can be interpreted as images (Jordanić et al., 2017; 

Merletti et al, 2019), similar to brain activation (Beniczky and Schomer 2020) or uterus 

electromyogram (Xu et al. 2022). Each map pixel corresponds to the voltage acquired by each 

electrode. Thus, the map can be defined by Ii,j,t = √
1

N−1
 ∑ (sEMG[nT]i,j w[n − mR])k

2N
k=1 . 

The Ii,j,t is the pixel intensity that represents the magnitude of the muscle activity located at 

(i,j), t is the number of maps obtained after windowing, sEMG[nT]i,j is the sEMG signal 

located in the array, w[n] is window or epoch, N is the length of the w[n], and R is the hop 

size that determines the amount of overlap. 

Traditionally, sEMG activation maps quantification involves feature extraction, where 

the location of the center (LoC or barycenter) and Shannon entropy are the most used 

(Guzmán-Venegas et al, 2015). The LoC is defined by LoC =  
∑ Ii,j  [

i
j
]i,j

∑ Ii,j  i,j
 (Jordanic et al. 2016; 

Pincheira et al. 2020). Meanwhile, the entropy that explores homogeneity is defined by E =

 − ∑ p(k)2N
k=1 log2 p(k)2. The p(k)2 is the probability of the square of the root mean square 

value at electrode k (Farina et al., 2008). In addition, image moments (expected value, 

variance, skewness, and kurtosis) also can describe image changes in the spatial time domain.  

On the other hand, several conditions might introduce undesired dispersion and noise. 

Therefore, capturing latent map data might be convenient for understanding how synthetic 

distortions are introduced. The latent data, which retains lower-dimension information that 

explains higher-dimension data, has been optimized through the Uniform Manifold 

Approximation and Projection (UMAP) algorithm (Ali et al., 2019; McInnes et al, 2018; 

Oskolkov 2019). UMAP projects a fuzzy topological set of high dimensions equivalent to 
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low-dimensional data (Ali et al., 2019; McInnes et al, 2018). The approximation is possible 

by creating fuzzy topological projections with binary cross-entropy and projections (McInnes, 

Healy, and Melville 2018). The binary cross-entropy is modeled by ∑ [wh(e) log
Wh(e)

Wl(e)
+je ∈E

(1 − wh(e)) log(
1− Wh(e)

1− Wl(e)
) ], while the weight between neighbors is modeled by w =

 e
−d(xi−xj)−ρi

σ⁄
. The ρi is the distance from the i-th data points to its first nearest neighbor 

(Oskolkov 2019). The first term ensures fuzzy connectivity (simplex or node connections). In 

contrast, the second term not permitting the creation of simplexes (McInnes, Healy, and 

Melville 2018). Hence, UMAP might allow the topological representation of different sEMG 

maps (high dimensions) resulting from N and R parameters.  

 Previously, sEMG segmentation influenced the electrical manifestation of fatigue 

conclusions (De la Fuente et al., 2021). Since sEMG activation maps depend inherently on the 

segmentation, it is expected alterations in the sEMG activation map. However, there is still 

large variability in choosing windows length, i.e., 50 ms, 100 ms, 150 ms, 250 ms, 500 ms, or 

1000 ms (Botter et al, 2015; Falla et al., 2017; Hegyi et al., 2019; Martinez-Valdes et al., 

2018; Vinti et al., 2018; Watanabe et al., 2018; Guzmán-Venegas et al., 2015; Zhu et al., 

2017; Jordanić et al., 2017; Jordanic et al., 2016), and truncation methods (non-overlapping 

(Falla et al., 2017; Guzmán-Venegas, Biotti et al, 2015; Jordanić et al., 2017)). Therefore, 

understanding how segmentation may distort regional muscle activation is still a concern. 

Here, we aimed to describe the effect of instantaneous spatial representation (sEMG 

segmentation) on embedded fuzzy topological polyhedrons and image features extracted from 

the sEMG activation maps obtained with HD-sEMG on healthy participants performing a 

submaximal isometric contraction of Medial Gastrocnemius.  

 

4.2 Materials and Methods 

4.2.1 Study design 

 

 We conducted a factorial experiment to test 30 signal processing conditions (Figure 

14). The sample included 73,008 sEMG activation maps obtained from seven healthy 

participants (aged 21.4 ± 1.5 years, body mass 74.5 ± 8.5 kg, height 1.77 ± 0.01 m, and body 
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mass index 20.9 ± 2.2 kg/m2) who performed a submaximal isometric plantar flexion with the 

ankle at neutral position (60% with the ankle in a 90º position) in a controlled lab set-up 

(Figure 14). Here, we considered the Medial Gastrocnemius muscle as a good muscle model 

due to its interest in clinics and biomechanics as well as in previous studies addressing the 

sEMG segmentation (De la Fuente et al., 2021; Theisen et al., 2016). The Bioethics 

Committee of the Andes University (Santiago, Chile) approved this study (# INV-IN201701), 

which was developed according to the principles of the Declaration of Helsinki. All 

participants signed a consent term agreeing to participate in this study.  

 

4.2.2. Data 

 

 Seventy-three thousand eight sEMG activation maps were included in the study (data 

are available in the supplementary material). They were the result of 39 experiments of a total 

of 42 (6 trials x 7 participants). Three experiments were excluded due to artifacts. These 39 

experiments contained 10,240 samples x 64 channels. The 73,008 sEMG activation maps 

resulted in combining 1,872 maps and 39 experiments. The 1,872 maps resulted from 30 

conditions, that is, window lengths (50, 100, 150, 250, 500, and 1000 ms) combined with an 

overlap (0%, 25%, 50%, 75%, and 90%) without repetition. This combination resulted in 100, 

136, 199, 423, and 1014 maps (Pincheira et al. 2021).  

 

4.2.3 Experimental set-up 

 

 Participants were lying prone on a bench with their hip, knee, and ankle in a neutral 

joint position. The ankle of the participants was tightly strapped into a customized rigid 

structure (Figure 14). Then, they were asked to perform three maximal voluntary isometric 

contractions against a force transducer placed at metatarsal head level (Revere Transducers®, 

9363-B10-500-20T1R, USA). Each attempt lasted five seconds, with a three-minute rest 

period between repetitions (period of non-contraction to recover basal muscle energy 

conditions). Immediately, the participants were asked to perform the submaximal voluntary 

contraction. The contractions were sustained for 20 s, and the duration of the 
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ascending/descending ramps was 6s and 8s for the hold phase. The participants received real-

time visual feedback displaying a trapezoid target (Figure 14). The participants completed six 

trials. 

 

 

 

Figure 14. Experiment set-up and instantaneous surface Electromyographic map 

generation flow. Colors represent the instantaneous potential amplitude distribution (yellow 

indicates more intensity, and blue is the lower intensity).  

 

 

 

4.2.4 Electrode location and data acquisition 
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 Prior to data acquisition, the skin was shaved, abrased (Everi: Spes Medica s.r.l, 

Battipagglia, Italy), and cleaned with alcohol to diminish the skin impedance. Then, a semi‐

disposable adhesive with 64 electrodes organized in 8 rows and 8 columns of 1 mm diameter 

and an inter-electrode distance of 10 mm was attached (GR10MM0808, OT Bioelettronica, 

Torino, Italy)(Pincheira et al., 2021). The electrode spaces were filled with a conductive 

cream (Spes Medica s.r.l., Italy) (Pincheira et al., 2021).  

The electrode was placed over the most prominent region of the Medial 

Gastrocnemius, and the muscle belly was determined by palpation during a resisted plantar 

flexion. Then, the electrode was aligned in the cephalocaudal axis with respect to the line 

formed between the medial femoral condyle and malleolus. For the mediolateral axis, the 

electrode was aligned with respect to the medial contour of the medial gastrocnemius muscle. 

The superomedial electrode corner was fixed at 30% of the distance of the cephalocaudal axis, 

as was described previously (Pincheira et al., 2021).  

Sixty-four monopolar sEMG signals were collected from electrodes, amplified with a 

gain of 200, and digitized at a sampling frequency of 2048 Hz with a 12-bit resolution and 

3dB bandwidth 10–500 Hz (sEMG-USB2: OTBiolettronica, Turin, Italy). The reference 

electrodes were positioned according to Pincheira et al. (Pincheira et al., 2021) over the 

contralateral ankle and superior to the electrode near the popliteal fossa (Pincheira et al., 

2021). Two additional reference electrodes were placed on the tibial tuberosity and the fibula 

to improve the sEMG signal-to-noise ratio. Once the quality of the signals was assured, the 

electrodes were firmly secured with an elastic adhesive bandage (Figure 14).  

Correct electrode placement was confirmed by assessing sEMG signals online for low 

baseline noise levels and possible artifacts, cortocircuit, or bad contact during visual 

inspection during brief plantar-flexion contractions (Pincheira et al., 2021). The signal was 

evaluated at rest (without contraction) and under contraction (Pincheira et al., 2021). Non-

saturated signal and out-of-power line interference were appreciated during the acquisition 

(Pincheira et al., 2021). Nevertheless, three experiments were excluded during the offline 

signal processing after observing in the time and frequency domain. The domains showed 

increased noise.  

4.2.5 Pre-processing  
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 The sEMG signals were mean-centered to zero and segmented at the force plateau 

signal. Then, the signals were filtered by a zero-lag second-order Butterworth with a 

Bandpass of 20 to 400 Hz. Outlier channels were manually identified and confirmed using the 

Z-score. A mean with 1 pixel of radio was assigned for outlier pixels (<0.01% was assigned) 

from channels with confirmed higher Z-scores. Afterward, the sEMG signals were convolved 

with a rectangular window. Our convolved sEMG signals were arranged in a matrix 8x8, and 

the maps were normalized to the maximum value of the whole matrixes during the plateau 

(Figure 14).  

 

4.2.6 Window length and overlap (intervention) 

 

 The window lengths were chosen based on previous reports (Falla et al., 2017; 

Guzmán-Venegas et al., 2015; Hegyi et al., 2019; Jordanic et al., 2016; Jordanić et al., 2017; 

Martinez-Valdes et al., 2018; Watanabe et al., 2018; Zhu et al., 2017). The overlap parameters 

were 0, 25, 50, 75, and 90% resulting in 30 different combinations between window length 

and overlap were {(50,0), (50,25), … , (1000,75), (1000,90)} to introduce variability to the 

sEMG activation maps to study its effects.   

 

4.2.7 UMAP and feature image extraction 

 

 The sEMG activation maps of each condition of all participants were concatenated 

[73,008 x 64] and introduced to UMAP algorithm version 1.4.1 (Meehan et al., 2020). The 

global structure of high-dimensional data (64 dimensions) was embedded into three-

dimensional data (McInnes 2018; McInnes et al., 2018). The number of neighbors was 10, the 

min distance was 0.7, the number of components was three dimensions, the metric was 

Euclidean, the number of epochs was 200, the learning rate was 1, local connectivity was 1, 

repulsion strength was 1, the spread was 1, the fuzzy set operation was 1, and the negative 

sample rate was 5. After assessing the level of connectivity and homogeneity of the structures, 

we created a 3d polyhedron (finite elements) to obtain their volume and Shannon entropy. In 
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addition, we extracted the image features from sEMG activation maps; LoC, Shannon 

entropy, and image moment (expected value –moment 1-, variance –moment 2-, skewness –

moment 3-, and kurtosis –moment 4-) (Brown et al., 2011).  

 

4.2.8 Variables 

 

 The following continuous variables were determined; 1) Volume of the fuzzy 

topological structure obtained from the embedded data set and normalized to a maximum 

value, 2) Entropy of the fuzzy topological structure from the embedded data set obtained as 

Shannon entropy (Farina et al., 2008), 3) LoC obtained from the sEMG activation map in both 

x and y coordinates (Jordanić et al., 2017), 4) Shannon entropy obtained from the sEMG 

activation maps (Farina et al., 2008), 5) Moment-1 of maps obtained from sEMG activation 

map as expected value (Brown et al., 2011), 6) Moment-2 of maps obtained from the sEMG 

activation map as variance (Brown et al., 2011), 7) Moment-3 of maps obtained from the 

sEMG activation map as skewness (Brown et al., 2011), and 8) Moment-4 of maps obtained 

from the sEMG activation map as kurtosis (Brown et al., 2011).  

 

4.2.9 Data Analysis 

 

 The sEMG activation maps were described as expected values and variance. 

Normality and homoscedasticity assumptions were checked prior to the image analysis feature 

using a two-way ANOVA 2x5x6 (2 factors: window length and overlap, 6 levels of the length 

of windows: 50 ms, 100 ms, 150 ms, 250 ms, 500 ms, and 1000 ms, and 5 levels of sliding: 

0%, 25%, 50%, 75%, and 90%) for main effects. Effect sizes were described as the square 

sum of effect divided by the total sum of squares to show the explained variance (small: η2 < 

0.04 (< 4%), medium: between 0.04 (4%) and 0.64 (64%), and large: > 0.64 (64%) (Ferguson 

2009)). The Tukey–Kramer test was used to find differences between groups. The K-medoids 

algorithm was applied to explore the differences between factors. The number of clusters with 

K-medoids was evaluated as the sum of the ratio between the sum of within Euclidean 

distance and Euclidean distance of each point with their medoid found. Then, the elbow 

method before convergence was chosen. The alpha error was equal to 0.05 for all statistics. 



 
78 

 

The volume and entropy behavior were studied by a non-linear least square method, and 

Fuzzy sEMG polyhedrons were described in the UMAP space. The zero crossing of the fitted 

curve was described. All calculus was made through Matlab software (MathWorks, Inc., 

USA). 

 

4.3 Results 

 

 The polyhedron volume increased when the overlap was <25% and >75%. Entropy 

decreased when the overlap was <25% and >75%, and when window length was <100 ms and 

>500 ms. The polyhedron volume R2 was 73.5% and 16.9% for overlap and windows length, 

respectively. The polyhedron entropy R2 was 90.1% and <1% for overlap and windows 

length, respectively. The polyhedron zero crossing for volume in overlap was at 25%, and 

between 75% and 90%. The polyhedron zero crossing for entropy in overlap was between 

25% and 50%, and between 75% and 90%. Non-zero crossings were found for windows 

length. Figure 15 summarizes the volume and entropy behavior of embedded sEMG 

activation maps. 
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Figure 15. sEMG maps embedded in three dimensions for 30 conditions of signal 

processing varying window length (50 ms, 100 ms, 150 ms, 250 ms, 500 ms, and 1000 ms) 

and overlap (0, 25, 50, 75, and 90%). The normalized no-linear fitting for Shannon Entropy 

and Volume of sEMG polyhedrons are also shown in dark lines. 

 

 Map LoCx (Table 7) showed a main effect both overlap (p < 0.001, η2 = 0.998, large 

effect size) and window length (η2 < 0.04, small effect size), and there was interaction (p < 

0.001, η2 < 0.04, small effect size). Overlap showed differences between all multiple 

comparisons (p < 0.001). Window length showed multicomparison differences between 50 ms 

and all widow lengths (p < 0.001). Data were grouped into 5 clusters with centroids: 3.2 mm, 

7.7 mm, 16.4 mm, 24.1 mm, and 32.8 mm. Map LoCy (Table 7) showed only a main effect for 

overlap (p < 0.001, η2 = 0.998, large effect size). There were multiple comparison differences 
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between all overlaps (p < 0.001), and data were grouped into 6 clusters with centroids: 3.5 

mm, 8.2 mm, 17.6 mm, 25.9 mm, 34.5 mm, and 35.9 mm.  

Map entropy (Table 7) showed a main effect both overlap (p < 0.001, η2 = 0.998, large 

effect size) and window length (p < 0.001, η2 < 0.04, small effect size) and there was 

interaction (p < 0.001, η2 < 0.04, small effect size). There were multiple comparison 

differences between 50 ms and all widow lengths (p < 0.001). Data were grouped into 5 

clusters with centroids: 1.8 d.u., 2.4 d.u., 2.9 d.u., 3.0 d.u., and 4.3 d.u.. 

Map moment-1 (Table 7) showed a main effect for window length (p < 0.001, η2 < 

0.04, small effect size). There were differences between 50 ms and 1000 ms (p = 0.036), 50 

ms and 150 ms (p = 0.004), 50 ms and 250 ms (p = 0.001), 50 ms and 500 ms (p = 0.001), and 

50 ms and 1000 ms (p < 0.004). Data were grouped into 5 clusters with centroids: 0.06 d.u., 

0.09 d.u., 0.13 d.u., 0.18 d.u., and 0.24 d.u.. Map moment-2 (Table 7) showed a main effect 

for window length (p < 0.001, η2 < 0.04, small effect size). There were differences between 

50 ms and all window lengths (p < 0.001). Data were grouped into 1 cluster. Map moment-3 

(Table 7) showed a main effect for window length (p < 0.001, η2 < 0.04, small effect size). 

There were differences between 50 ms and all window lengths (p < 0.001), 100 ms and  150 

ms (p = 0.005), and 100 ms and the rest of the window lengths (p < 0.001). Data were 

grouped into 1 cluster. Map moment-4 (Table 7) showed a main effect for window length (p < 

0.001, η2 < 0.04, small effect size). There were differences between 50 ms and the rest of 

window lengths (p < 0.001),  100 ms and 250 ms (p = 0.006), and 100 ms 500 ms (p < 0.001), 

and  100 ms and 1000 ms (p < 0.001), and  150 ms  and 1000 ms (p = 0.017). Data were 

grouped into 1 cluster.  
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Table 7. Topographical sEMG maps outcomes. 

 50 ms 100 ms 150 ms 250 ms 500 ms 1000 ms 
LoCx, m.m. 

0% 
25% 

50% 

75% 
90% 

LoCy, m.m. 

0% 
25% 

50% 

75% 
90% 

Entropy, d.u. 

0% 
25% 

50% 

75% 
90% 

Moment-1, d.u. 

0% 
25% 

50% 

75% 
90% 

Moment-2 x 10-5, d.u. 

0% 
25% 

50% 

75% 
90% 

Moment-3, d.u. 

0% 
25% 

50% 

75% 

90% 

Moment-4, d.u. 

0% 
25% 

50% 
75% 

90% 

 

 

33 (0.013) 
24 (0.007) 

16 (0.003) 

08 (7.4e-4) 
03 (1.2e-4) 

 

35 (0.012) 
26 (0.007) 

18 (0.003) 

08 (6.6e-4) 
03 (1.2e-4) 

 

3.11 (0.012) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.97 (7.1e-4) 

 

0.126 (0.004) 
0.126 (0.004) 

0.126 (0.004) 

0.126 (0.004) 
0.126 (0.004) 

 

2.14 (8.84e-11) 
1.89 (8.00e-11) 

2.14 (8.84e-11) 

2.24 (7.84e-11) 
2.33 (7.95e-11) 

 

-0.01 (0.41) 
-0.01(0.41) 

0.00 (0.42) 

0.00 (0.43) 

0.00 (0.43) 

 

2.47 (0.80) 
2.46 (0.82) 

2.48 (0.80) 
2.47 (0.79) 

2.47 (0.79) 

 

33 (0.013) 
24 (0.006) 

16 (0.003) 

08 (5.7e-4) 
03 (9.7e-5) 

 

35 (0.010) 
26 (0.005) 

18 (0.003) 

08 (5.5e-4) 
03 (9.4e-5) 

 

3.11 (0.012) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.97 (7.1e-4) 

 

0.128 (0.004) 
0.128 (0.004) 

0.128 (0.004) 

0.128 (0.004) 
0.128 (0.004) 

 

1.04 (3.71e-11) 
1.33 (4.77e-11) 

1.28 (4.33e-11) 

1.33 (3.99e-11) 
1.33 (3.99e-11) 

 

0.03 (0.42) 
0.03 (0.43) 

0.03 (0.42) 

0.03 (0.42) 
0.03 (0.42) 

 

2.52 (0.82) 
2.49 (0.79) 

2.51 (0.80) 

2.50 (0.79) 
2.50 (0.80) 

 

33 (0.010) 
24 (0.005) 

16 (0.002) 

08 (5.4e-4) 
03 (9.2e-5) 

 

35 (0.010) 
26 (0.005) 

18 (0.002) 

08 (5.2e-4) 
03 (8.9e-5) 

 

3.12 (0.012) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.97 (5.1e-4) 

 

0.128 (0.004) 
0.128 (0.004) 

0.128 (0.004) 

0.128 (0.004) 
0.128 (0.004) 

 

1.03 (3.45e-11) 
1.33 (4.60e-11) 

1.28 (3.91e-11) 

1.33 (3.58e-11) 
1.33 (3.57e-11) 

 

0.04 (0.41) 
0.05 (0.43) 

0.05 (0.41) 

0.05 (0.42) 

0.06 (0.42) 

 

2.52 (0.83) 
2.50 (0.82) 

2.52 (0.82) 
2.51 (0.81) 

2.51 (0.81) 

 

33 (0.010) 
24 (0.005) 

16 (0.002) 

08 (5.2e-4) 
03 (8.9e-5) 

 

35 (0.010) 
26 (0.005) 

18 (0.002) 

08 (5.0e-4) 
03 (8.6e-5) 

 

3.11 (0.012) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.97 (4.8e-4) 

 

0.128 (0.004) 
0.128 (0.004) 

0.128 (0.004) 

0.128 (0.004) 
0.128 (0.004) 

 

1.03 (3.25e-11) 
1.33 (4.43e-11) 

1.28 (3.78e-11) 

1.33 (3.44e-11) 
1.33 (3.43e-11) 

 

0.05 (0.41) 
0.05 (0.43) 

0.05 (0.42) 

0.05 (0.42) 
0.06 (0.41) 

 

2.53 (0.83) 
2.52 (0.83) 

2.53 (0.82) 

2.52 (0.81) 
2.52 (0.81) 

 

33 (0.010) 
24 (0.005) 

16 (0.002) 

08 (5.2e-4) 
03 (8.7e-5) 

 

35 (0.009) 
26 (0.005) 

18 (0.002) 

08 (5.0e-4) 
03 (8.5e-5) 

 

3.11 (0.012) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.98 (4.6e-4) 

 

0.128 (0.004) 
0.128 (0.004) 

0.128 (0.004) 

0.128 (0.004) 
0.128 (0.004) 

 

1.03 (3.20e-11) 
1.33 (4.39e-11) 

1.28 (3.73e-11) 

1.33 (3.40e-11) 
1.33 (3.39e-11) 

 

0.05 (0.41) 
0.06 (0.42) 

0.06 (0.41) 

0.06 (0.41) 
0.06 (0.41) 

 

2.54 (0.85) 
2.52 (0.83) 

2.54 (0.83) 

2.53 (0.82) 
2.53 (0.82) 

 

33 (0.010) 
24 (0.005) 

16 (0.002) 

08 (5.1e-4) 
03 (8.7e-5) 

 

35 (0.009) 
26 (0.005) 

18 (0.002) 

08 (4.9e-4) 
03 (8.4e-5) 

 

3.11 (0.023) 
3.11 (0.012) 

3.11 (0.012) 

3.11 (0.009) 
2.98 (4.7e-4) 

 

0.129 (0.004) 
0.129 (0.004) 

0.129 (0.004) 

0.129 (0.004) 
0.129 (0.004) 

 

1.03 (3.19e-11) 
1.33 (4.38e-11) 

1.28 (3.72e-11) 

1.33 (3.39e-11) 
1.33 (3.38e-11) 

 

0.05 (0.41) 
0.06 (0.42) 

0.06 (0.41) 

0.06 (0.41) 
0.06 (0.41) 

 

2.55 (0.85) 
2.52 (0.83) 

2.54 (0.83) 

2.53 (0.81) 
2.53 (0.82) 

d.u. = dimensionless unit.  

Data are expressed as the expected value (E[x]) of the histogram and variance of the expected value (E[x - E[x]]2).  

 

 

4.4 Discussion 

 

 sEMG segmentation parameters (overlap and window length) of activation maps 

introduce bias, resulting in distorted regional muscle activation, compromising the map 

inferences. For example, we can conclude about regional sEMG activation with or without 

clear regional sEMG activation when there were not, e.g., the statistical error types (Akobeng 

2016). The topological dimensional reduction and feature extraction of the sEMG maps 

confirmed it. Outer segmentation parameters tested here have caused the highest distortion in 

the activation maps; independently, no-overlap and small window length trends reduce the 
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activation map region, while large overlap and window length trends increase the activation 

map region. Thus, sEMG map generation can modify the spatial myoelectrical activity and 

should be carefully considered by their physiological and clinical repercussions, i.e., wrong 

rehabilitation or performance planning. Furthermore, many clinical and sport science studies 

did not fully consider it in the past, and there is high variability in the choice of segmentation 

parameters (Botter a et al, 2015; Guzmán-Venegas et al, 2015; Jordanić et al. 2017; Jordanic 

et al., 2016; Falla et al., 2017; Hegyi et al., 2019; Martinez-Valdes et al., 2018; Vinti et al., 

2018; Watanabe et al., 2018; Zhu et al., 2017) as well as truncation use (Guzmán-Venegas et 

al, 2015; Jordanić et al., 2017; Falla et al., 2017; Stadler et al., 2007).   

 The high dimensional sEMG maps embedded into a low dimensional dataset were 

studied through their entropy and volume. These variables permitted an understanding of 

three regions of activation. Overlap showed an increased volume and decreased entropy at 

outer parameters (two regions) and increased entropy with low volume at central parameters 

(one region). Widow length showed decreased entropy at outer parameters (two regions) and 

higher entropy at central parameters (one region), while the volume trended to be constant. 

The entropy of sEMG polyhedrons quantified the geometrical heterogeneity of the embedding 

data (Franch et al., 2019), which represents the chance to order the fuzzy nodes projected 

from the RMS of MUAPs spatially distributed in our study. Thus, the decreased entropy 

shows a most regular geometry (homogeneity) due to decreased local connectivity (McInnes 

et al, 2018; Sánchez-Rico et al, 2019), which occurred with a large volume suggesting more 

distance between nodes (less similar RMS of MUAPs). Consequently, there was less chance 

to order the fuzzy nodes projected from the RMS of MUAPs. This last distorted muscle 

activation suggests two scenarios occurred in the outer parameters; an attenuated map for 

small overlap and windows length, where there was a more significant proportion of low 

RMS of MUAPs (blue pixels; please visualize the sEMG maps of Figure 14), and blurred map 

for large overlap and window length, where there was a more significant proportion of high 

RMS of MUAPs (yellow pixels; please visualize the sEMG maps of Figure 14).  

 On the other hand, an increased entropy shows a most irregular geometry 

(heterogeneity) due to increased local connectivity (McInnes et al, 2018; McInnes 2018; 

Sánchez-Rico et al, 2019), which occurred with a small volume suggesting a lower distance 

between nodes (more similar RMS of MUAPs). Central parameters with higher entropy and 

lower volume were found near 50% overlap, while for window length, higher entropy and 

lower volume were found between 100 ms and 500 ms. A case of the total loss of connectivity 
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was found for 1000 ms, and 90% of overlap in coherence with findings in genes studies using 

UMAP (Dorrity et al. 2020).  

  Regarding the extracted features from sEMG activation maps, the LoCx, LoCy, and 

entropy confirmed a main distorted effect of the overlap on maps. The clustering analysis 

permitted decomposing data in coherence with the multiple comparison results. For y-

coordinates, six clusters were found, suggesting that overlap 0% had two centroids, meaning 

that there were two sub-groups of 50 ms. For x-coordinates and entropy, 5 clusters were 

found in coherence with overlapping. Regarding the window length, only the x-coordinate 

and entropy showed differences (small effect size). In consequence, the 50 ms without overlap 

generated the most dissimilar sEMG map. These findings agree with discontinuities that can 

be introduced by small window lengths and the artifacts caused without window sliding (Yip 

et al., 2017). This last issue is caused by the truncation ringing (Gibbs artifact), where small 

windowing abruptly magnifies intensity changes like a high pass filter (Stadler et al., 2007). 

Thus, overlapping and small windowing can be an essential source to create a synthetic bias 

on the sEMG activity, distorting the MUAPs visualization techniques (Vigotsky et al., 2017; 

Stadler et al. 2007).    

 Finally, the image moments changed the sEMG activation maps but with a small effect 

size. This change suggests a lower sensitivity of image moments to detect biased sEMG maps 

compared to UMAP, LoC, and entropy of map features. The main limitation of the current 

study was the sEMG available grid used, which is related to the level of spatial resolution of 

the sEMG intensity maps. The space aliasing was set according to our available electrode 

(inter-electrode distance of 10 mm). The standards acquisition of sEMG map indicates a 

relatively acceptable use of 10 mm and sampling frequency in space higher than 200 

samples/m (Merletti et al, 2020; Merletti et al, 2019). Also, the maximal spatial sampling may 

be appreciated using 90% of the spatial power density distribution on the x-axis,  y-axis, or 

both (Afsharipour et al, 2019). However, electrodes lower or equal to 8 mm would obtain 

better spatial resolution. Although there are many options for selecting the shape of the 

window function, we used a rectangular one as a fixed and controlled experimental factor. 

Here, the effect of the window type on myoelectric manifestations is outside the scope of our 

study, and these limitations have been addressed in a previous publication (Tan et al, 2019). 

The pinnate architecture of Medial Gastrocnemius limits our results only for this kind of 

muscle. 
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4.5 Conclusion 

 

 In conclusion, embedded sEMG maps and features of image extraction change the 

spatial muscle activation by segmentation parameters. The instantaneous sEMG maps were 

primarily affected by outer parameters of overlap, followed by the outer parameters of 

window length. Consequently, choosing window length and overlap parameters can introduce 

bias in sEMG activation maps, resulting in distorted regional muscle activation. 
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ABSTRACT 

Structural alterations of the triceps surae and Achilles tendon (AT) can promote plantarflexion 

weakness one-year following an AT repair, influencing the activation strategies of the 

Gastrocnemius Medialis (GM) muscle. However, this is yet to be demonstrated. We aimed to 

determine whether patients with plantar flexion weakness one-year after AT repair show 

altered GM spatial activation. In this cross-sectional and case-control study, ten middle-aged 

men (age 34 ± 7 years old, and 12.9 ± 1.1 months post-surgery) with a high AT total rupture 

score who attended conventional physiotherapy for six months after surgery, and ten healthy 

control men (age 28 ± 9 years old), performed maximal and submaximal (40, 60 and 90%) 

voluntary isometric plantarflexion contractions on a dynamometer. The peak plantar flexor 

torque was determined by isokinetic dynamometry and the GM neuromuscular activation was 

measured with a linear surface-electromyography (sEMG) array. Overall, sEMG activation 

(averaged channels) increased when the muscle contraction levels increased for both groups. 

sEMG spatial analysis in AT repaired group showed an increased activation located distally at 

85%-99%, 75%-97%, and 79%-97% of the electrode array length for 40%, 60%, and 90% of 

the maximal voluntary isometric contractions, respectively. In conclusion, patients with 

persistent plantar flexion weakness after AT rupture showed higher distal overactivation in 

GM. 

 

Keywords: Strength, Muscle, Tendon tear, Triceps Surae, sEMG. 
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5.1 Introduction 

 

 Achilles tendon (AT) rupture develops in 11 to 37 cases per 100,000 inhabitants-year 

affecting mainly men (De la Fuente et al., 2021). The mechanical properties of the AT are not 

recovered even two years post-repair (Geremia et al., 2015), and patients show persistent 

plantar flexion weakness ( De la Fuente et al., 2021; Finni et al., 2006), reduced concentric 

plantar flexion work during gait (Wenning et al., 2021), impaired heel-rise performance 

(Brorsson et al., 2017), compensatory knee and ankle movements during running (Jandacka et 

al., 2017), and unbalanced torque contribution between deep and superficial plantar flexors ( 

(Finni et al., 2006). 

The persistent weakness in these patients may result from structural adaptation, 

including a reduced Gastrocnemius Medialis (GM) fascicle length (Hullfish et al, 2019) and 

cross-sectional area (Zellers et al., 2019; Heikkinen et al., 2017), and a more lengthened 

tendon (Suydam et al., 2015; Stäudle et al., 2022). In addition, there are potential neural 

adaptations due to changes in motor unit firing properties compensating for increases in GM 

muscle fatty infiltration (Heikkinen et al., 2017), which trigger the ubiquitin-proteasome-

mediated autophagy and proteolysis of the muscle fibers (Hamrick et al, 2016). Thus, 

impairments in GM activation can be observed (Hullfish et al, 2019). 

GM activation following an AT rupture is debatable. Although AT rupture patients 

show GM hypotrophy and drastic changes in the myotendinous junction architecture (Stäudle 

et al., 2022) previous studies have not found altered activation during tasks demanding strong 

and fast contractions (Zellers et al., 2019; Peng et al., 2019), while others found lower 

normalized rates of electromyographic rise and lower rates of force development (Wang et al., 

2013). In contrast, higher GM activation was found in AT rupture patients performing 

bilateral hopping (Oda et al., 2017) as well as during push-off in gait (Wenning et al., 2021), 

and in motor actions where the AT is lengthened (Suydam et al., 2015). In addition, the 

different normalization methods and parameters considering overall activation using bipolar 

configurations and not addressing the spatial distribution of the activation among the studies 

difficult the interpretation of sEMG patterns (Cronin et al., 2015). 

The GM activation may present a physiological spatial distribution of the sEMG signal 

amplitude. Previously, it was discussed when a more distal activation was observed during 

isometric plantar flexion with an extended knee, but a more proximal redistribution was found 

with a flexed knee (Avancini et al., 2015). While performing heel-rises, larger distal 
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activation of the GM was observed for a more extended knee (Kinugasa et al, 2005), 

suggesting regional activation may play a role in force/moment generation. However, to the 

best of our knowledge, there is no information about the GM regional activation in AT 

patients with persistent plantarflexion weakness assessed using sEMG arrays. 

Here, we determine whether patients with persistent plantar flexion weakness one year 

following AT repair show altered GM activation and spatial sEMG redistribution while 

performing plantar flexion at different contraction intensities. We hypothesized that AT 

patients with persistent plantar flexion weakness would show an altered activation pattern in 

GM during different levels of isometric plantarflexion compared with controls.  

 

5.2 Materials and methods 

 

5.2.1 Study Design 

 

In this cross-sectional, case-control study, participants were middle-aged men 

recruited from the local community (metropolitan region of Santiago, Chile) one year after 

percutaneous AT repair, and a paired healthy control group. All participants provided written 

consent to participate in the study, which was approved by the ethics committee of the local 

institution (SM Clinic, IRB#032019) and developed following the declaration of Helsinki. 

 

5.2.2 Participants 

 

Non probabilistic sampling method by convenience was used. The experiments 

included ten middle-aged men with high Achilles tendon rupture score ATRS (Nilsson-

Helander et al., 2007), Achilles Dresden repair, one-year after surgery, and submitted to 

conventional physiotherapy for six months, and ten healthy control men without AT rupture. 

To be included in the AT repaired group, participants should be i) men between 20 and 45 

years old, ii) able to perform single heel-rise movements, iii) have competitive sports practice 

during weekends (weekend-warrior style), iv) had suffered an acute mid-substance Dresden 

repair (performed no more than ten days after rupture), iv) with a single lower limb tendon 

rupture, and vi) with evolution after surgical repair between 11 and 15 months. Participants in 

the control group were i) men aged between 20 and 45 years old, ii) with the capacity to 

perform single heel-rise movements, iii) with a history of recreational sports activity during 

the weekend, and iv) competitive sports practice during weekends (weekend-warrior style). 
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Participants from both groups could not have i) a history of tendinous injuries (other than the 

AT injury in the AT group), ii) history of autoimmune diseases, iii) a history of a traumatic 

lower leg injury, iv) orthopedic alteration of the lower leg, and v) steroid therapy dependence. 

Exclusion criteria involved the inability to perform the tests, pain or discomfort during 

measures or the days before, and volunteer absence. No participant was excluded from the 

study, and we had access to medical records to check that all criteria were met. For all 

participants, the preferred leg to kick a ball was considered for the assessments. AT patients 

had a rupture in the preferred leg to kick a ball. 

 

5.2.3 Surgery and rehabilitation 

 

The AT repair was performed using the percutaneous Dresden technique with 

FiberWire® Suture No. 2.0 (Arthrex Inc., Naples, Fl, USA). The patients followed a 

conventional rehabilitation program for the first three weeks after surgery, using a rigid boot 

restricting full weight-bearing but allowing active toe mobilization. At the end of the third-

week post-surgery, the skin sutures were removed, and rehabilitation included dynamic 

plantarflexion exercises. From the fourth to the eighth weeks, patients focused on the active 

range of motion until zero-degree dorsiflexion and full weight-bearing using a rigid boot with 

heel edges. The treatment focused on plantarflexion strengthening and dorsal flexion range of 

motion from the eighth to the twelfth week ( De la Fuente et al., 2021). Between the third and 

sixth months, patients focused on plyometric exercises and stretching, and after the sixth 

month, they could return to heavy work activities and sports (De la Fuente et al., 2021). 

 

5.2.4 Strength testing 

 

Plantar flexor strength was assessed by peak torque output on an isokinetic 

dynamometer Humac Norm (Computer Sports Medicine International, USA) sampling data at 

100 Hz. We assessed the preferred leg in the healthy participants and the injured leg in the 

AT-repaired group. The foot of the testing leg was secured to the isokinetic footplate through 

straps and the medial malleolus of the ankle was aligned to the dynamometer's axis. In the 

days before the measurements, the participants performed submaximal trials in two sessions 

of 15 min each for familiarization with the dynamometer (plantarflexion using metatarsal 

region avoiding using the toes). On the testing day, the best of three measures for the peak 
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torque was used as the maximal voluntary isometric contraction (MVIC). After a 10 min rest, 

peak torque was determined for three submaximal plantar flexor contractions at 40%, 60%, 

and 90% of the MVIC peak torque, selected based on studies showing that single-leg 

standing, toe standing, and bilateral hopping require moderate to high levels of GM activation 

(Moritani et al, 1991). The submaximal contractions were ramped with 5 seconds of increase, 

10 seconds of the plateau, and 5 seconds of decrease in torque. Real-time visual feedback of 

the signal torque was provided (Drazan et al, 2019). The ankle was in a neutral position in the 

sagittal plane, with the knee fully extended in a prone position (De la Fuente et al., 2021; 

Drazan et al, 2019). This posture was used to test the higher distal activation of the GM 

(Avancini et al., 2015). A 10 min rest period was allowed between the submaximal 

contractions, and the order of contraction intensity was randomized for each participant. 

 

5.2.5 sEMG data collection 

 

 sEMG signals were recorded using a multi-channel linear sEMG sensor consisting of a 

linear array of sixteen Ag/AgCl electrodes of size 5 mm × 1 mm with 10 mm of inter-

electrode distance (OT Bioelettronica, Torino, Italy). sEMG signals were acquired by a multi-

channel sEMG amplifier (sEMG-USB2+, OT Bioelettronica, Torino, Italy) set in a single-

differential derivation (Avancini et al., 2015). The common-mode rejection ratio was higher 

than 95 dB, the input impedance was higher than 1011 Ω, and the gain factor was 1000 to 

ensure an adequate signal-to-noise ratio without saturation. The total noise was lower than 

1VRMS, and the analog band-pass filter was set with a cut-off frequency between 10 and 500 

Hz. An analog-digital converter of 12-bit sampled the sEMG signals at 2048 Hz. The 

reference electrode was located at the ankle medial malleolus level using a wet strap 

(Avancini et al., 2015). The reference circuitry that permitted the best signal acquisition 

combined a reference line of the patient connected to the dynamometer and the patient’s table.  

Before the data collection, we determined the location and orientation of the GM 

muscle fibers using linear ultrasonography (US) of 12 MHz (InnoSight®, Phillips, USA). The 

array positioning over the GM considered the distal end of the muscle’s superficial 

aponeurosis, which was identified using ultrasound imaging and marked on the skin (Vieira et 

al., 2011). The array was attached proximally at the middle level of the popliteal fossa and 

orientated over GM when the examiner was able to see the more parallel fibers (Figure 16). 

To ensure good alignment of the electrode array to the muscle fibers, we rotated the array 

over the skin between -5º (clockwise) and +5º (anti-clockwise) to find the adequate parallel 
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orientation by doing a visual inspection of US images (Figure 16). The skin was shaved and 

cleaned with an abrasive paste and alcohol before the electrode placement. The electrodes 

were moistened with water, and the sensor was attached to the skin with hypoallergenic tape 

(Figure 16). The quality of the signals (electric interferences and contact problems) was 

visually inspected before data acquisition. 

 

 

Figure 16. Set-up for data collection. A. Participant is positioned on the isokinetic 

dynamometer. B. Ultrasonography exploration for appropriate fiber alignment with the probe. 

C. Confirmation of the electrode positioning parallel to the fiber orientation assessed using 

ultrasonography (0º of probe rotation). D. Electrode linear array positioning. E. Attachment of 

the linear array. F. Spatial normalization and electrodes exclusion.     

 

 

5.2.6 Time-domain sEMG parameters 
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All sEMG signals were zero-mean centered and filtered with a second-order band-pass 

digital Butterworth filter with a cut-off frequency between 10 Hz and 450 Hz. The first 

electrode was placed proximal to the tendon end, and the last electrode was placed proximal 

to the myotendinous junction, were excluded from the analysis. The remaining 14 electrodes 

were used for spatial normalization considering the array length (0% to 100%, where 100% 

length is the most distal part of the array, Figure 14F). Regarding the analysis, only the 

plateau phase of the muscle contraction task was considered. The overall sEMG amplitudes 

that represented GM activation were determined using the root mean square (RMS) of the 

merged sEMG signals (averaged channels) obtained from the averaged time series. The 

windowing was made with an epoch of 250 ms and 100 ms of overlap to obtain a matrix of 

{RMS1
T … RMSn

T}n*t  where n is samples and t is time. This matrix was normalized to the 

average sEMG basal activation of the array with an epoch of 100 ms during rest (the basal 

100% was subtracted from the overall sEMG, obtaining data below 100% for better reading). 

Each time series of the matrix was interpolated, and the matrix was averaged to obtain a mean 

topographic group representation of the sEMG activation.  

 A differentiated topographic map between the repaired AT and control groups was 

obtained to determine GM’s activation heterogeneity. Clustering was applied in the 

submaximal plantar flexion contractions at 40, 60, and 90% of the MVIC with the k-means 

algorithm. The k-means split the data in k-centroids based on the average distances between 

samples as a measure of similarity according to amplitude data (grouping samples). The 

centroids are originated randomly in the space of features until they converge in locations 

where the metrics of distance are minimized between the sample of one cluster and another. 

For this study, the k-number of clusters was defined based on the highest silhouette 

coefficient assessed from two up to twenty possible regional k-clusters. Hence, the k-centroids 

obtained from the sEMG activation map are described. 

 

 5.2.7 Outcomes 

 

 Outcomes were the peak plantar flexion torque, which represented the plantar flexor 

strength measured in Nm and Nm/kg, the sEMG activation of GM, which was obtained from 

the normalized merged sEMG signals and measured in µV*µV-1*100%, and the regional GM 

activation, which represented a normalized activation between the groups across a normalized 

length between subjects and measured in µV*µV-1*100%. Positive values indicate higher 
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activation in the repaired AT group, and negative values indicate higher activation in the 

control group. The regional thresholds of GM asymmetry activation represented a 

topographical region of heterogeneity activation, measured in percentage.  

 

5.2.8 Statistical Analysis 

 

 Data were reported as topographic maps and mean ± standard deviation (normal 

distribution) or median [min-max] (non-parametric distribution) depending on its distribution 

and homoscedasticity. Data normality and homoscedasticity were checked with Shapiro-Wilk, 

and Levene's test, respectively. The sphericity principle of data was checked (ɛ = 0.829). 

Independent t-test compared groups for regional activations and normalized peak plantar 

flexion torque, while U-Mann Whitney compared groups for absolute peak plantar flexion 

torque. A two-way ANOVA for repeated measures (mixed) with factors group (control and 

AT repaired) and contraction intensity (40%, 60%, and 90%) with sphericity corrections for 

multiple comparisons was used to identify the independence or not between factors (group 

and contraction intensity). No interaction was found and the overall sEMG activation was 

compared between the contractions intensities using a repeated measures ANOVA (p<0.05) 

with Bonferroni post-hoc. Effect sizes (ES) from multiple comparison of one-way ANOVA 

were estimated as the ratio between mean difference and the square root of whithin mean sum 

of square (pooled standard). All statistical test were set with an alpha of 5%. The statistical 

analyses were performed using SPSS 26.0 (IBM, USA). 

 

5.3 Results  

 

The participants included in the AT rupture group were 10 males of age 34 ± 7 years 

old, height 171.8 ± 5.8 cm, body mass 80 ± 10 kg, body mass index 27.3 ± 2.8 kg/m2, ATRS 

92.5 ± 11.8 pts., and evolution time of 12.9 ± 1.1 months after surgery, all of them submitted 

to conventional physiotherapy for six months. The healthy control group included 10 males 

without AT rupture and aged 28 ± 9 years old, height 171.8 ± 5.8 cm, body mass 81 ± 12 kg, 

body mass index 27.5 ± 3.7 kg/m2, and ATRS 100 ± 0 pts. There were no differences in age, 

height, body mass index, and calf circumference between the groups (Table 8). 
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Plantar flexion torque differences between groups were larger than the minimal 

detectable change of 12.4-13.0 Nm (Al-Urzi et al., 2016), which confirmed the persistent 

plantar flexion weakness in the repaired AT patients. Repaired AT patients showed lower 

absolute (18% lower, p = 0.015; d = 0.107) and normalized (21% lower, p = 0.035; d = 0.121) 

plantar flexion torque (136.3 [106-247] Nm; 1.62 ± 0.28 Nm/kg) than the control group 

(165.8 [115-155 Nm]; 2.06 ± 0.43 Nm/kg). See Table 8 for more details. 

 

Table 8. Basal characteristics and outcomes of the participants of the study . 
 

ATRG 

n=10 

CG 

n=10 
Δ p-value 

 

Basal characteristics 

Age, median [min - max], years 

Height, median [min - max], m 

Body mass, mean ± sd, kg 

BMI, mean ± sd, kg/m2 

CC in right leg, mean ± sd, cm 

CC in left leg, mean ± sd, cm 

ATRS, median [min - max], points 

 

Persistent weakness 

Peak torque, median [min - max], Nm 

Peak torque, mean ± sd, Nm/kg 

 

 

29.9 [21.0-54.0] 

1.72 ± 5.8 

81.3 ± 12.0 

27.5 ± 3.7   

39.8 ± 4.8 

39.6 ± 5.6 

97 [63-100] 

 

 

136.3 [106-247] 

1.62 ± 0.28 

 

 

36.7 [20.0-53.0] 

1.73 ± 6.1 

83.1 ± 10.9 

27.3 ± 2.8 

36.9 ± 2.6 

36.8 ± 1.5 

100 [100-100] 

 

 

165.8 [115-155] 

2.06 ± 0.43     

 

6.8 

0.01 

1.8 

0.02 

0.0 

2.8† 

3 

 

 

29.5† 

0.44† 

 

0.593 

0.962 

0.712 

0.628 

0.904 

- 

0.005 

 

 

0.035 

0.015 

 
† Clinical importance estimated from the minimal detectable change of 12.4-13.0 Nm according to Al-Uzri et al. (2016),(Al-

Urzi et al., 2016) of 0.6 cm for calf circumference according to Fong et al.(2009),(Fong et al. 2010) and 10 pts for ATRS 

according to De la Fuente et al. (2016).(C. I. De la Fuente et al. 2016) ATGR: Achilles' tendon repaired group; CG: Control 

group; BMI: Body mass index; CC: Calf circumference; sd: standard deviation. 

 

 GM overall activation (Figure 17A) showed a main effect for group (p = 0.039, ŋ2 = 

0.215) and contraction intensity (p = 0.001, ŋ2 = 0.935), without interaction between these 

factors (p = 0.107, ŋ2 = 0.121). Regarding the contraction intensity factor in the repaired AT 

group, one-way ANOVA (p < 0.001, ŋ2 = 0.937) showed higher GM overall activation at 90% 

of MVIC (84.3 ± 1.5 %) compared to 60% (42.2 ± 4.5 %, Δ = 42.1%, p < 0.001, ES = 0.154) 

and 40% of MVIC (23.1 ± 3.2 %, Δ = 61.2%, p < 0.001, ES = 0.224), while at 60% of MVIC 

(42.2 ± 4.5 %) was higher activation than at 40% of MVIC (23.1 ± 3.2 %, Δ = 19.1%, p < 

0.001; ES = 0.070). Similar results were found in the control group, there was a higher GM 

overall activation at 90% of MVIC (71.2 ± 2.9 %) than 60% of MVIC (36.6 ± 2.5 %, Δ = 34.6 

%, p < 0.001, ES = 0.127) and 40% of MVIC (20.9 ± 2.6 %, Δ = 50.3 %, p < 0.001, ES = 

0.184), while at at 60% of MVIC (36.6 ± 2.5 %) was higher activation than at 40% of MVIC 

(20.9 ± 2.6 %, Δ = 15.7 %, p < 0.001; ES = 0.057). Figure 17-B describes the regional sEMG 
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activation distribution across the normalized length (0% to 100%) of the GM obtained in each 

group. 

 

 

Figure 17. sEMG activation outcomes. A. Differences in overall sEMG activation (averaged 

channels) between 40%, 60%, and 90% of MVIC intensities of controls (green color) and 

patients (blue color). For a better interpretation of data, the y-axis normalization was 

substracted by 100% (basal measurement). B. Regional sEMG activation patterns of both 

groups. The figure shows three activation maps by the intensity of MVIC and describes the 

intensity of activation using a color bar (0% in dark blue to 100% in dark red). The maps also 

show the sEMG activation distribution across the normalized length (0% to 100%) of the GM. 

AT = Achilles tendon. Qx = surgery.  

  

Figure 18 shows GM clustered regional maps of the differentiated map (AT group 

map minus control maps) show higher distal activation in the AT repair group. The distal 

cluster (colored region) was located between 79% and 97% of the electrode array length, 

between 75% and 97% of the array length, and between 85% and 99% of the array length for 

90%, 60%, and 40% of MVIC, respectively (Figure 18). The Silhouette coefficient (0.89) was 

higher for 2 cluster intensities. Table 9 summarizes the distal and proximal clustering 

centroids for contractions at 40%, 60%, and 90% of MVIC and their p-values. 
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Table 9. Comparison of the different identified clusters.  
Cluster 1 

(Distal) 

Cluster 2 

(Proximal) 
Δ p-value 

 

sEMG activation at: 

40% of MVIC, median 

[min - max], % 

60% of MVIC, median 

[min - max], % 

90% of MVIC, median 

[min - max], %  

 

 

2.27 [1.54 – 2.93] 

 

8.23 [5.26 – 9.38] 

 

12.18 [6.93 – 16.08] 

 

 

0.92 [0.46 – 1.80] 

 

2.41 [-0.23 – 4.83] 

 

1.84 [-3.88 – 5.68] 

 

1.35 

 

5.82 

 

10.34† 

 

<0.001 

 

<0.001 

 

<0.001 

 
†Clinical importance estimated from the minimal detectable change of 8.6-9.6 % according to Sanchez-Gomez et al. 

(2020).(Sánchez-Gómez et al. 2020) MVIC: maximal isometric voluntary contraction. 

 

 

Figure 18. Clustered sEMG maps. The image illustrates the more prominent distal region 

activation of the gastrocnemius medialis when performing the isometric plantar flexion at 

three different levels of submaximal muscle contraction obtained using K-means clustering. 

The topographic limits obtained from the three differentiated regional sEMG intensity maps 

indicate that patients persist with increased distal activation between 75% and 99% of the 

array length used. AT = Achilles tendon. K1 = cluster one (proximal). K2 = cluster two 

(distal).  
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5.4 Discussion 

 

Our main findings are a) overall sEMG activation (averaged channels) increase when 

the muscle contraction levels increased for both groups, and b) a distal overactivation of GM 

in repaired AT patients. GM adapts its activation probably to compensate for injury-induced 

changes in AT structural/mechanical properties. Muscle weakness is common in AT patients, 

but the literature reports heterogeneous results (Wenning et al., 2021; Zellers et al., 2019; 

Suydam et al., 2015; Wang et al., 2013; Peng et al., 2019; Oda et al., 2017) and little is known 

about its neurophysiological mechanisms. The higher sEMG activation agrees with the altered 

sEMG activation during functional tasks found for repaired AT patients (Wenning et al., 

2021; Oda et al., 2017). In this sense, the higher activation could represent the response to AT 

lengthening (Suydam et al., 2015), higher distal recruitment to increase the force transmission 

to the tendon (Geremia et al., 2015), and/or an altered sensorimotor adaptation of the repaired 

AT (Avancini et al., 2015). 

The increased activation may indicate a compensatory neural response to the impaired 

force-length relationship of the triceps surae (Suydam et al., 2015; McHugh et al., 2019) that 

shortens more the GM fibers than the soleus in patients with persistent plantarflexion 

weakness (McHugh et al., 2019). However, a more complacent AT (Geremia et al., 2015) also 

suggests an increased sEMG activation as a compensatory neural response to lower force 

transmission. It could be explained as an electromechanical delay (lower temporal efficiency), 

as found in Achilles tendinopathy, in which the central nervous system adapts to the impaired 

temporal efficiency of the muscle-tendon unit (Chang et al, 2015).  

The Ehlers-Danlos mice model demonstrates that lower active force and higher 

intensity of electrical stimulation may be required at longer GM lengths (Huijing et al., 2010). 

However, a better understanding of the human force transmission mechanisms between the 

tendon, aponeurosis, and subtendons (Magnusson et al., 2003; Finni et al., 2018) needs to be 

clarified in patients with AT repair. It is also important to note that altered sensorimotor 

adaptation due to impaired afferent input could alter the sEMG activity of individuals with 

AT rupture (Avancini et al., 2015; Bressel et al., 2004). Nevertheless, this hypothesis still 

requires investigation.  

 We suggest the distal overactivation found in AT patients is a regional adaptation 

within the GM aiming to increase the plantarflexion strength. The sEMG topographical maps 
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allowed us to estimate the location of the predominantly activated muscle fibers (Mesin et al, 

2011). This capacity is supported by the relationship (R2 > 0.80) between the high-density 

sEMG outcomes and the plantar flexion moment described in simulation studies (Sartori et al, 

2017). The estimations of the GM contributing to about half of the total plantarflexion 

moment (Avancini et al., 2015; Cresswell et al, 1995) support the relevance of the distal 

redistribution of muscle activity as a possible compensatory strategy to increase the 

plantarflexion moment to produce plantar flexion at the desired level.  

The distal spatial distribution of sEMG amplitude in GM suggests an increased muscle 

fiber shortening close to the myotendinous junction. Previous studies found altered pennation 

angle and shortened muscle fibers due to an elongated AT (Hullfish et al, 2019; Suydam et al., 

2015; Hullfish et al, 2018), which may have implications in the muscle force transmission to 

the AT (Geremia et al., 2015). In healthy individuals, a similar mechanism was observed 

when the GM contractions elicited different regional activations triggered by tendon slackness 

(Avancini et al., 2015). Thus, a compensated regional sEMG activation may be expected 

when the AT is more compliant (Suydam et al., 2015). The dysfunction of the Golgi tendon 

organ (Avancini et al., 2015), which can suffer fibrosis following a tenotomy (Jamali et al., 

2000), may also help to explain these results. AT patients are more susceptible to distributing 

their activity by anatomical factors such as tendon lengthening (Suydam et al., 2015; Baxter et 

al, 2019). The AT lengthening also can cause tendon slackness (Baxter et al, 2019), 

influencing the neural activity of the Golgi tendon organ, even in fibrotic conditions 

(Avancini et al., 2015; Baxter et al., 2019). Further studies should elucidate the adaptations 

induced by Golgi tendon organ dysfunction in repaired AT patients.  

In our study, the distal overactivation of GM increased with higher plantar flexion 

requirements, which could reveal pathological adaptations in motor unit recruitment and/or 

firing rate. Unfortunately, the interference sEMG signal cannot assess these strategies (Del 

Vecchio et al., 2017). Therefore, the changes we observed claim confirmation in future 

studies, including motor unit decomposition techniques ( Martinez-Valdes et al., 2021). 

Lastly, distal overactivation could result from altered muscle fatigability (Falla a et al., 2007). 

If that is the case, lower frequency manifestations of muscle fatigue would have been 

expected when patients were compared to healthy controls (McHugh et al., 2019), which was 

not the case here.  

Our study has limitations. We were unable to perform ultrasound measurements across 

the whole testing. We have used only one linear array of electrodes for economic reasons, and 

multiple arrays would have given us more detailed neurophysiological information (Cudicio 
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et al., 2022). Due to the pandemic condition, the recruitment of patients was very difficult. 

Lastly, the measurement of other calf muscles contributing to the plantar flexion torque could 

help to understand the influence or not of crosstalk in our results. 

 

5.5 Conclusion 

 

 In conclusion, distal GM overactivation and persistent plantar flexion weakness 

were observed in patients with AT repair one-year post-surgery performing voluntary plantar 

flexion isometric contractions at maximal and submaximal intensities. We interpret that 

tendon slackness changed AT mechanical properties, possibly resulting in a muscle activation 

redistribution, thereby leading to distal overactivation of GM while the plantar flexion 

strength demands increased. 
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Abstract 

 

In this unique case study, we explored the impact of a single-session of neuromuscular 

biofeedback on motor unit properties, neuromuscular electrical activation, and the Achilles 

tendon (AT) length only 12 days after undergoing AT surgical repair. We hypothesized that 

an immediate intervention after the surgical repair enhances motor unit properties and 

activation without causing AT lengthening. A 58-year-old male was included in the study 

after undergoing AT surgical repair 12 days prior. Motor unit decomposition of the Medial 

Gastrocnemius (MG) was performed before and after a neuromuscular biofeedback 

intervention, while plantar flexion contractions without any external resistance were 

performed, which involved the use of sEMG and ultrasonography. The analysis included 

motor unit population properties, sEMG amplitude, force paradigm, and AT length. After the 

intervention, more MG motor units were recruited, along with elevated peak and average 

firing rates. The coefficient of variation, sEMG amplitude, and recruitment threshold all 

showed significant increases, while the derecruitment threshold decreased. The non-injured 

limb exhibited a lower coefficient of variation, peak and average motor unit action potential 

amplitude, inter-pulse interval, derecruitment threshold, and sEMG amplitude. Moreover, the 

AT length experienced changes of -0.4 cm in the repaired AT limb and 0.3 cm in the non-

injured limb. A single-session neuromuscular biofeedback of plantar flexion exercise without 

loading performed 12 days after AT surgery enhanced MG neuromuscular electrical 

activation in the repaired AT limb, without causing any signs of AT lengthening. Meanwhile, 

the non-repaired AT limb showed lower demands on motor unit properties. 

 

 

Keywords: Neurophysiology; Decomposition; Neuromuscular Biofeedback; Rehabilitation; 

Surgery.  
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6.1 Introduction 

Immediately after an Achilles tendon (AT) rupture surgical repair, the ankle is 

usually immobilized at a shortened length for 4 to 6 weeks aiming to underload the tendon 

and prevent an early lengthening or re-rupture by active movement (e.g., voluntary torque 

production) ( De la Fuente et al., 2016). Unfortunately, immobilization reduces triceps sural 

strength by decreasing motor unit discharge rate and recruitment (Enoka and Duchateau 

2017). These functional effects are acutely observed. For example, only 72 h of 

immobilization reduces motor excitability and recruitment, resulting in ~22% reduction of the 

maximal muscle strength (Enoka et al., 2017). A longer immobilization, for 4 to 6 weeks, 

leads to persistent impaired muscle activation up to one year after rehabilitation ( De la Fuente 

et al., 2023). Thus, interventions focused on immediate action following surgical repair are 

expected to enhance the impairments caused by immobilization. However, due to the high risk 

of Achilles tendon (AT) lengthening, recent expert panels have not recommended the 

application of mechanical stimuli during the very early phase of tendon healing (Saxena et al., 

2022). 

 Despite the high risk of Achilles tendon (AT) lengthening (Saxena et al., 2022), 

neuromuscular feedback strategies using real-time ultrasonography (US) and surface 

electromyography (sEMG) are potentially beneficial in early rehabilitation, if administrated 

under controlled mechanical stimuli over the AT during healing. To this end, neuromuscular 

biofeedback could be implemented considering low-intensity contractions to avoid tendon 

lengthening since repetitive loading has been tested in the past without generating clinical 

failure ( De la Fuente et al., 2017; De la Fuente et al., 2017) during the early stage of tendon 

healing (Freedman et al., 2017). This approach can increase the firing rate of active 

populations of motor units and the number of recruited motor units (Stein et al., 1990). These 

last neurophysiological stimuli would be relevant for improving immobilization impairments 

like muscle inhibition and persistent weakness (De la Fuente et al., 2023). However, whether 

motor unit properties can be enhanced during a single session of neuromuscular biofeedback 

without AT lengthening during the early AT healing phase following a surgical repair remains 

unknown. Understanding these responses should be the first step before planning more 

extensive interventions aiming at physiological adaptations.  

 Here, we investigated whether a single-session of neuromuscular biofeedback 

intervention can influence Medial Gastrocnemius (MG) motor unit properties, neuromuscular 

activation, and the AT length only 12 days after AT surgical repair. We hypothesized that a 
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single-session of neuromuscular biofeedback intervention improves the MG motor unit 

properties and neuromuscular activation without increasing the AT length 12 days after AT 

surgical repair. 

  

6.2 Methods 

 

6.2.1 Case description and design 

 

 In this case report, we compared medial gastrocnemius (MG) motor unit population 

properties (number of recruited motor units, peak and average firing rate, coefficient of 

variation, decomposition accuracy, peak and average motor unit action potentials (MUAP), 

inter-pulse interval, and motor unit recruitment and derecruitment thresholds), sEMG 

amplitude, force paradigm, and AT length before and after a single-session of neuromuscular 

biofeedback (combined US and sEMG biofeedback). The intervention included submaximal 

muscle contractions (30% of maximal voluntary contraction of the non-injured limb) in the 

repaired AT and non-injured limb of a patient on day 12 after the AT repair surgery. The 

institutional ethics committee approved the research protocol, but allowed the inclusion of 

only one patient. The patient agreed to participate and provided informed consent. He was a 

male recreational soccer player (age 58 years old, body mass 94 kg, height 1.86 m, and body 

mass index 27.2 kg.m-2), an office worker without comorbidities, and who suffered a non-

contact AT rupture during a recreational soccer match. The rupture (acute, unilateral, and 

mid-substance) was repaired with the triple Dresden technique (De la Fuente et al., 2017; De 

la Fuente et al., 2017) by two senior foot and ankle surgeons with more than 15 years of 

experience. 

 

6.2.2 Basal Measurements  

 

 Basal measurements were obtained prior to the intervention (Table 10). The AT 

resting angle was measured with the patient lying prone with the knee flexed at 90º (Carmont 

et al., 2015). The MG pennation angle and thickness were quantified with the patient resting 

in a prone position with 0º of knee extension and 20º of plantar flexion and using 

ultrasonography at the level where the sEMG sensor (Anvanti, Trigno, Delsys Inc., USA) was 

attached to the skin (Hermens et al., 2000). The superficial and deep aponeurosis were the 
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anatomical references (Cho et al., 2014). A maximal voluntary isometric plantar flexion 

contraction (MVIC) was measured in the non-injured AT limb using a wireless load cell 

sensor (S-beam load cell, Delsys Inc., USA) with the patient seated with hip, knee, and ankle 

at 90º. The AT rupture score (ATRS) and the verbal response to a numerical rating pain scale 

of the patient were obtained 30 min prior to the intervention session start.  

 

Table 10. Basal measurements. 

Measurements   Non-injured  Repaired AT  Δ 

 

Achilles tendon resting angle (º)* 

MG resting pennation angle (º) 

MG resting thickness (mm) 

Maximal voluntary isometric 

contraction (N) 

 

 

 

 

14.0 

18.0 

17.4 

171 

 

 

 

12.0 

20.0 

16.3 

- 

 

 

 

-2.0 (-14%) 

2.0 (11%) 

1.1 (6%) 

- 

Clinical Scores   Obtained points / maximal points 

 

Achilles tendon rupture score (pts) 

Verbal numerical rate pain scale (pts) 

- Prior to the intervention 

- Maximal value during the 

intervention 

 

 

 

 

 

 

87/100 

 

0/10 

3/10  

 
 

MG: medial gastrocnemius; cm: centimeters; º: sexagesimal degrees; mm: millimeters; N: Newton; pts: points.  

 

6.2.3 Neuromuscular biofeedback protocols 

 

 The neuromuscular (US and sEMG) biofeedback was delivered with the patient in a 

prone posture performing 20 dynamic plantar flexion contractions without external resistance. 

The patient developed 20 s in total for each ankle plantar flexion, 5 s were used to move from 

the rest position to full plantarflexion, 10 s were used to maintain the full plantarflexion, and 5 

s were used to move from full plantarflexion to the rest position. The participant repeated 5 

series with 30 s of rest between series. Due to protective reasons, we used low-speed ankle 

movement because high-speed joint movement required higher stiffness material properties, 

which contradicts the early healing tendon stage. The protective range of motion was defined 

from rest plantarflexion to full plantarflexion range of motion, in coherence with past 

recommendations for the early stage following the Dresden surgical design, which also was 

tested at low-speed traction (De la Fuente et al., 2017). A 'beep' sound metronome was set. 
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The patient was instructed not to talk during the execution of the exercise. The verbal 

instructions at the beginning of the exercise were: "Please move your [big toe/little toes/ankle 

in plantar flexion] in sync with the metronome's rhythm. If you experience any pain while 

performing the exercise, you must stop immediately and inform me to halt the assessment."  

 Both US and sEMG signals were projected on a screen in front of the participant, 

providing neuromuscular biofeedback for both the evaluator and the participant (Figure 19). 

Before testing, the patient had around 5 minutes of familiarization guided by the evaluator. 

The US feedback was delivered in real-time (immediately visually projected) with the 

transducer positioned perpendicular over the third lateral portion and the third medial portion 

of the leg to identify the hallucis flexor longus (De la Cruz-Torres et al., 2020) and flexor 

digitorum longus muscles (Mickle et al., 2013), respectively. A good quality acquisition was 

considered when the displacement of the hallucis flexor longus and flexor digitorum longus 

muscles were distinguishable by both the evaluator and the patient during 

metatarsophalangeal flexion. The patient was requested to focus on the muscle displacement 

(aponeurosis movement represented by white pixel displacement) on the screen as an 

indicator of muscle activation while moving their big toe or little toes to elicit the targeted 

muscles (Figure 19).  

 The sEMG feedback was provided through the use of two superficial sEMG sensors 

(Avanti, Trigno, Delsys Inc., Boston, USA), which were attached to the MG and soleus 

muscle bellies (Figure 19). A good quality acquisition was ensured by the signal-to-noise ratio 

of MG and soleus activation clearly identified as at least double the width of the resting 

signal. The patient was instructed to focus on the increase in signal amplitude compared to the 

basal signal on the screen, which served as an indicator of muscle activation (Figure 19).  
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Figure 19. Biofeedback setup. A. Achilles Tendon (AT) angle at rest. B. AT length 

measured from calcaneus reference (Calc. Ref.) to the myotendinous junction (MTJ) of 

Medial Gastrocnemius. C. sEMG sensor on Medial Gastrocnemius to acquire firing rate 

during prolonged periods. D. Measurement setup. E. Ultrasonography feedback. F. sEMG 

sensors for feedback. G. Force and sEMG signals projected on the screen. H. 

Ultrasonographic measurement of muscle thickness. I. Resting pennation angle measurement. 

J. sEMG decomposition. 

 

6.2.4 Data Acquisition and Processing 

 

 The AT length was measured using musculoskeletal ultrasonography with a 12 MHz 

linear transducer (Lumify S4-1, Philips, The Netherlands) and a 50 mm graded metric tape 
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(Seca 201, Germany). The measurement was taken from the tip of the calcaneus to the 

myotendinous junction of the MG.  

 For sEMG decomposition assumptions, the patient was positioned prone with 30º knee 

flexion and 20º plantar flexion to unload the AT during the testing (De la Fuente et al., 2017). 

Considering a randomized order, a plantar flexion contraction was performed by each limb to 

elicit 30% of the maximal voluntary isometric contraction (MVIC) measured in the non-

injured limb. This submaximal intensity was defined to protect the surgical repair from failure 

(De la Fuente et al., 2016). In addition, low-intensity muscle contractions reduce the 

superposition of motor unit action potentials, providing better decomposition outputs 

(LeFever et al., 1982) and minimizing silent deformation at tendon-suture, a lengthening 

mechanism for the Dresden technique (De la Fuente et al., 2016). A uniaxial load cell (Delsys 

Inc., Boston, USA) was attached perpendicular at the metatarsal level of both limbs to register 

the force signals during the contractions to allow the control of a trapezoidal plantar flexion 

contraction at the target intensity, which was sustained for 20 s (isometric assessment) before 

and after the intervention session (Figure 19). 

 Two decomposition sEMG sensors (Galileo sensor, Delsys Inc., Boston, USA) 

recorded sEMG data from the repaired AT and non-injured limbs. We used 4-dry-electrodes 

for decomposition (four cylindroid probes of 0.5 mm diameter (De Luca et al., 2006)) and 4-

dry-rectangular electrodes for references, which were positioned after the skin cleaning and 

shaving. The electrodes were 99.9% of Ag. The inter-electrode distance was 2.5 mm. The 

sEMG signals for decomposition were acquired with an sEMG Trigno amplifier (Delsys Inc., 

Boston, USA). An analog-digital converter of 16-bit sampled the sEMG signals at 2222 Hz. 

Simple differential capture with dual stabilizing reference was used (De Luca et al. 2006). 

The common-mode rejection ratio was lower than -80 dB. The total noise was lower than 750 

nV, and an analog band-pass filtered with a 20-250 Hz cut-off frequency. A reference 

electrode was located at the lateral side of the most prominent bulk of the MG (Figure 19). 

The quality of the signals (electric interferences and contact problems) was visually inspected 

before data acquisition. 

  After sEMG signal acquisition, the data were decomposed into motor unit action 

potential trains basis. The threshold accuracy was set at > 80% (Jeon et al., 2020). The 

decomposition algorithm was based on a template-matching approach enhanced by maximum 

a posteriori probability methods (LeFever et al., 1982). The maximum a posteriori probability 
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(Bayesian inference) allowed to estimate the occurrence of motor unit firing and waveforms 

(LeFever et al., 1982). The firing rate time series were obtained by convoluting the impulse of 

firing trains with a 1-s Hanning window (Jeon et al., 2020). All estimations were made using 

the NeuroMap 1.0 software (Delsys Inc., Boston, USA). 

 

6.2.5 Data analysis 

 

 Data distribution was checked using the Shapiro-Wilk and Levene tests (α = 5%). The 

motor unit properties, sEMG amplitude (mean root square from the 5-second plateau during 

the trapezoid contraction), force paradigm, and tendon length were described as the obtained 

values, and the absolute and percentage differences (Δ = without – with feedback 

intervention) prior to and after the intervention, were described for both in the AT repaired 

and non-injured limbs. The raster plot also was created. The space generated by the 

recruitment threshold and the peak firing rate was clustered (density-based spatial clustering 

of application with noise - DBSCAN) to understand the acquired motor unit strategies. The 

Epsilon neighborhood was 4. The epsilon parameter defines the searching radius around a 

core containing at least the minimum defined neighbors. The minimal number of neighbors in 

our study was 3. All descriptive statistics were conducted using Matlab software (Mathwork 

Inc., Natick, USA). 

 

6.3 Results 

 

 The main changes observed following the neuromuscular biofeedback in the repaired 

AT limb were an increased number of motor units (Δ = 325%), peak firing rate (Δ = 74%), 

average firing rate (Δ = 40%), coefficient of variation (Δ = 40%), and sEMG amplitude (Δ = 

52%, 43%, 26%, and 33% for each channel, respectively). In contrast, decreased 

derecruitment (Δ = -72%) and recruitment (Δ = -35%) thresholds were found in the repaired 

AT limb (Table 11 and Figure 20). Decomposition accuracy, peak and average MUAP 

amplitude, and AT length showed changes lower than 10%.   

 Regarding the non-injured limb, the neuromuscular biofeedback increased the number 

of motor units (Δ = 26%) and recruitment threshold (Δ = 233%). In contrast, there was a 
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decreased derecruitment threshold (Δ = -96%), sEMG amplitude (Δ = -65%, -78%, -28%, and 

-42% for each channel, respectively), coefficient of variation (Δ = -55%), inter-pulse interval 

(Δ = -49%), peak (Δ = 74%), and average (Δ = 40%) MUAP amplitude in the non-injured 

limb (Table 11 and Figure 20). Decomposition accuracy, peak and average firing rate, and AT 

length showed changes lower than 10%.   

  In total, we identified 5 different clusters of motor units based on peak firing rate and 

recruitment threshold space for both limbs (Table 11). In the repaired AT limb, the motor 

units recruitment previous to the neuromuscular biofeedback (4 clusters) characterized by the 

peak firing rate and recruitment threshold space were 7.4 ± 3.4 pps and 4.4 N ± 2.0 N (n = 1), 

15.9 ± 3.5 pps and 10.1 N ± 6.8 N (n = 1), 9.0 ± 0.3 pps and 22.0 N ± 0.9 N (n = 3), and 6.4 ± 

1.2 pps and 30.6 N ± 1.1 N (n = 3), while following the neuromuscular biofeedback (3 

clusters) were characterized by 7.4 N ± 3.4 pps and 4.4 N ± 2.0 N (n = 2), by 12.9 N ± 1.7 pps 

and 12.8 N ± 1.7 N (n = 14), and by 15.9 N ± 3.5 pps and 10.1 N ± 6.8 N (n = 18), see Table 

11. In the non-injured limb, the motor units recruitment before the neuromuscular 

biofeedback (2 clusters) were characterized by 15.9 ± 3.5 pps and 10.1 N ± 6.8 N (n = 2) and 

by 14.6 ± 5.3 pps and 1.5 N ± 0.2 N (n = 17), while after the neuromuscular biofeedback (3 

clusters) were characterized by 7.4 N ± 3.4 pps and 4.4 N ± 2.0 N (n = 1), by 14.6 N ± 5.3 pps 

and 1.5 N ± 0.2 N (n = 1), and by 15.9 N ± 3.5 pps and 10.1 N ± 6.8 N (n = 22), see Table 11.  

 Finally, the AT length changed to 0.3 cm and -0.4 cm for the non-injured and repaired 

AT limbs, respectively. 
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Figure 20. Raster plot of medial gastrocnemius motor unit recruitment before and after 

the neuromuscular biofeedback intervention. A. Repaired AT limb before intervention. B. 

Repaired AT limb after intervention. C. Non-injured AT limb before intervention. D. Non-

injured AT limb after intervention.   
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Table 11. Motor unit and sEMG descriptive statistics, and cluster firing rate-recruitment threshold. 

Measurements Non-injured  Repaired AT  

 Pre-BF  

 

Post-BF 

 

 

Δ  Pre-BF 

 

 

Post-BF 

 

Δ  

Recruited MU number (No.) 

Coefficient of Variation (%) 

Paradigm force (N) 

Decomposition accuracy (%) 

Peak MUAP amplitude (10-5 V) 
Average MUAP Amplitude (10-5 V) 
Peak Firing Rate (pps) 

Average Firing Rate (pps) 

Inter-pulse interval (ms) 

Recruitment Threshold (N) 

Derecruitment Threshold (N) 

sEMG amplitude: 

rms electrode 1 (10-5 V) 
rms electrode 2 (10-5 V) 
rms electrode 3 (10-5 V) 
rms electrode 4 (10-5 V) 

Length of the Achilles tendon (cm) 

 

19 

4.2 

31.0 ± 1.3 

92.8 ± 20.9 

20.62 ± 22.66 

13.33 ± 12.07 

14.62 ± 5.96 

3.48 ± 1.99 

298.6± 147.2 

1.5 ± 0.4 

26.8 ± 8.3 

 

1.0954 

1.0206 

1.2884 

1.1339 

21.0 

 

24 

1.9 

26.1 ± 0.5 

92.6 ± 18.8 

10.70 ± 5.18 

7.70 ± 3.43 

14.57 ± 5.25 

4.57 ± 2.01 

153.4± 42.7 

5.0 ± 1.2 

1.2 ± 0.3 

 

0.3803 

0.2295 

0.9226 

0.6543 

21.3 

 

5 (26%) 

-2.3 (-55%) 

-4.9 (-16%) 

-0.2 (< -1%) 

-9.92 (-48%) 

-5.60 (-42%) 

-0.05 (< -1%) 

-0.05(< -1%) 

-145.2 (-49%) 

3.5 (233%) 

-25.6 (-96%) 

 

-0.7151 (-65%) 

-0.7911 (-78%) 

-0.3658 (-28%) 

-0.4796 (-42%) 

0.3 (1.4%) 

 

 

 

8 

3.0 

30.2 ± 0.9 

90.5 ± 28.8 

3.59 ± 1.50 

2.95 ± 1.18 

8.05 ± 3.05 

2.30 ± 1.32 

201.1 ± 76.2 

22.0 ± 11.0 

5.3 ± 2.8 

 

0.9367 

0.8923 

1.1973 

1.0254 

22.5 

 

34 

4.2 

24.0 ± 1.0 

86.5 ± 15.9 

3.67 ± 2.53 

3.03 ± 2.32 

13.99 ± 4.10 

3.22 ± 1.39 

194.5 ± 68.0 

14.4 ± 10.3 

3.1 ± 5.8 

 

1.4247 

1.2774 

1.5074 

1.3636 

22.1 

 

26 (325%) 

1.2 (40%) 

-6.2 (21%) 

-4.0 (-5%) 

0.08 (2%) 

0.08 (3%) 

5.94 (74%) 

0.92 (40%) 

-6.6 (-3%) 

-7.6 (-35%) 

-2.2 (-72%) 

 

0.4880 (52%) 

0.3851 (43%) 

0.3101 (26%) 

0.3382 (33%) 

-0.4 (-2%) 

 

  

  

  

  

  

 

 

Clusters 
 Without 

biofeedback 

 With 

biofeedback 

 Peak firing 

rate 

(pps) 

 Recruitment threshold 

(N) 

 Number of 

motor units 

(No.)   Pre Post  Pre Post    

 

Cluster 0 

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 5 

 

 

 

 

 

 

1 

3 

1 

3 

0 

0 

 

2 

0 

18 

0 

14 

0 

  

0 

0 

2 

0 

0 

17 

 

1 

0 

22 

0 

0 

1 

  

7.4 ± 3.4 

9.0 ± 0.3 

15.9 ± 3.5 

6.4 ± 1.2 

12.9 ± 1.7 

14.6 ± 5.3 

  

4.4 ± 2.0 

22.0 ± 0.9 

10.1 ± 6.8 

30.6 ± 1.1 

12.8 ± 1.7 

1.5 ± 0.2 

  

4 

3 

43 

3 

14 

18 

    

    

    

MU = Motor units; N = Newton; V = Volt; MUAP = Motor unit action potential; Pps = pulses per second; ms = millisecond; sEMG = surface electromyography; No. = number; 

and rms = Root mean square.  
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6.4 Discussion 

 

 In this study, we provide insights into the transitory enhancement of muscle activation 

of a repaired AT patient after a single-session of neuromuscular biofeedback only 12 days 

following AT surgical repair, which means during the very early stage of AT healing. Our 

intervention included a unique case study conducted in a typically restricted phase for 

research due to the high risk of adverse events (re-rupture and tendon lengthening). To the 

best of our knowledge, this is the only study to date in which impaired motor unit properties 

are shown to acutely enhance after low-intensity contractions and neuromuscular biofeedback 

without observation of tendon lengthening during the healing phase of a surgically repaired 

AT. The repaired AT limb exhibited several changes, including the recruitment of newly low-

threshold motor units, an increase in firing rate and sEMG amplitude, a decrease in 

derecruitment and recruitment motor unit threshold, and an increase in force fluctuations 

(higher variation coefficient). In contrast, the non-injured limb showed reduced demands on 

motor unit properties to perform the task after the neuromuscular biofeedback. Therefore, we 

hypothesized that these strategies might have been influenced by improvements in: i) spindle 

afference excitability, ii) the net descending excitability input, iii) motor unit synchronization, 

and/or iv) short-term potentiation on α-motor units. 

 The improvements in motor unit properties indicate that the gamma loop of the plantar 

flexors was actively involved in force production. This assumption relies on the fact that low-

intensity muscle contractions strain the intrafusal muscle fibers (Richardson et al., 2006), 

increasing the availability of proprioceptive information, at least to the spinal cord level 

(Proske et al., 2012). This mechanism can likely explain the increased activation of the MG α-

motor units through the up-regulation of motor unit recruitment and firing rate, as well as 

decreased recruitment and derecruitment thresholds. Other neurophysiological factors might 

impact the changes observed. For example, persistent inward currents in motor unit threshold 

modulation have a relevant role in regulating the thresholding of motor units (Heckman et al., 

2008). Further experiments are needed to understand their modulating role during a single 

neuromuscular biofeedback session. Another strategy to enhance proprioceptive availability 

could involve building upon past research on acquiring novel visuomotor skills that activate 

the gamma loop (Ia afferents) for modulating sensory inputs (Perez et al., 2005). Additionally, 

increasing the net descending input in our setup may further support this goal. The visual 
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information delivered could allow visuomotor integration (Unell et al., 2021) using the 

cerebellum's action as a comparator (Flament and Ebner 1996), amplifying the proprioceptive 

information and net descending excitability.  

Short-term potentiation (Hennig 2013) is a relevant peripheral condition that may also 

have played a role in our study. Our setup induced repetitive muscle contractions that may 

increase presynaptic calcium concentration. This, in turn, leads to the opening of AMPA and 

NMDA receptors to increase the postsynaptic ionic conductance at the peripherical level 

(Hennig 2013). Another intriguing finding was the increased force coefficient of variance 

during the plateau stage of the trapezoidal plantar flexion contraction to assess the 

intervention effect in the repaired AT limb. This coefficient exhibited contrasting behavior 

between the limbs. This finding implies that our intervention stimulated motor unit 

synchronization (Semmler 2002). However, force signal tracking showed worse 

synchronization in the injured limb compared to the non-injured limb, leading to a decrease in 

their force coefficient of variance. It suggests a quick impairment of motor unit 

synchronization in the repaired AT limb. This synchronization is useful for situations 

demanding rapid force development, highlighting the negative impact on low-frequency 

components of motor unit discharge (Semmler 2002). 

 Finally, we have not found evidence of tendon lengthening. This is in accordance with 

the principle of no tendon lengthening during a critical mechanical phase, specifically the 

early stage of AT healing. To set up our load conditions, we relied on our previous in vitro 

estimations to ensure that there was no excessive stress at the suture-tendon interface, which 

could potentially lead to silent lengthening ( De la Fuente et al., 2017). Consequently, this 

case report presents novel evidence regarding an alternative intervention that can enhance 

muscle activation properties. These properties are significantly affected during the first weeks 

of immobilization and can be responsible for chronic pathological muscle adaptation, which 

often leads to a low rate of sports return after experiencing an Achilles tendon rupture.  

  The absence of measurements for H-reflex and M-response prevented the exploration 

of presynaptic and postsynaptic aspects during the patient's response to the intervention and, 

therefore, characterizes a limitation in our study. 
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6.5 Conclusion  

 

 A single-session of unloaded exercise within a protective range of motion, 

incorporating neuromuscular biofeedback, performed only 12 days after surgery in a patient 

with an AT repair, enhances MG neuromuscular electrical activation. This improvement was 

achieved by enhancement of motor unit properties in the repaired AT limb without indications 

of AT lengthening. Meanwhile, the non-repaired AT limb requires lower demands of motor 

unit properties. These promising outcomes warrant further testing during the early phases of 

AT ruptures. 
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7 CHAPTER EIGHT – MOTOR UNITS RECRUITMENT, FIRING RATE, AND PAIN 

SENSATION AFTER CUMULATIVE FATIGUE IN HEALTHY UNTRAINED MEN 
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ABSTRACT 

 

Cumulative muscle fatigue results from repeated consecutive bouts of exercise. The expected 

force impairment and limited motor control following fatigue are discussed as the altered 

capacity of muscle recruitment and control. However, there is limited knowledge about the 

motor unit responses to cumulative fatigue, and most of the current research relies on 

discussing overall muscle activation. In this study, we aimed to describe the motor unit 

recruitment and firing rate when cumulative fatigue is induced by repeated bouts of exercise 

in the biceps brachialis of healthy untrained young men. Twenty-one participants (11 

intervention and 10 matched controls; age of 22.1± 1.5 years old, height of 1.74± 0.08 m, 

body mass of 70.8± 6.8 kg, body mass index of 23.5± 1.5 kg m-2, maximal elbow flexion 

isometric voluntary contraction of 44.7± 9.2 N) were recruited in a randomized, single-blind, 

prospective, and case-control study. Three groups were measured (cumulative fatigue until 

exhaustion, placebo, and control). The cumulative fatigue lasted three consecutive days, and 

the control group did not perform exercises. Placebo dose was a set of exercise not leading to 

exhaustion nor fatigue. sEMG signals were decomposed to obtain motor unit wave basis and 

firing rate time series. After the sEMG recordings, the same researcher applied a load of 1 kg 

at the upper, middle, and lower regions of the arm with an algometer to quantify pain 

sensation. Recruited motor unit, firing rate differences, and pain sensation were described and 

compared between groups (α = 5%). The motor unit recruitment for the cumulative fatigue 

and placebo dose was higher than the control (p =0.026). The firing rate for the cumulative 

fatigue dose did not differ from the placebo dose (p=0.088) but was higher than the control 

(p=0.039). Pain sensation was higher in the intervention group; the lower region was higher 

than the upper and lower regions, p=0.002; middle and lower regions, p=0.021. Following 

three bouts of exhaustion leading to cumulative fatigue in the biceps brachialis of healthy 

untrained men there was increased motor unit recruitment, firing rate, and distal muscle pain 

sensation.   

 

Keywords: Muscle; Fatigue; Cumulative Fatigue; Surface electromyography; 

Decomposition. 
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7.1 Introduction  

 

 Cumulative fatigue results from repeated consecutive bouts of fatiguing muscle 

contractions (Machado et al., 2018). However, the expected reduction of the maximal 

voluntary contraction appears not to be an intrinsic characteristic of cumulative fatigue 

(Machado et al., 2018), as observed in acute fatigue (Powers et al., 2008). While the effects of 

fatigue can last from hours to days (Jones et al., 2017; Machado et al., 2018; Priego-Quesada 

et al., 2019), impairing daily life routine (Sjøgaard et al., 1998; Søgaard et al., 2017), the 

capacity to produce similar levels of force regardless of the condition of cumulative fatigue is 

intriguing. In this regard, a better understanding of motor unit decomposition after repetitive 

bouts of exhaustion fatigue could help to better understand the changes in force output in 

response to cumulative fatigue.  

 Muscles under cumulative fatigue may suffer from fiber damage, inflammation, and 

oxidative stress (Powers et al., 2008; Twist et al., 2005). For example, two consecutive bouts 

of fatiguing until exhaustion exercise in biceps brachialis increase plasma creatine kinase (a 

marker of muscle damage), reactive oxygen species production, and malondialdehyde 

concentration (a marker of oxidative stress) (Machado et al., 2018). At the same time, there is 

a lower content of reduced glutathione (a marker of anti-oxidative stress) (Machado et al., 

2018). Similarly, increased pain is observed 48 hours after calf raise exercises until 

exhaustion (da Silva et al., 2018). The damage, inflammation, and oxidative stress would 

involve muscle fiber disruption where the membrane and sarcomeres are mainly damaged, 

releasing Ca++ from the retinaculum (Proske et al., 2001). But also, a higher intracellular Ca++ 

via stretch-activated channels occurs due to increased permeability (Kano et al., 2012). The 

loss of Ca++ homeostasis and the presence of reactive oxygen species, together with oxidative 

stress, leads to irreversible injury and cellular apoptosis (Farber 1990; Schanne et al., 1979; 

Horn et al., 2018; Kano et al., 2012).  

The search for a better understanding of motor control under cumulative fatigue may 

benefit from using sEMG to monitor muscle recruitment. Additionally, the linear combination 

between motor unit wave basis and firing rate time series allows the decomposition of sEMG 

signals from array electrodes in the skin (De Luca et al., 2006). For example, sEMG has been 

identified as poor neuromuscular activation after strenuous exercises (Mendez-Villanueva et 

al., 2012; Machado et al., 2018). Also, findings of left shifting in the frequency spectrum, 
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increased ratio of the medium-low frequencies, and lower Shannon entropy on root mean 

square values (Machado et al., 2022) are in coherence with the electrical modulation of 

fatigued muscle contractions (Cashaback et al., 2013). Although nowadays we know more 

biochemical characteristics of cumulative fatigue (Machado et al., 2022; Powers et al., 2008; 

Sarker et al., 2020), there is limited knowledge about how firing rate and motor unit 

recruitment behave under conditions of cumulative fatigue. 

 Here, we aimed to describe the motor unit recruitment and firing rate when cumulative 

fatigue is induced by repeated dynamic bouts of exercise in the biceps brachialis of healthy 

untrained young men.  

 

7.2 Methods 

 

7.2.1 Study design 

 

 In this randomized, single-blind, prospective, and case-control study, there were three 

groups (intervention, placebo, and control groups). One group underwent cumulative fatigue 

protocol (three consecutive days of unilateral cumulative exercise until exhaustion), the 

second group (contralateral arm) underwent a placebo dose (non-fatiguing unilateral 

cumulative dose of exercise), and the third group was the control (without intervention). The 

groups were allocated with the block randomization technique (Kang, Ragan, and Park 2008). 

The allocation reason was 1:1 to obtain balanced independent groups (intervented groups and 

control). The protocol to induce cumulative fatigue lasted three consecutive days, and the 

control groups did not perform exercises during the three days. During the first and third days, 

sEMG signals were acquired and decomposed to obtain motor unit wave basis and firing rate 

time series. 

 This study was approved by the ethical committee of the local institution, the 

Pontificia Universidad Catolica de Chile (Santiago, Chile). All participants gave their signed 

informed consent to be part of the study.  
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7.2.2 Participants 

 

 Twenty-one untrained healthy men participants (11 intervention and 10 controls; age 

of 22.1± 1.5  years old, height of 1.74± 0.08 m, body mass of 70.8± 6.8 kg, body mass index 

of 23.5± 1.5 kg m-2, maximal elbow flexion isometric voluntary contraction of 44.7± 9.2 N) 

were recruited. One participant voluntarily abandoned the study on the second day (after the 

first session of the fatigue protocol) due to an exacerbated pain sensation at the third distal 

region of the biceps brachialis muscle. The sample size (n = 20) was estimated from the effect 

size of d = 1.35 found for a similar setup in sEMG (Machado et al. 2022). We set an alpha 

error of 5%, allocation ratio of 1:1, and statistical power of 80% (around four twice, according 

to Cohen's recommendations) for two independent mean differences with two tails. The 

estimation was made using G*Power software 3.1.9.2 (Universtät Kiel, Germany).  

 The inclusion criteria were i) male sex, ii) untrained participants (less than 30 minutes 

of physical activity during the week), iii) body mass between 18.5 and 25.9 kg m-2, and iii) 

age between 20 and 25 years. The exclusion criteria were i) any cardiovascular, neurology, 

metabolic, or orthopedic condition, ii) upper limb injuries, iii) pain reported before the 

experiment ended, iv) anxiety syndromes, v) skin allergy and conditions, vi) any medication, 

vii) sleep deprivation, and viii) any stressful situation that can alter our results.     

 

7.2.3 Intervention 

 

 Before the intervention, the participants performed a warm-up of 5 minutes, 

performing active flexion and extension of the shoulder and elbow with sagittal plane 

movements against gravity force in a comfortable range of motion.   

 In the participants intervented with cumulative fatigue, one of the two arms started the 

protocol to induce fatigue by performing exercises until exhaustion on the first, second, and 

third day. Meanwhile, the contralateral arm received a placebo dose of the exercise without 

exhaustion each day. The placebo dose performed the same movement and condition of the 

exhaustion protocol, but the participant ended their exercises when they achieved 4 points of 

effort sensation (non-fatiguing dose) from a modified 10-point effort scale. 
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 According to previous studies, a dumbbell with a mass close to 7% of the individual 

body mass was used to perform flexion-extension elbow exercises to induce cumulative 

fatigue through concentric and eccentric components (Priego-Quesada et al., 2020). The 

movement involved the full elbow range of motion while standing, with the trunk aligned to 

the vertical. The frequency was set at audible 30 pulses per minute. Each beat of the 

metronome indicates the start of elbow flexion from the full elbow extension. Exhaustion was 

defined as i) the incapacity to perform the full range of motion, ii) the complete loss of the 

rhythm coordination between the metronome and the participant's movement during three 

consecutive series, iii) postural compensation needed to complete the task, and iv) participant 

movement detention. Participants performed the exercise always at the same time of the day 

and therefore with 24 hours of interval between the sessions. They were instructed to maintain 

their routines in the days of the experiment, avoiding ingestion of alcohol or other stimulant 

beverages as well as not taking any medication that could interfere with the neuromuscular 

function and pain perception. 

 

7.2.4 Measurements 

 

Height, body mass, body mass index, and maximal voluntary isometric contraction 

(MVIC, mean of three tentatives of 5 seconds) were obtained 30 min prior to the start of the 

fatigue protocol. Height and body mass were obtained using a metric tape and a digital scale. 

For the assessment of the MVIC each participant was seated with the trunk upright in an 

adjustable seat to obtain 90º of the elbow and supinated forearm with flexion hip, knee at 90º, 

and ankle in a neutral position (Figure 19). A wireless S-beam load cell (Delsys Inc., USA) 

was positioned at the wrist, in the middle distance between the styloid process, to measure the 

compressive force generated against a rigid horizontal table by elbow flexion (Figure 21). The 

repetitions lasting 5 seconds were requested to obtain the repetition eliciting the MVIC. 

From the MVIC result, a trapezoidal submaximal contraction set at 40% of the MVIC 

with an ascent and decent ramp of 5 seconds and a plateau of 20 seconds was performed to 

obtain surface electromyography signals at the basal, immediately after the first session of 

exercise on day 1 of the fatigue protocol, and after the third session of exercise on day 3 of the 

fatigue protocol. sEMG measurements were performed in both intervention and control 

groups. 
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 To assess the pain perception, after the sEMG recordings, the same researcher applied 

a load of 1 kg at the upper, middle, and lower regions of the biceps brachii from both arms 

with an algometer (NOD, OTbioeletronica, Italy), considering fiber muscle damage would not 

homogenous. The participant should report the pain perception using a numerical scale from 0 

to 10, in which 0 corresponds to the perception of “no pain” and 10 corresponds to the 

sensation of “extreme pain”.  

 

 

Figure 21. Study setup. A = Posture for the exercise. B = Electrode positioning. C = Details 

of the quadrifilar electrode and references. D = Position of the participant for the assessment 

of the maximal voluntary isometric contraction. E = Illustration of a typically decomposed 

electromyography (top), signal from electromyography channel (middle), and signal from the 

load cell (bottom). 
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7.2.5 Data collection and processing 

 

 We used a 4-dry-electrodes for decomposition (four cylindroid probes of 0.5 mm 

diameter (De Luca et al., 2006) and 4-dry-rectangular electrodes for references (Delsys Inc., 

USA) positioned on the muscle belly of the biceps brachialis after careful skin shave and 

cleaning. The electrodes were 99.9% of Ag. The inter-electrode distance was 2.5 mm, and the 

sEMG signals were acquired by a sEMG Trigno amplifier (Delsys Inc., USA) being analog-

digital converted at 16-bit and sampled at 2222 Hz. Simple differential capture with dual 

stabilizing reference was used (De Luca et al., 2006). The common-mode rejection ratio was 

lower than -80 dB. The total noise was lower than 750 nV, and the analog band-pass filter 

was set with a cut-off frequency between 20 and 250 Hz. The reference electrode was located 

on the biceps brachialis according to SENIAM guidelines (Hermens et al., 2000). The quality 

of the signals (electric interferences and contact problems) was visually inspected before data 

acquisition. 

After the acquisition of the sEMG signal, the data were decomposed into motor unit 

action potential trains basis. The threshold accuracy was set at > 80% (Jeon et al., 2020). The 

decomposition algorithm was based on a template-matching approach enhanced by maximum 

a posteriori probability methods (De Luca et al., 2006; Nawab et al., 2010). This maximum a 

posteriori probability (Bayesian inference) is used to estimate the occurrence of motor unit 

firing and waveforms (LeFever et al., 1982). The firing rate time series were obtained by 

convoluting the impulse of firing trains with a 1-s Hanning window (Jeon et al., 2020). All 

estimations were made using a demo version of the NeuroMap 1.0 software (Delsys Inc., 

USA). The motor unit recruitment corresponded to the active motor unit with an accuracy 

higher than 80% measured in number units (No.). The firing rate corresponded to the mean 

firing rate of the identified active population of motor units measured as pulse per second 

(pps). 

 

7.2.6 Data Analysis 

 

 Raw recruited motor unit and firing rate data were described as median and 

interquartile range as they were not distributed normally after applying the Shapiro-Wilk test 
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(p>0.05). Recruited motor unit, firing rate differences, and pain sensation were described as 

their mean and standard deviation because they showed a normal distribution after applying 

the Shapiro-Wilk test. The comparison between the control, cumulative fatigue and placebo 

dose was performed on the difference between the last time point (day 3) and basal 

measurement (day 1) using one-way ANOVA with Bonferroni’s multiple comparisons 

(p>0.05) when a main effect was found. 

 The time course comparison between fatigue and placebo dose was determined 

through the 2-way Friedman test. The factor time had three levels (basal, acute, and 

cumulative response), and the factor dose had two levels (fatigue and placebo dose). Multiple 

comparisons with Wilcoxon signed-rank tests and Bonferroni’s adjustment were performed 

when a main effect was found.  

  The pain sensation was studied through a 3-way ANOVA test. The factor time had 

three levels (basal, acute, and cumulative response), the factor dose had two levels (fatigue, 

placebo dose and control), and the factor region had three levels (upper, middle, and lower 

region of the biceps brachialis muscle belly). The multiple comparisons were performed with 

Wilcoxon signed-rank tests and Bonferroni’s adjustment when a main effect was found. 

 All comparisons were set with alpha equal to 5% through the SPSS software (IBM 

corp., USA). 

 

7.3 Results 

 

Regarding the difference between the last exercise bout and basal measurement, there 

was a main effect for motor unit recruitment (F = 4.361, p<0.023) and firing rate (F = 4.163, 

p<0.027). The motor unit recruitment for the exhaustion fatigue dose (8.7 ± 2.4 No.) did not 

differ from the placebo dose (6.3 ± 2.4 No.; Δ = 2.4 ± 3.4; p = 0.867), but was higher than the 

control (-1.0 ± 2.4 No.; Δ = 9.7 ± 3.4; p = 0.026). The firing rate for the exhaustion fatigue 

dose (2.46 ± 1.73 pps) did not differ from the placebo dose (0.25 ± 2.97 pps; Δ = 2.21 ± 

0.963; p = 0.088) but was higher than the control (-0.10 ± 1.45 pps; Δ = 2.56 ± 0.963; p = 

0.039). Motor unit and firing rate difference between doses are summarized in Figure 22 and 

Table 12. 
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Figure 22. Cumulative fatiguing exercise comparison between experimental doses. 

Differences between the last bout of fatiguing exercise and basal measure are described.  
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Regarding the raw comparisons there was no group effect; the firing rate differed 

between three bouts of exercise (χ2 = 15.8; p=0.08). The firing rate for the exhaustion fatigue 

dose was higher immediately after the first bout of exercise (10.4 [2.1] pps; Δ = 2.1 pps; p = 

0.019) and after the last bout of exercise (10.6 [2.8] pps; Δ = 2.3 pps;  p = 0.028) compared to 

the basal measurement (8.3 [2.3] pps). The motor unit recruitment was not different between 

the three bouts of exercise (χ2 = 7.8; p=0.711). Motor unit and firing rate changes between 

doses are summarized in Figure 23 and Table 12. 

Regarding pain perception, there was a main effect of time, region, and group 

(p<0.001), with interactions between time and group (p=0.012) and region and group 

(p<0.001). Pain perception increased from the basal to the first bout of exercise (p<0.001) and 

from the first to the last the third bout of exercise (p<0.001). The exhaustion fatigue dose 

caused pain with a significant difference between the groups (p<0.001), with pain perception 

higher for the lower regions of the muscle (p < 0.01). Table 12 includes the results of pain 

perception. 

 

 

 

 

 

 

 



126 

 

 

Figure 23. Time course comparison between exhaustion cumulative fatigue and placebo 

doses. A. Firing rate. B. Recruited motor unit.  
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Table 12. Recruited Motor units, firing rate, and pain perception after exhaustion fatigue dose.  

Variables 
 Exhaution Fatigue dose  Placebo dose  Control 

 Basal  

 

First  

 

 

Last  Basal 

 

 

First 

 

Last  Basal  Last 

 

Recruited MU number (No.) 

Firing Rate (pps) 

Pain perception 

Upper region (mm) 

Middle region (mm) 

Lower region (mm) 

 

 

 

 

 

 

18 [6.0] 

8.3 [2.3] 

 

0.0 ± 0.0 

0.0 ± 0.0 

0.0 ± 0.0 

 

22 [5.3] 

10.4 [2.1] 

 

0.3 ± 0.7 

0.5 ± 0.8 

1.2 ± 1.4 

 

27 [11.8] 

10.6 [2.8] 

 

2.9 ± 1.6 

4.2 ± 1.1 

5.0 ± 1.6 

 

 

 

16 [15.0] 

7.2 [3.6] 

 

0.0 ± 0.0 

0.0 ± 0.0 

0.0 ± 0.0 

 

19 [6.5] 

8.4 [4.4] 

 

0.1 ± 0.3 

0.0 ± 0.0 

0.4 ± 0.5 

 

24.5 [5.5] 

9.2 [2.4] 

 

0.6 ± 1.1 

0.3 ± 0.7 

1.1 ± 1.2 

 

 

 

 

 

17 [9.0] 

10.6 [4.2] 

 

0.0 ± 0.0 

0.0 ± 0.0 

0.0 ± 0.0 

 

 

 

17 [8.0] 

10.3 [1.2] 

 

0.0 ± 0.0 

0.0 ± 0.0 

0.0 ± 0.0 

 

 

  
Exhaution Fatigue dose  Placebo dose  Control 

Last – Basal measurement  Last – Basal measurement  Last – Basal measurement 

Recruited MU number (No.) 

Firing Rate (pps) 
 

 

8.7 ± 6.8 

2.46 ± 1.73 

 

 

 

6.3 ± 7.3 

0.25 ± 2.97 

 

  

-1.0 ± 8.5 

-0.10 ± 1.45 

MU = Motor Unit. ; No. = Number; pps = Pulse per second 
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7.4 Discussion 

 

 In our study, the most important findings were i) a higher motor unit recruitment and 

firing rate under cumulative fatigue compared to controls (without muscle fatigue), ii) the 

firing rate remained increased under acute (one bout of fatiguing exercise in a single session) 

and cumulative fatigue (three bouts of fatiguing exercise in different days), and iii) 

cumulative fatigue condition caused an increased distal muscle pain sensation on biceps 

brachialis. Here, we provide insights into the main neurophysiology strategies of force 

generation and control after dynamic cumulative fatigue with eccentric component and distal 

pain sensation in the biceps brachialis in untrained young men. Our findings allow a better 

understanding of how the nervous system would control submaximal contractions through 

motor unit recruitment and firing rate. Well-established knowledge about peripheral 

biochemical and mechanical impairments similar to our setup (Machado et al., 2022; Powers 

et al., 2008; Sarker et al., 2020) may have the triggered neural adjustments for motor unit 

force increase under eccentric bouts of exercise. In particular, a maintained increased firing 

rate across the days is in coherence with findings of increased firing rate in acute isometric 

repeated muscle contractions (Contessa et al., 2016). This neural adjustment may serve as a 

mechanism of submaximal force control in the remaining active pool of motor units (Mettler 

et al., 2016). In our experiment, the higher motor unit recruitment and firing rate under 

cumulative fatigue would have obeyed a neural adjustment for muscle force control against 

repetitive lengthened and damaged muscle fibers. Apparently, the first dynamic exercises with 

an eccentric component triggered our observed neural adjustment, agreeing with previous 

reports (Clarkson et al., 2002). 

 The newly recruited motor units for cumulative and placebo doses suggest having 

aimed to control submaximal isometric muscle force caused by dynamic exercise with 

eccentric components. This is in accordance both with higher muscle activation previously 

summarized by literature (Dartnall et al., 2009) and with muscle activation redistribution 

following eccentric exercise bouts (Pincheira et al., 2021). In our setup, the higher distal fiber 

muscle damage factor (higher distal pain sensation (Tenberg et al., 2022) caused by 

cumulative fatigue dose compared to placebo dose has not affected the motor unit recruitment 

differently in our study (See Figure 22-B). But, both doses showed an increased motor unit 

recruitment compared to the control condition, which agrees with eccentric bouts of exercise 
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immediately and after 24h (Stožer et al., 2020; Dartnall et al., 2009). Thus, eccentric muscle 

contractions potentially can influence the recruitment of motor units threshold  ̧ likely by 

modification of muscle fiber length (Stožer et al., 2020) due to elastic tissue adaptation 

(Pincheira et al., 2018) and sarcomeres disruption (Stožer et al., 2020; Clarkson et al., 2002). 

According to the Equilibrium-Point hypothesis, the central nervous system controls motor 

unit recruitment by subthreshold depolarization of the alpha-motoneurons (Latash 2010) 

based on the tonic stretch reflex (λ) threshold, which directly involves the fiber muscle length 

(Latash 2010). Hence, the increased motor unit recruitment under repetitive dynamic exercise 

with eccentric component bouts suggests a neural adjustment for muscle force generation 

deficits.  

 Importantly, our findings agree with motoneuron pool excitation changes under 

cumulative fatigue dose, which showed an increased firing rate compared to the basal 

measurements (see Figure 23A) in contrast to the placebo and control conditions. The central 

nervous system in voluntary contractions develops a hierarchical inverse relation between 

firing rate and recruitment threshold (De Luca et al., 2012). Thus, our results suggest that the 

central nervous system adjusted the firing rate to compensate for muscle force twitch 

impairments, which agrees with repetitive isometric fatigue experiments (Contessa et al., 

2018; Contessa et al., 2016). Consequently, cumulative fatigue dose may trigger neural 

adjustment to supply muscle force generation deficits, resulting in increased firing rates, 

newly recruited motor units, and decreased motor unit recruitment thresholds (Conwit et al., 

2000). On the other hand, the increased firing rate across days in our experiment or repetitive 

dynamic exercise with an eccentric component suggests that the first 48h after cumulative 

fatigue dose with an eccentric component is not enough to recover a normal muscle activation 

pattern (Stožer et al., 2020). Regarding the opposed firing rate findings of literature 

(Rubinstein et al., 2005; Conwit et al., 2000; Fuglevand 1996), our setup targeted 40% of the 

MVC may have prevented the recruitment of motor units with lower firing rates of motor 

units with higher thresholds that can distort the group firing rate average (Contessa et al., 

2016).   

  As a research limitation, we can mention the absence of measurements for H-reflex 

and M-response due to time assumptions, sEMG maps due to HD-sEMG equipment 

limitation, and medical image registers like ultrasonography due to monetary limitations.  
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7.5 Conclusion  

 

 Cumulative fatigue induced by exercising the biceps of healthy untrained men during 

three consecutive days increased motor unit recruitment and firing rate during the production 

of submaximal force. The cumulative fatigue also led to higher pain perception in the 

exercised region, especially at the distal portion. 

This neural adjustment serves as a mechanism of submaximal force control in the 

remaining active pool of motor units following fatigue and muscle fiber damage after the first 

bout of eccentric fiber fatigue.   
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8 CHAPTER EIGHT – DISCUSSION  

 

This thesis aimed to determine the electromyographical patterns in response to 

cumulative muscle fatigue, where we studied physiological and non-physiological factors able 

to change muscle activation. Specifically, we 1) identified methodological bias (windowing, 

slope, and parameters) in the analysis of electrical manifestations to estimate muscle fatigue 

and muscle activation maps, 2) determined the applicability of sEMG maps and motor unit 

decomposition patterns in acute and chronic adaptations, and 3) determined the Motor Unit 

behavior in cumulative fatigue resultant from dynamic muscle contractions. Here, our main 

findings were that 1) signal processing methods to estimate fatigue and activation maps are 

able to introduce biased electrical manifestations, 2) sEMG maps and motor unit 

decomposition are sensible to identify patterns in acute and chronic adaptations, and 3) 

increased firing rate and motor unit recruitment are the most relevant change during a three-

day bout of cumulative fatigue. These findings have a deep impact on how to care for signal 

processing procedures during fatigue, introduce the relevance of visualization techniques in 

regional muscle activation (sEMG maps) for regional activation distribution, and introduce 

the increased firing rate as the most relevant marker of fatigue in motor unit decomposition 

under cumulative fatigue which can affect several daily, recreational, and physical and 

occupational activities. 

Signal processing methods to estimate fatigue and activation maps can introduce 

biased electrical manifestations. On the one hand, the STFT window length and overlap 

selection in this thesis distort the frequency slope of myoelectrical manifestations of fatigue 

estimated from the median, mean, and peak frequencies, affecting the muscle fatigue 

estimation sensitivity. But also, the STFT parameters change the relationship between slope 

frequency and task failure, creating different time-series patterns when only one fatigue until 

exhaustion has occurred in physiological terms. On the other hand, sEMG segmentation 

parameters (overlap and window length) are needed to create sEMG maps. This also can 

distort regional muscle activation. Unfortunately, traditional signal segmentation 

compromises the sEMG map activation inferences and can conduct physiological 

misconceptions. Clinical and sport science studies did not fully consider it in the past, and 

nowadays, it must be important that researchers control the high-risk bias caused by sEMG 

signal processing.  
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Motor unit decomposition and sEMG maps are sensible for identifying patterns in 

acute and chronic adaptations. In this thesis, we were able to provide insight into the 

immediate enhancement of neuromuscular biofeedback during a typically restricted acute 

phase for research. This observational study was made after 12 days of a repaired Achilles 

tendon. Here, using advanced Bayesian motor unit decomposition methods, we observed how 

impaired motor unit properties enhanced with low-intensity contraction, which is not possible 

to obtain from low-resolution methods. The most relevant findings were newly recruited low-

threshold motor units, increased firing rate and sEMG amplitude, and decreased recruitment 

motor unit threshold. On the other hand, in this thesis, we also were able to study 

neuromuscular adaptation under chronic conditions by sEMG. In patients with persistent 

plantar flexion weakness after one year of evolution, we could detect that overall sEMG 

activation increased when the muscle contraction levels increased and that there was a distal 

overactivation during plantar flexion in AT-repaired patients. After adopting bias caution over 

our signal processing procedures, these data analysis techniques allow us to detect altered 

sensorimotor adaptation under acute and chronic adaptation.  

Finally, in this thesis, we were able to determine that increased firing rate and motor 

unit recruitment are the most relevant changes during a three-day bout of cumulative fatigue 

with an eccentric component. This neural adjustment may serve as a mechanism of 

submaximal force control in the remaining active pool of motor units. Our experiment 

clarifies unrevealed neural adjustment for muscle force control against repetitive lengthened 

and damaged muscle fibers using the Bayesian decomposition technique. These findings open 

an interesting issue of how the central nervous system in voluntary contractions resolves the 

hierarchical inverse relation between firing rate and recruitment threshold to supply muscle 

force generation deficits caused by cumulative fatigue and muscle damage needing new 

experimental setup and modeling under causal design studies.  
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9 CHAPTER NINE – CONCLUSION  

 

 This thesis allows us to understand better sEMG interpretations on electrical 

manifestations of topographical maps, motor unit decomposition, and acute and cumulative 

fatigue responses. Here, we conclude that i) windowing and overlap bias affect the electrical 

manifestations to estimate muscle fatigue and muscle activation maps, ii) sEMG maps and 

motor unit decomposition identify changes sEMG maps and motor unit decomposition for 

conditions similar to fatigue (inhibition and persistent weakness), and iii) three bouts of 

fatiguing exercise (cumulative muscle fatigue) trigger neurophysiological adaptations (firing 

rate and motor unit recruitment) to control submaximal isometric contractions.  
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10 CHAPTER TEN – LIMITATION OF THE THESIS 

 

  

 The limitations of each study were discussed at the end of each study discussion. 

However, regarding the thesis limitation, I recognized the CORONAVIRUS pandemic's was 

the main thesis limitation. Due to country border restrictions for foreigners, I was unable to 

visit my supervisor and the laboratory between March 2020 and September 2022. The other 

main limitation was the restriction and population fear to be measured due to the high risk of 

virus contamination between participants and researchers after August 2021. It resulted in a  

very restricted time frame to conduct the procedures to collect data for a significant part of 

our project (from August 2021 and December 2022). From January 2023 to August 2023, all 

thesis data were analyzed and written. My last limitation was being forced to finalize three 

jobs (Universidad de los Andes, Clinica Santa Maria, and Pontificia Universidad Catolica de 

Chile) during the all P.hD program because of their limited vision of studying and researching 

in an undeveloped country.   
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ANNEX 2 – MATLAB GENERIC CODES 

 

K-MEANS CODE 

 

function [centroids, cluster_idx] = kMeans(data, k, max_iters) 

    % data: NxD matrix, where N is the number of data points and D is 

the dimensionality 

    % k: number of clusters 

    % max_iters: maximum number of iterations 

     

    % Randomly initialize the centroids from the data points 

    num_data_points = size(data, 1); 

    idx = randperm(num_data_points, k); 

    centroids = data(idx, :); 

     

    % Initialize variables to store cluster assignments and previous 

cluster assignments 

    cluster_idx = zeros(num_data_points, 1); 

    prev_cluster_idx = zeros(num_data_points, 1); 

     

    % Main k-means loop 

    for iter = 1:max_iters 

        % Assign each data point to the nearest centroid 

        for i = 1:num_data_points 

            distances = sum((data(i, :) - centroids).^2, 2); 

            [~, cluster_idx(i)] = min(distances); 

        end 

         

        % If cluster assignments have not changed, break the loop 

        if isequal(cluster_idx, prev_cluster_idx) 

            break; 

        end 

         

        % Update the centroids based on the current cluster assignments 

        for j = 1:k 

            cluster_points = data(cluster_idx == j, :); 

            centroids(j, :) = mean(cluster_points); 

        end 

         

        % Store the current cluster assignments for comparison in the 

next iteration 

        prev_cluster_idx = cluster_idx; 

    end 

end 
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K-MEDIODS CODE 

 

function [medoids, clusters, costs] = kMedoids(data, k, max_iters) 

    % data: NxD matrix, where N is the number of data points and D is 

the dimensionality 

    % k: number of clusters 

    % max_iters: maximum number of iterations 

     

    N = size(data, 1); 

    D = size(data, 2); 

     

    % Initialize medoids randomly 

    medoid_indices = randperm(N, k); 

    medoids = data(medoid_indices, :); 

     

    clusters = zeros(N, 1); 

    costs = zeros(N, 1); 

     

    for iter = 1:max_iters 

        % Assign data points to the nearest medoids 

        for i = 1:N 

            distances = sum(abs(data(i, :) - medoids), 2); 

            [min_dist, min_idx] = min(distances); 

            clusters(i) = min_idx; 

            costs(i) = min_dist; 

        end 

         

        % Update medoids 

        for j = 1:k 

            cluster_points = data(clusters == j, :); 

            cluster_costs = sum(abs(cluster_points - medoids(j, :)), 

2); 

            [min_cost, min_idx] = min(cluster_costs); 

            medoids(j, :) = cluster_points(min_idx, :); 

        end 

    end 

end 
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TAEGER KEISER ENERGY OPERATOR CODE 

 

 

Taeger Keiser Energy Operator Matlab 

 

function energy = teager_kaiser_energy(signal) 

    % signal: The input time series signal 

 

    % Calculate the Teager-Kaiser Energy Operator 

    teo = signal(2:end-1) .^ 2 - signal(1:end-2) .* signal(3:end); 

     

    % Set the first and last samples of the energy to zero (to keep the 

size consistent) 

    energy = [0; teo; 0]; 

end 

 

 

 

SHORT FAST FOURIER CODE 

 

 

 

function [frequencies, magnitude] = shortFFT(signal, fs) 

    % signal: input time-domain signal 

    % fs: sampling frequency 

     

    % Compute the FFT of the signal 

    N = length(signal); 

    Y = fft(signal); 

     

    % Compute the frequency axis 

    f = fs*(0:(N/2))/N; 

     

    % Compute the magnitude of the FFT 

    magnitude = abs(Y(1:N/2+1)); 

     

    % Return the frequencies and magnitude 

    frequencies = f; 

end 
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DBSCAN CODE 

 

 

function [labels, clusters] = dbscan(X, epsilon, MinPts) 

    % X: input data matrix (each row is a data point) 

    % epsilon: maximum distance between points to be considered 

neighbors 

    % MinPts: minimum number of points required to form a dense region 

     

    N = size(X, 1);  % Number of data points 

    labels = zeros(N, 1);  % Cluster labels (-1 for noise) 

    clusters = 0;  % Number of clusters 

     

    for i = 1:N 

        if labels(i) == 0 

            % Find neighbors within epsilon distance 

            neighbors = find(pdist2(X(i, :), X) <= epsilon); 

             

            if length(neighbors) < MinPts 

                labels(i) = -1;  % Mark as noise 

            else 

                clusters = clusters + 1; 

                expandCluster(X, i, neighbors, clusters, labels, 

epsilon, MinPts); 

            end 

        end 

    end 

end 

 

function expandCluster(X, i, neighbors, clusterIdx, labels, epsilon, 

MinPts) 

    labels(i) = clusterIdx; 

     

    while ~isempty(neighbors) 

        currentPoint = neighbors(1); 

        neighbors(1) = []; 

         

        if labels(currentPoint) == 0 

            labels(currentPoint) = clusterIdx; 

            newNeighbors = find(pdist2(X(currentPoint, :), X) <= 

epsilon); 

             

            if length(newNeighbors) >= MinPts 

                neighbors = [neighbors newNeighbors]; 

            end 

        elseif labels(currentPoint) == -1 

            labels(currentPoint) = clusterIdx; 

        end 

    end 

end 


