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ABSTRACT

In recent years, the demand for network resources by applications has seen a substantial in-

crease due to requirements such as minimum latency for real-time applications (e.g., VoIP,

gaming) and minimum bandwidth for data-intensive activities (e.g., VR, video streaming).

As computer networks continue to expand in size and complexity, researchers and profes-

sionals face intricate challenges in managing and optimizing network performance. In this

context, the generation of network traffic plays a pivotal role. Accurate and realistic traffic

generation enables comprehensive assessments of network performance, efficiency, and se-

curity. By simulating real-world scenarios and traffic patterns, researchers can gain valuable

insights into network behavior and evaluate the effectiveness of protocols, algorithms, and

security measures. Traffic generation serves as a fundamental tool for advancing the field

of computer networks, facilitating experimentation, and enabling the development of in-

novative solutions to meet the evolving demands of modern network infrastructures. This

research focuses on the creation of PIPO-TG, a traffic generator specifically designed for

the Tofino Switch. Powered by the P4 programmable data plane technology, PIPO-TG of-

fers customizable packet forwarding on the Tofino architecture, ensuring accurate perfor-

mance evaluations without bottlenecks or distortions. The primary objective of PIPO-TG

is to generate is to develop a highly customizable traffic generator that can generate realis-

tic and diverse traffic patterns, including the emulation of network anomalies and behavior

patterns at a 100Gb/s per port, enabling researchers to evaluate network performance un-

der varying conditions providing customizable packet forwarding with P4 programmable

data planes. Our main contributions include user-defined packet header customization and

open-source code for reproducibility. These efforts foster collaboration within the research

community to advance traffic generation techniques. We show that PIPO-TG only requires a

few lines of code to simulate heterogeneous network scenarios (e.g., traffic bursts and DDoS

attacks) while maintaining hardware performance and flexibility.

Key-words: Traffic Generation. P4. Computer Networks. Experiments generation. Intel

Tofino.





RESUMO

Nos últimos anos, a demanda por recursos de rede por parte de aplicativos tem experimen-

tado um aumento substancial, devido a requisitos como latência mínima para aplicativos

em tempo real (por exemplo, VoIP, jogos) e largura de banda mínima para atividades inten-

sivas em dados (por exemplo, VR, transmissão de vídeo). À medida que as redes de computa-

dores continuam a se expandir em tamanho e complexidade, pesquisadores e profissionais

enfrentam desafios complexos na gestão e otimização do desempenho da rede. Nesse con-

texto, a geração de tráfego de rede desempenha um papel crucial. A geração precisa e realista

de tráfego permite avaliações abrangentes do desempenho, eficiência e segurança da rede.

Ao simular cenários e padrões de tráfego do mundo real, os pesquisadores podem obter in-

sights valiosos sobre o comportamento da rede e avaliar a eficácia de protocolos, algoritmos

e medidas de segurança. A geração de tráfego serve como uma ferramenta fundamental para

avançar no campo de redes de computadores, facilitando experimentação e permitindo o

desenvolvimento de soluções inovadoras para atender às demandas em constante evolução

das infraestruturas de rede modernas. Esta pesquisa se concentra na criação do PIPO-TG,

um gerador de tráfego especificamente projetado para o Tofino Switch. Alimentado pela

tecnologia de plano de dados programável P4, o PIPO-TG oferece encaminhamento de pa-

cotes personalizável na arquitetura Tofino, garantindo avaliações precisas de desempenho

sem gargalos ou distorções. O principal objetivo do PIPO-TG é desenvolver um gerador de

tráfego altamente personalizável que possa gerar padrões de tráfego realistas e diversos,

incluindo a emulação de anomalias de rede e padrões de comportamento a 100Gb/s por

porta, permitindo que os pesquisadores avaliem o desempenho da rede sob condições var-

iáveis, fornecendo encaminhamento de pacotes personalizável com planos de dados pro-

gramáveis P4. Nossas principais contribuições incluem personalização de cabeçalho de pa-

cote definida pelo usuário e código aberto para reprodutibilidade. Esses esforços promovem

a colaboração dentro da comunidade de pesquisa para avançar nas técnicas de geração de

tráfego. Mostramos que o PIPO-TG requer apenas algumas linhas de código para simular

cenários de rede heterogêneos (por exemplo, bursts de tráfego e ataques DDoS), mantendo

o desempenho e a flexibilidade do hardware.

Palavras-chave: Geração de tráfego. P4. Redes de Computadores. Geração de experimentos.

Intel Tofino.
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1 INTRODUCTION

In this chapter, we will provide an in-depth exploration of the context and motiva-

tion surrounding the integration of a traffic generator with the Tofino switch(INTEL, 2021a).

By examining the current networking landscape and identifying the challenges and limi-

tations faced by traditional traffic generators, we aim to establish a clear rationale for our

research. Furthermore, we will outline the objectives of this work and present the contribu-

tions it brings to the field.

1.1 Context and Motivation

In recent years, the demand for network resources by applications has increased((ITU),

2022) due to requirements such as (i) minimum latency (e.g., Voice over Internet protocol

(VoIP), gaming) and (ii) minimum bandwidth (e.g., Virtual Reality (VR), video streaming).

The size and complexity of computer networks have continuously expanded, presenting ever

more intricate challenges for researchers and professionals (KHATIB et al., 2023).

The advent of Software-Defined Network (SDN) and network programmability with

languages like Programming Protocol-independent Packet Processors (P4) has significantly

transformed network monitoring strategies and management. This evolution empowers

network operators to devise solutions capable of execution within the network, leveraging

cutting-edge technologies such as the Tofino switch. However, it is imperative that these

solutions undergo rigorous evaluation in critical scenarios to assess their robustness, pre-

cision, and accuracy. Thorough testing under stress conditions is essential to ensure their

reliability and effectiveness in real-world applications. This validation process becomes piv-

otal in guaranteeing the seamless integration and optimal performance of these innovative

solutions within diverse network environments.

Traffic generation tools have been widely used to assess network performance, effi-

ciency, and security in research and practical applications. The capability to generate con-

trolled and realistic network traffic has become paramount for recent advances in programmable

networks (LIU et al., 2022). By enabling the controlled generation of realistic network traf-

fic and emulating real-world scenarios, these tools empower researchers and practitioners

with valuable insights into network system behavior. These insights, derived from the exper-

iments using traffic generation tools, contribute to enhancing network technologies, making

them an essential asset for those seeking to navigate the complexities of current networks.

Despite consistent efforts made by the research community, existing traffic genera-

tion solutions still pose some limitations. Software-based traffic generation solutions (WILES,

2023; EMMERICH et al., 2015; TREX, 2023) offer a cost-effective and versatile means of sim-

ulating network traffic. These solutions can be executed on top of commodity servers and

provide high flexibility for traffic generation, user-friendly interfaces, and intuitive controls,

simplifying the process of generating traffic. However, these generators have performance

limitations and struggle to reach line-rate values or generate a few hundred Gbps Hardware-
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based traffic generation solutions (IXIA. . . , ; PLAKALOVIC; KALJIC; MEHIC, 2022) are built

on top of specialized hardware components and are a common choice for high-performance

experiments. Although they can reach line rate performance metrics, they are usually chal-

lenging to use, inflexible to changes (e.g., creation of new protocols), and costly.

More recently, some research efforts (ZHOU et al., 2019; LINDNER; HÄBERLE; MENTH,

2023) have emerged to design easy-to-use solutions to generate network traffic with high

performance and without dedicated hardware. These solutions are based on generating

traffic with Tofino hardware, a P4-based switch capable of processing hundreds of Gbps per

port, and also perform internal traffic generation. However, these strategies still have limi-

tations in their traffic generation. While HyperTester(ZHOU et al., 2019) needs an auxiliary

CPU to create its packets and is not completely open-source, P4TG(LINDNER; HÄBERLE;

MENTH, 2023) does not support the definition of customizable protocols and is limited to

only a few different network flows. Additionally, both solutions do not support throughput

variations (e.g., bursts and varying workloads) and do not support running a user-defined

P4 code side-by-side with Tofino traffic generation.

Solving all these limitations while maintaining the benefits offered by these solutions

is not a trivial task. Working with Tofino and the P4 language to maintain high performance

and traffic generation accuracy includes many limitations. Tofino’s native traffic generation

unit does not support resolving these limitations, so we must resolve them through the P4

code. In turn, it has restrictions such as instruction limits and does not support complex

comparisons, floating point operations, and loops.

1.2 Objectives and Contributions

It is within this context that PIPO-TG is positioned, focusing on the creation of a traf-

fic generator specifically designed for the Tofino Switch. Powered by the P4 programmable

data plane technology, the PIPO-TG offers the capability to customize and forward packets

on the Tofino™ Native Architecture (TNA) architecture with line-rate packet generation, en-

suring accurate performance evaluations without introducing bottlenecks or distortions. By

leveraging P4 programmability, our goal is to develop a traffic generator that can generate

realistic and diverse traffic patterns. It incorporates the ability to emulate various network

anomalies and behavior patterns. By simulating scenarios such as network congestion, link

failures, packet drops, and other disruptive events, PIPO-TG enables researchers to assess

the resilience and performance of network systems under realistic and challenging condi-

tions enabling comprehensive testing and evaluation of network systems.

The PIPO-TG, a parameterizable and high-performance traffic generation solution is

built on top of the TNA (INTEL, 2021c) and relies on P4 language to describe and customize

packet generations on the TNA architecture. PIPO-TG can generate network traffic up to

1Tbps line rate, ensuring accurate performance evaluations without introducing bottlenecks

or distortions. PIPO-TG introduces support for arbitrary traffic patterns using a high-level
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Figure 1 – Overview of PIPO-TG traffic generation in TNA.

software-based programming interface that makes the design and operation of a hardware-

based traffic generator. For example, by using the PIPO-TG programming interface, we can

easily define a variety of network workloads and forward them to a user P4 code running on

the same switch.

PIPO-TG extends Tofino traffic generation capabilities and provides features never

seen in other Tofino-based traffic generators. In Figure 1, we illustrate the entire traffic gen-

eration process: 1 users set the traffic generation parameters, 2 PIPO-TG generates traffic

utilizing the Tofino traffic generation unit, 3 tailors it using the PIPO-TG P4 code, and 4

subsequently routes it to the user’s P4 code or the designated physical port.

1.3 Main Contributions

Considering the proposed objectives, the main contributions of our work are sum-

marized as follows:

• A hardware-based traffic generator for line-rate traffic generation;

• A user-friendly high-level interface for easy traffic generation

• A parameterizable traffic generator that extends Tofino capabilities, allowing users to

generate customizable traffic with different packet distributions and rates.

• Open source artifacts for the sake of reproducibility

1.3.1 Research Contributions

Next, we describe the work’s academic contributions, including works submitted to

national and international conferences and open-source artifacts. The work has been sub-

mitted and will be presented (if accepted) at the following conferences:
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1. Filipo Gabert Costa, Francisco Germano Vogt, Fabricio Rodriguez, Ariel Góes De Cas-

tro, Marcelo Caggiani Luizelli, and Christian Rothenberg. “PIPO-TG: Parameterizable

High-Performance Traffic Generation”. Submitted in: IEEE/IFIP Network Operations

and Management Symposium (NOMS) Seoul, South Korea, 2024.

2. Filipo Gabert Costa, Francisco Germano Vogt, Fabricio Rodriguez, Ariel Góes De Cas-

tro, Marcelo Caggiani Luizelli, and Christian Rothenberg. “PIPO-TG Unboxed: Crafting

Tailored Traffic Generation for Industrial URLLC Realities”. To be submitted in: Simpó-

sio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC) Rio de Janeiro,

Brazil, 2024.

Furthermore, the work produced a completely open-source tool for generating traf-

fic, which can be found in the following repository:

1. PIPO-TG traffic generator. <https://github.com/FilipoGC/PIPO-TG>

1.4 Outline

The remainder of this work is organized as follows. Chapter 2 discusses our back-

ground topics and the related works. In Chapter 3, we introduce the PIPO-TG architecture,

features, and implementation. Chapter 4 presents and discusses an evaluation of the pro-

posed approach in three use cases and the results. Last, in Chapter 5, is to conclude the work

with final remarks and perspectives for future work.

https://github.com/FilipoGC/PIPO-TG


25

2 BACKGROUND AND RELATED WORK

This chapter presents an overview of the background and related works relevant to

the research presented in this work. The chapter starts by discussing the background of the

research, followed by a review of the related works in the field.

2.1 Traffic Generation

In computer networking, traffic generation is the process of producing artificial traf-

fic that mimics the behavior of real-world network traffic for testing and evaluating network

devices, protocols, and applications. Traffic generation plays a crucial role in the develop-

ment, testing, and validation of modern networks, especially in the context of data centers,

cloud computing, and software-defined networking.

Network traffic generators are essential tools in the design, development, and man-

agement of modern networks. With increasing network complexity and limitations on re-

playing measured traces, synthetic traffic generation has become crucial. These genera-

tors inject controlled packets into the network, capturing the characteristics of actual traffic.

However, despite the wide range of available traffic generators, there is still a lack of consen-

sus on validation methods and metrics for assessing their accuracy(MOLNÁR; MEGYESI; SZ-

ABÓ, 2013). Further research is needed to establish standardized evaluation approaches and

enhance the effectiveness of traffic generators in various network scenarios. When compar-

ing hardware and software-based traffic generators, it is important to consider the financial

implications of investing in high-performance resources.Table[1] provides a comprehensive

overview of the key factors to consider in this comparison. It highlights the advantages and

limitations of each approach, including the cost-effectiveness of software-based solutions

and the specialized design and accuracy of hardware-based solutions. By analyzing these

factors, researchers and practitioners can make informed decisions about which type of traf-

fic generator is most suitable for their specific needs.

In the broader context of traffic generation, the artificial traffic produced is instru-

mental for testing and evaluating network devices, protocols, and applications in various

contexts, such as data centers, cloud computing, and software-defined networking. Traffic

generators are specifically designed to inject controlled packets into the network, offering

a high degree of flexibility. This flexibility enables network engineers to replicate traffic be-

havior, simulate specific events, and recreate desired traffic patterns. Whether emulating

heavy data transfers of a file transfer protocol, intermittent bursts of a VoIP call, or contin-

uous flow of web traffic, these generators provide the versatility needed to recreate a wide

array of network scenarios.

Traffic generators can be categorized into two groups: software-based and hardware-

based. Software-based generators rely on software applications to simulate and generate

network traffic, while hardware-based generators use specialized hardware components for

this purpose. The choice between these two approaches involves careful consideration of
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critical factors, as outlined in Table 1. This table presents the benefits of traditional software

or hardware traffic generation techniques and compares them with the assistance of PIPO-

TG. The decision between hardware and software-based generators ultimately depends on

specific requirements and objectives, empowering engineers to optimize network configu-

rations effectively and ensure optimal performance under diverse conditions.

In this section, we will subdivide traffic generators into two very distinct groups:

software-based traffic generators and hardware-based traffic generators. This division is

based on the way traffic is generated, where software-based traffic generators rely on soft-

ware to generate traffic, while hardware-based traffic generators use specialized hardware to

generate traffic.

Table 1 – Comparison of SW/HW traffic generation.

Characteristic Software-based Hardware-based

Usability ! ✗

Accuracy ✗ !

Performance ✗ !

Resources ✗ !

Flexibility ! ✗

• Usability: The usability determines the ease of use for a traffic generator. Hardware-

based solutions are usually not user-friendly since users must configure low-level fea-

tures to obtain the desired behavior. On the other hand, software-based solutions

provide a transparent platform to the user, where he only cares about declaring the

desired behavior. PIPO-TG balances both approaches with the simplicity of stating

approaches in software and hardware performance.

• Accuracy: Accuracy in traffic generation refers to how closely the generated traffic pat-

terns match real-world network behavior. Software-based generators may be limited

in replicating complex or nuanced traffic patterns. In contrast, hardware-based gen-

erators often offer higher accuracy by using specialized hardware components to em-

ulate real traffic precisely.

• Performance: Performance refers to the ability of a traffic generator to handle and

generate network traffic effectively and efficiently, principally in terms of traffic vol-

ume. In general, Hardware-based traffic generators can deliver superior performance,

especially when dealing with high traffic loads (e.g., hundreds of Gbps) or complex

scenarios, thanks to their dedicated hardware. Software-based generators might per-

form less for demanding network testing tasks due to their reliance on general-purpose

computing resources.

• Resources: Resources encompass the capabilities and functionalities offered by a traf-

fic generator. Due to their dedicated hardware components, hardware-based genera-
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tors often provide advanced features and capabilities. Software-based generators can

vary widely regarding available features, depending on the specific software used and

its capabilities.

• Flexibility: Flexibility assesses how easily a traffic generator can be configured and

adapted to different network environments and testing scenarios. Software-based traf-

fic generators are more flexible, allowing for versatile configuration and adaptability to

various network setups. Hardware-based solutions may have limitations in flexibility

because they are built around specific hardware components.

2.1.1 Software-based

Traffic generators implemented on software platforms offer numerous advantages

for network evaluation and testing. These platforms, often developed by research units or

universities, are known for their cost-effectiveness and flexibility. They provide researchers

with the ability to easily deploy multiple nodes, enabling the replication of distributed sce-

narios, even with a large number of nodes. Moreover, software traffic generators are often

open-source and freely available, making them accessible to a wide range of users.

One significant advantage of software traffic generators is the ease of code modifica-

tion and extension. Researchers can adapt the generator to their specific needs by adding

new functionalities, implementing custom traffic models, and integrating support for var-

ious operating systems and hardware platforms. This flexibility empowers researchers to

conduct experiments that align closely with real-world scenarios and test actual network

implementations. However, it is important to acknowledge that software generation faces

challenges that can impact experiment accuracy. The generated traffic may deviate from the

operator’s intentions, leading to potential issues and inaccuracies in the evaluation process.

Unlike hardware generation, where detailed datasheets with certified information are avail-

able, software platforms cannot provide the same level of information regarding confidence

intervals and imposed values such as bit rate(BOTTA; DAINOTTI; PESCAPÉ, 2010).

Software traffic generation is a valuable approach that offers flexibility, cost-effectiveness,

and accessibility for network evaluation and testing. By leveraging the capabilities of soft-

ware platforms, researchers can conduct realistic experiments and customize the traffic gen-

eration process to suit their specific research objectives. However, it is crucial to be aware of

the challenges and limitations associated with software generation to ensure accurate and

reliable evaluations. Additionally, software network testers offer the greatest level of flexibil-

ity among all types of network testers. However, optimizing the performance of a software

network tester requires significant development efforts. Furthermore, since the Central Pro-

cessing Unit (CPU) is a universal computing platform, it has inherent limitations on packet

generation throughput. To meet the demand for higher throughput, network testing tasks

require additional CPU cores, resulting in linearly increased equipment and power costs.
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2.1.2 Hardware-based

Hardware-based traffic generators, on the other hand, offer superior accuracy and

performance capabilities compared to software-based alternatives. These platforms, typi-

cally provided by commercial vendors, are known for their precision and reliability. While

they may be more expensive and utilize closed-source technologies, they deliver robust and

precise traffic generation.

One advantage of hardware traffic generators is their ability to provide detailed data

sheets. These data sheets contain certified information, including confidence intervals for

the imposed values, ensuring precise and reliable traffic generation(EMMERICH et al., 2017).

This makes hardware-based traffic generators well-suited for demanding testing and evalu-

ation scenarios that require precise control over traffic characteristics. Despite the higher

initial invesent, the benefits of using hardware-based traffic generators, such as improved

precision and performance, make them a valuable choice for organizations and researchers

aiming to conduct thorough and accurate network performance evaluations.

2.2 P4

As the P4 language plays a fundamental part in the development of our traffic gener-

ator, in this section we present its structure and main components. Traditional networking

devices such as routers and switches are limited in their programmability capabilities, with

vendors having control over the underlying algorithms, while network operators struggle

to detect network anomalies - e.g., misconfiguration. With the growing, adoption of SDN

concepts and the emergence of network programmable languages such as P4(BOSSHART et

al., 2014) and Protocol Oblivious Forwarding (POF)(SONG, 2013), were emerging for defin-

ing and implementing custom algorithms. With the increasing adoption of SDN concepts

and programmable switches, operators can define only the data forwarding functionalities

directly in the data plane, while the control logic remains separated. This brings a set of

benefits: (i) by decoupling the control plane from the data plane, network operators can de-

fine routing and monitoring algorithms independently of the manufacturer; (ii) the internal

pipeline of forwarding devices can be entirely defined by the operator, allowing customiza-

tion of parser elements, headers, and match+action processing logic with tables - also de-

fined by the operator.

For example, with programmable switches, network operators can replace embed-

ded control plane algorithms with self-defined ones in SDN, resulting in simplified complex

algorithms, enhancing flexibility, efficiency, and security in use cases like data centers or

5G networks. Programmable data planes offer the ability to implement custom data plane

algorithms and define new protocol headers and forwarding behaviors, utilizing various pro-

gramming models like P4. P4 is the most widely used programming language and concept

for data plane programming.
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2.2.1 Introduction

P4 is a high-level language for programming protocol-independent packet proces-

sors that allows users to define how data packets are processed in network devices. It sepa-

rates the packet processing logic from the underlying hardware infrastructure, allowing users

to program the behavior of network devices in a more flexible and customized way than with

traditional technologies.

Figure 2 – P4 & OpenFlow

It defines the behavior of data planes and operates with SDN interfaces such as Open-

Flow or P4Runtime. It provides networking programmers with the capability to precisely

define the packet processing mechanisms in forwarding devices, such as switches or Net-

work Interface Cards (NICs), by writing code that is compiled into low-level instructions for

a range of networking targets, including Field-programmable Gate Arrays (FPGAs), Smart-

NICs, and software switches. The P4 forwarding model exhibits slight differences compared

to the OpenFlow data plane [2]. The accompanying diagram demonstrates the distinctions

between P4 and OpenFlow and illustrates the relationship between P4, utilized for switch

configuration and specification of packet processing rules, and existing Application Pro-

gramming Interfaces (APIs) like OpenFlow, which are specifically designed for populating

forwarding tables in fixed-function switches.

With P4, switches can forward incoming packets using multiple stages of match/ac-

tion, and the language supports a programmable parser to allow for new headers and pro-

tocols. The P4 forwarding model can be described in two types of operations: configure
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and populate. During the configure operation, the parser is programmed, and the order

of match/action stages is organized, specifying which header fields are processed in each

stage. During the populate operation, table entries are added and/or removed, according to

the parser, and inserted into the match/action tables specified during configuration. One

of the key features of P4 is its protocol independence, which means that it can be used with

any network protocol. As stated in the paper P4: Programming Protocol-Independent Packet

Processors, P4 enables one to express arbitrary, packet-by-packet forwarding behaviors, us-

ing a high-level, domain-specific language (BOSSHART et al., 2014). This flexibility is par-

ticularly useful for researchers and developers who need to test and prototype new network

protocols or functions.

Another significant feature of P4 is its ability to separate the data plane and the con-

trol plane. According to Bosshart et al. (2014) (BOSSHART et al., 2014), P4 effectively seg-

regates the forwarding (data plane) and control (control plane) functions, making the for-

warding plane fully programmable. This separation allows for more efficient and dynamic

control of network traffic, as the data plane can be modified and updated without disrupting

the control plane. P4 also provides the ability to specify forwarding rules at a fine-grained

level. As described in (BOSSHART et al., 2014), P4 allows users to write expressive and pre-

cise forwarding policies (BOSSHART et al., 2014). This fine-grained control enables network

administrators to implement specific policies and rules for network traffic, such as Quality

of Service (QoS) policies or traffic engineering.

To summarize, P4 is a powerful language that provides network administrators and

developers with the flexibility and customization needed to efficiently manage and control

network traffic. Its protocol independence, separation of the data and control planes, and

fine-grained forwarding rules make it a valuable tool for researchers, developers, and net-

work administrators.

2.2.2 Control Program

The control program is a crucial component of the P4 language that allows users to

define the behavior of the network devices. According to the official P4 language specifica-

tion, the control program describes the actions to take for each incoming packet based on

the packet’s headers and any other contextual information that the user wishes to include

(FOUNDATION, 2019). This means that the control program can be used to specify how

network devices should handle different types of traffic, such as prioritizing certain types of

packets or dropping packets that match specific criteria.

One of the main benefits of the control program in the P4 language is its flexibil-

ity. Users can define their control programs to meet specific networking requirements rather

than relying on pre-defined protocols. As noted in a paper on P4 language, with P4, users can

define the control plane programmatically, opening up the possibility of new, customized

protocols(BOSSHART et al., 2014). This flexibility allows users to optimize the behavior of
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their network devices for their specific use case, resulting in improved performance and ef-

ficiency.

In addition to its flexibility, the control program in P4 language also enables network

operators to make real-time changes to the behavior of their network devices. As noted in

a white paper on P4 language, P4 provides rapid innovation in networking by enabling the

programmability of the control plane. It provides the flexibility to adapt to evolving network

requirements and conditions, facilitating quick and efficient network adaptation (FOUNDA-

TION, 2019). This means that network operators can modify the control program on-the-fly

to respond to changing network conditions, rather than waiting for pre-defined protocols

to be updated or replaced. This can result in faster response times and improved network

reliability.

2.2.3 Multiple Pipelines

The P4 pipelines can adapt to suit each architecture. In the case of the Tofino™ Na-

tive Architecture (TNA’s) P4 pipeline, as illustrated in Figure[4], every physical port has the

capability to transmit and receive packets. Hence, the P4 pipeline of the Intel Tofino is di-

vided into two main sections: ingress and egress.

Incoming packets received by an input port undergo processing in the programmable

ingress parser. This step involves extracting and storing packet headers for future use within

the ingress control, such as matching in Matching Action Table (MAT). Subsequently, the

packet is processed by the ingress control, undergoing multiple matches against user-defined

Matching Action Tables (MATs) and potential header manipulation.

At the ingress control, the process of matching a packet against a Match Action Table

that can be visualization in Figure[3], MATs in P4 utilize lookup keys that are formed using

packet metadata, which are then used to perform row matching within the MAT. In case of

a hit, the defined action is applied along with the specified action data. Instead, In case of a

miss, the default action is applied.

The Lookup key is formed, comprising specific header and/or metadata fields ex-

tracted from the packet. This lookup key serves as the basis for comparison with the stored

keys within the MAT. The comparison is performed based on a predetermined match type,

with the P4 core library defining three standard match types: exact, ternary, and longest pre-

fix matching (lpm). Each component of the lookup key undergoes a comparison operation,

ensuring that the packet’s attributes align with the stored key using the specified match type.

During the ingress processing, the packet’s destination is determined, which involves

selecting an egress port. At the end of the ingress section, the packet is serialized through the

ingress deparser, emitting the headers according to the user-defined ingress deparser. Fol-

lowing this, the packet enters the traffic manager, which can replicate the packet if needed,

such as in the case of multicast. The packet is then queued for the chosen egress port and

later queued based on Intel Tofino’s underlying scheduling strategy. It is then sent to the
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Figure 3 – Match-action Table(MAT) in P4

egress parser.

Similar to the ingress counterparts, the egress parser, egress control, and egress de-

parser perform similar operations. Finally, the packet is transmitted through the specified

output port or may be placed back into the ingress section of the P4 pipeline if the port is

configured as a recirculation port.

2.3 Tofino Native Architecture (TNA)

TNA is a design philosophy created by Barefoot Networks, a company that was ac-

quired by Intel in 2019 for its Tofino family of network processing units. The TNA approach

is based on the idea of making the hardware programmable, which allows the software to

control the behavior of the device, making it easier to customize the network processing

pipeline. The Tofino chip is designed to be programmable in a way that is completely differ-

ent from traditional Application-Specific Integrated Circuits (ASICs), and Barefoot Network

Tofino Software Development Kit (SDK) and P4 language are the keys to unlocking its poten-

tial(INTEL, 2021b).

The Tofino chip was specifically designed to work with P4 and the P4 Runtime inter-

face, which allows network operators to dynamically configure and control the forwarding

plane of the device. This makes it possible to tailor the behavior of the network to the specific

needs of the application, improving performance and reducing latency.

The traffic manager is an important component of the Intel Tofino chip and plays

a key role in managing the flow of network traffic. The traffic manager is responsible for

scheduling packets and managing the queues in the switch. Tofino switch architecture con-

sists of a set of ingress pipelines[4], which parse packets and extract metadata, and an egress

pipeline, which takes the results of the ingress processing and decides where the packet

should be sent next(INTEL, 2021b).
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Figure 4 – Simplified version of P4 Pipelines of the Tofino Native Architecture

In Figure 4, the P4 pipeline in the TNA showcases the relationship between the ingress

pipelines and the traffic manager, followed by the egress pipelines, ultimately leading to re-

circulating. One of the benefits of the TNA approach is the ability to update the software

running on the device without having to make changes to the underlying hardware. This

makes it easier to add new features and functionalities to the network, reducing the time and

cost of deploying new services. Tofino is also designed to be fully programmable, so it can

be updated with new features and functionality as needed without requiring any changes to

the hardware. Overall, TNA and the use of P4 enable network operators to have more control

over the behavior of their networks, allowing them to tailor the network to the specific needs

of their applications.

2.3.1 Traffic Generation with Tofino

Traffic generation using the Tofino switch has been explored in some studies, such as

(LINDNER; HÄBERLE; MENTH, 2023), (RODRIGUEZ et al., 2022), and (LAI et al., 2019). The
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switch’s packet generator is a versatile component that offers a range of functionalities for

efficient packet generation in our work. It operates through the pipeline interface, specifi-

cally utilizing the pipe port 68 for seamless communication and data transfer. With its eight

independent generators or applications, the packet generator enables the simultaneous ex-

ecution of various packet-generation tasks.

The packet generator’s capabilities are further enhanced by its data plane triggers.

Each application has its trigger mechanism, enabling precise control over packet genera-

tion. The trigger options include timer-based triggers, which can be configured as periodic

or one-shot timers. This allows for the generation of packets at regular intervals or for spe-

cific durations. Additionally, the packet generator supports port-down triggers. When a port

becomes unavailable or inactive, it triggers the packet generator to generate specific pack-

ets or perform predefined actions. This functionality adds resilience and adaptability to the

packet generation process, enabling efficient testing and evaluation of network scenarios.

Another unique capability of the packet generator is its ability to trigger packet gen-

eration based on the first four bytes of a recirculated packet. This feature enables the packet

generator to respond or generate packets based on the content of the recirculated packets,

enhancing its flexibility in handling complex network scenarios. Overall, the packet gener-

ator in the Intel Tofino switch provides researchers and network engineers with a powerful

tool for generating and testing packets. Its diverse range of triggers, independent genera-

tors, and packet data buffers ensure accurate and efficient packet generation, making it an

invaluable component in network testing and evaluation(FOUNDATION, 2021).

2.4 Workload Assay

One of the primary objectives of traffic generators is to create a realistic network sce-

nario. As we know, computer networks can undergo slight variations and encounter various

possible scenarios, e.g. bursts, ON-OFF patterns, mobile broadband fluctuations, or oscil-

lations. To design experiments that closely resemble real-world conditions, the generation

of workloads for traffic generators becomes crucial. This allows researchers to define load

models to be generated based on mathematical functions. For instance, WAVE(Workload

Assay for Verified Experiments)(ALMEIDA et al., 2023) proposed the sinusoidal load model

based on the sine function, resulting in periodic load behavior. By incorporating such load

models, researchers can achieve more accurate and representative simulations of network

traffic.

Developing a thorough understanding of the generated workload is crucial for an

accurate analysis of results in scientific experiments. In the context of computer network re-

search, synthetic traffic generators are commonly used. However, these generators often fail

to accurately portray the behaviors of real-world applications. This is where the Workload

Assay for Verified Experiments (WAVE) comes into play.
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2.5 Related Work

In the realm of computer networking, traffic generation refers to the creation of net-

work traffic that imitates real-world behavior. This practice is essential for testing and evalu-

ating network devices, protocols, and applications in data centers, cloud computing, and

software-defined networking. Traffic generators serve as tools for designing and manag-

ing networks. They introduce controlled packets into networks to replicate traffic patterns.

However, establishing evaluation methods and metrics to ensure accuracy remains a chal-

lenge (MOLNÁR; MEGYESI; SZABÓ, 2013), which calls for research. When comparing hardware-

based generators with software-based ones, it is important to consider cost implications.

Software-based solutions are more cost-effective, while hardware-based options offer design

and precision (refer to the table for details). This analysis assists professionals in selecting

the traffic generator that suits their requirements.

In this context of traffic generation, various software-based and hardware-based ap-

proaches have been developed. This section provides an overview of existing research in

both categories. In the field of network traffic generation, open-source alternatives to ex-

pensive proprietary solutions have become increasingly popular among universities and the

research community. These open-source traffic generators provide cost-effective or even

free options that offer high flexibility. (ADELEKE; BASTIN; GURKAN, 2022) Surveyed over

7000 papers related to computer networking published between 2006 and 2018 (13 years).

From these papers, they identified and listed the top 92 traffic generators based on their

usage. We will now discuss the methods traditionally used by the scientific community, fo-

cusing on the first five in the list proposed by (ADELEKE; BASTIN; GURKAN, 2022), excluding

Moongen (EMMERICH et al., 2015) and Pktgen (WILES, 2023), which will be introduced in

the next subsection. One of them e.g., Iperf2 (MCMAHON; AUCKLAND, 2005) is a widely uti-

lized open-source tool that allows users to measure bandwidth and network performance.

It supports various protocols and provides both client and server modes for generating and

measuring traffic.

Recently, both software- and hardware-based approaches have been developed in

the context of traffic generation, mainly used for academic evaluation. More specifically,

open-source traffic generators provide cost-effective – or even free – options with high flexi-

bility regarding traffic configuration.

Netperf (JONES, 1996) is a versatile benchmark tool designed to evaluate different as-

pects of network performance. It primarily focuses on measuring bulk data transfer and re-

quest/response performance using Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP) protocols and the Berkeley Sockets interface. While its main features revolve

around these areas, Netperf also supports tests for Data Link Provider Interface (DLPI) and

Unix Domain Sockets, and IPv6 tests can be included based on the conditional compilation.

The primary goal of httperf (MOSBERGER; JIN, 1998) is not to focus on a specific

benchmark but rather to offer a reliable and high-performance tool that enables the cre-
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ation of both micro- and macro-level benchmarks. The distinguishing features of httperf

include its robustness, allowing it to generate and sustain server overload, its support for

the HTTP/1.1 protocol, and its extensibility for incorporating new workload generators and

performance measurements. In addition to describing the design and implementation of

httperf, their paper also shares the experiences and insights gained during the development

of the tool.

Scapy (BIONDI, 2011) is a robust Python library that offers powerful capabilities for

interactive packet manipulation. It allows users to create, decode, send, and capture pack-

ets across a wide range of protocols. With Scapy, it is possible to match requests and replies,

forge packets, and perform various network-related tasks. It serves as both a Read-Eval-Print

Loop (REPL) for interactive use and a library for integrating custom network layers. Addi-

tionally, Scapy is cross-platform, offering native support for Linux, macOS, most Unix-based

systems, and Windows with Npcap. It is released under the GNU General Public License ver-

sion 2 (GPLv2) license, and, starting from version 2.5.0+, it is compatible with Python 3.7+

(including PyPy).

Netcat (*HOBBIT*, 1995) is a versatile Unix utility that facilitates the transfer of data

over network connections using TCP or UDP protocols. It serves as a reliable tool that can

be used directly or seamlessly integrated into other programs and scripts. Beyond its core

functionality, Netcat offers a wide range of features, making it a valuable tool for network

debugging and exploration. It can create various types of connections and includes several

built-in capabilities. Despite its usefulness, it is surprising that Netcat was not provided as a

standard Unix tool earlier, given its cryptic yet widely recognized nature.

2.5.1 Software-based traffic generation

Packet Generator (Pktgen), also known as Packet Generator, is a software-based tool

that generates network traffic by leveraging the Data Plane Development Kit (DPDK) (PROJECTS,

2023) fast packet processing framework(WILES, 2023), Created in 2010 by Keith Wiles the

Pktgen is capable of generating traffic at wire rate, achieving 10Gbit/s speeds with 64-byte

frames. Acting as both a transmitter and receiver at line rate. With runtime environment, the

Pktgen configuration interface, allows users to easily define and manage traffic flows.

Real-time metrics for multiple ports can be displayed, providing valuable insights

into network performance. Additionally, Pktgen enables the generation of packets in se-

quence by iterating through source or destination Media Access Control (MAC), IP addresses,

or ports. Supporting including UDP, TCP, Address Resolution Protocol (ARP), Internet Con-

trol Message Protocol (ICMP), Generic Routing Encapsulation (GRE), Multi Protocol Label

Switching (MPLS), and Queue-in-Queue, making it versatile for different network scenarios.

The software is highly configurable via Lua, released under a BSD license.

TRex(Realistic Traffic Generator)(TREX, 2023) is a cost-effective, open-source traffic

generator that operates in both stateful and stateless modes, leveraging the power of DPDK.
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It is capable of generating L3-7(layer 3 to 7 in network layers) traffic. In its stateless mode,

TRex supports multiple streams. It provides detailed statistics, including latency and jitter,

at the stream/group level, with advanced stateful functionality that enables the emulation of

Layer 7 traffic, incorporating fully-featured scalable TCP/UDP. In addition, TRex is its scal-

ability, reaching speeds of up to 200Gbit/s with a single server, making it suitable for high-

performance testing scenarios.

Built on the just-in-time (JIT) compiler LuaJIT(PALL, 2023) and the packet processing

framework DPDK, MoonGen(EMMERICH et al., 2015) was idealized in 2015, that can satu-

rate 10 Gb/s links using minimal-sized packets while efficiently utilizing a single CPU core.

Leveraging the powerful packet processing framework DPDK, MoonGen achieves impressive

scalability through linear multi-core scaling, enabling even higher transmission rates. Our

extensive testing has confirmed MoonGen’s capability to reach an astounding 178.5 million

packets per second (Mpps) at a remarkable speed of 120 Gbit/s. Furthermore, MoonGen

provides unparalleled flexibility by enabling users to customize the packet generation logic

through user-controlled Lua scripts. Adding to its capabilities, MoonGen harnesses the un-

tapped potential of commodity NICs by utilizing hardware features.

2.5.2 Hardware-based traffic generation

The HyperTester (WANG; XU; WU, 2019), (ZHOU et al., 2019) is a hybrid software-

based traffic generation and hardware-based traffic replication, the implementation of Hy-

perTester on the Tofino switch, along with numerous network testing tasks, has yielded promis-

ing results. The authors introduce the Network Testing API (NTAPI), which provides a means

to define triggers for packet manipulation and statistic collection. By utilizing these expres-

sions, template packets are created along with a corresponding P4 program that enables the

desired functionality. HyperTester is a fully implemented solution that operates on a sin-

gle programmable switch and consists of three layers: NTAPI, switch CPU, and switching

Application-Specific Integrated Circuit (ASIC). The process begins with network operators

defining various tasks using NTAPI. The switch CPU then compiles these tasks and gener-

ates template packets along with the necessary P4 program. The sender module generates

test packets based on the template packets, while the switch CPU analyzes the test statistics

obtained from the switching ASIC. Finally, the switching ASIC accelerates and modifies the

template packets, generating the final test traffic at the desired speed on the sender module.

Evaluations on the hardware testbed demonstrate that HyperTester achieves line-rate packet

generation, reaching speeds of 400Gbit/s, while maintaining highly accurate rate control.

P4STA (KUNDEL et al., 2020), (KUNDEL et al., 2022), is an open-source framework

that combines the flexibility of software-based traffic load generation with the accuracy of

hardware packet timestamping. The evaluation results obtained using an off-the-shelf P4-

programmable switch, show that a time resolution of up to 1 nanosecond can be achieved

on these programmable data plane platforms. Moreover, the authors show how to combine
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the traffic load of multiple software-based load generators to achieve a measurement load of

up to 100Gbit/s per port. In general, is an architecture that combines multiple load gener-

ation sources and enhances them with accurate hardware timestamps before sending them

to the device under test. Once the device under test responds by sending back the packets,

they are appended with a second timestamp and duplicated to an external host. At the exter-

nal host, the hardware timestamps are extracted and can be utilized to calculate round-trip

times (RTTs) and other relevant metrics.

The FPGA-Based Synthetic Ethernet Traffic Generator, proposed by Yuan (YUAN et

al., 2017). In their paper, Fast Flow-Based Ethernet Traffic Generator on Field-programmable

Gate Array (FPGA) presents a cost-effective solution for network evaluation. The system

utilizes FPGA technology to generate synthetic Ethernet traffic at a rate of 10 Gbit/s. The

configuration data from a computer is transmitted to the FPGA(COMBO-LXT) board via a

Peripheral Component Interconnect (PCI) Express bus, allowing for efficient traffic genera-

tion. The FPGA board is equipped with user-friendly interfaces for controlling the data flow

and achieving a 10Gbit/s link rate. Each hardware block is linked to an interface to facilitate

seamless communication and operation.

In the High-Speed FPGA-Based Ethernet Traffic Generator (PLAKALOVIC; KALJIC;

MEHIC, 2022), presents a scalable Ethernet traffic generator based on FPGA is presented.

The proposed solution demonstrates the capability to fully utilize a 40Gb/s link while of-

fering the flexibility to manipulate traffic characteristics at the packet level. Although ini-

tially designed for the DE10-Pro system, the proposed architecture can be easily adapted

to other FPGA boards with minimal development effort and modifications, ensuring porta-

bility and versatility. The hardware design of the packet generator was implemented using

VHSIC Hardware Description Language (VHDL), adhering to predetermined characteristics

and signal definitions. This approach ensured compatibility with Avalon MM and Avalon ST

interfaces, facilitating seamless integration and communication within the system.

The authors of (LINDNER; HÄBERLE; MENTH, 2023) present P4TG, a traffic gener-

ator based on the P4-programmable Intel Tofino ASIC. P4TG operates in two modes: gen-

eration mode and analysis mode. In generation mode, P4TG is capable of generating up to

1 Tb/s of Ethernet traffic, distributed across 10 ports at a rate of 100 Gb/s each. It supports

packet customization and provides measurements of L1 and L2 transmit and receive rates,

packet loss, out-of-order packets, round trip time, and Inter-arrival times (IATs). Notably,

P4TG demonstrates stable IATs for 64-byte frames in constant bit-rate traffic at 100 Gb/s,

surpassing the performance of other traffic generators. Additionally, P4TG is capable of gen-

erating random traffic, enhancing its versatility.

In analysis mode, P4TG analyzes external traffic and provides measurements of rates,

frame types and sizes, and samples IATs. It also acts as a transparent forwarder, allowing for

traffic analysis without disrupting connectivity. The paper provides a detailed description of

P4TG’s implementation and includes a performance comparison with other traffic genera-
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tors. The results highlight the superior performance of P4TG in generating stable IATs and

its ability to analyze traffic effectively.

2.5.3 Outline

In this section, we provide a summary of all the presented works, sorting them into

specific categories. This provides a good insight into the focus of these works, their limita-

tions, and where our strategy fits in relation to these works. The table 2 allows us to compare

the most relevant related works and PIPO-TG. Below we described the key criteria:

• 100+ Gbps on multiple ports: The capability to generate 100 Gbps or more in multiple

ports and at the same time.

• Workload assay: The possibility to generate workloads for more realistic experiments.

Instead of generating traffic based on a fixed throughput, workload patterns can be

based on a pre-defined model (e.g., Sinusoid and Flashcrowd (ALMEIDA et al., 2023)).

• Custom traffic: The capability to generate traffic with customizable parameters. It

allows researchers to define specific traffic patterns, such as traffic volume, packet size,

distribution, or specific protocols.

• Internal generation: The ability to generate traffic without the need for extra resources

or servers.

Table 2 presents the performance of each work in the defined categories, as well as

the performance of the proposed strategy. As we can observe, our work is the only one that

propose a highly customizable traffic generator that needs a single pipeline for TNA archi-

tecture that allows to specify user-defined packet header customization with an open source

code for foster reproducibility.
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Table 2 – Review of related works.
- unspecified maximum link rate.

Feature
Propose 100+ Gbps Workload Assay Custom Traffic Internal Generation

So
ft

w
ar
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ed

Pktgen(WILES, 2023) ✗ ✗ ! !

MoonGen(EMMERICH et al., 2015) ✗ ✗ ! !

TRex(TREX, 2023) ✗ ✗ ! !

Iperf2(MCMAHON; AUCKLAND, 2005) - ✗ ! !

NetPerf(JONES, 1996) - ✗ ✗ !

httpperf(MOSBERGER; JIN, 1998) - ✗ ✗ !

Scapy(BIONDI, 2011) - ✗ ! !

Netcat(*HOBBIT*, 1995) - ✗ ✗ !

Wave(ALMEIDA et al., 2023) - ! ✗ ✗

H
ar

d
w

ar
e-

b
as

ed Yuan(YUAN et al., 2017) ✗ ✗ ! !

HyperTester(WANG; XU; WU, 2019) ! ✗ ! ✗

P4STA(KUNDEL et al., 2020) ! ✗ ✗ ✗

Plakalovic(PLAKALOVIC; KALJIC; MEHIC, 2022) ✗ ✗ ! !

P4TG(LINDNER; HÄBERLE; MENTH, 2023) ! ✗ ✗ !

PIPO-TG ! ! ! !
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As we can observe, similarly to P4TG (LINDNER; HÄBERLE; MENTH, 2023), Hyper-

Tester (ZHOU et al., 2019) and P4STA (KUNDEL et al., 2020), PIPO-TG can generate 100 Gbps

on multiple ports. However, PIPO-TG is the only one that combines this performance with a

high-level interface and allows customizable traffic generation and following workload assay

models. As a disadvantage, PIPO-TG does not have a monitoring system integrated into the

generator.
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3 PIPO-TG DESIGN & IMPLEMENTATION

In this chapter, we discuss the details of our PIPO-TG traffic generator. First, we in-

troduce the details about the traffic generator design and workflow, and next, we describe

more about the implementation details. Finally, we present the main challenges identified

to finish the PIPO-TG implementation.

PIPO-TG is a traffic generator based on the Tofino switch, which uses Tofino’s traffic

generation capabilities combined with Python and P4 processing to generate up to 100 Gbps

of parametrizable traffic. PIPO-TG allows users to define the traffic patterns using a user-

friendly script similar to Scapy to define the traffic headers, protocols, customized headers,

packet size distribution, throughput, and others.

Furthermore, while we generate the traffic, we can simultaneously execute another

P4 code (from the user) that receives this traffic and can carry out its operation normally.

This enables the possibility of testing a P4 code on a single P4 switch, without the need for

an external server for traffic generation. In the next sections, we discuss the traffic genera-

tion process using P4-TG, its architecture, main components, and currently identified limi-

tations.

3.1 Architecture

The PIPO-TG architecture is presented in Figure 5, illustrating the high-level compo-

nents and their interconnections. These components are divided into blocks, first, the input

of the user will be processed by the processing module, which will generate the files, and

finally, this goes to execute these files, and they are described below:

PIPO-TG
traffic

definition

Generate
port config

Processing module Execution module
Components

ProcessingInput GeneratedPreparation Execution
Generated files

Tofino Switch

PIPO-TG

 User P4
code

(optional) Preprocessing module

Input

User
PIPO-TG RunningOutput

Generate
table entries

Generate
runtime file

Generate
PIPO-TG P4

code

PIPO-TG
P4 code

Runtime
file

Port Config Table
entries

Compile P4
codes

Run Switch 2
Pipelines

Configure
Table

Information
Configure

Ports

Parser user
traffic

definition

Figure 5 – PIPO-TG architecture and workflow

3.1.1 Input

As input, PIPO-TG receives the traffic patterns definition and, optionally, a user-

provided P4 code. To define the generated traffic, the user needs to write a simple Python

script describing the traffic patterns along with configuration parameters. Algorithm 1 presents

an example of PIPO-TG input code to generate IP packets at 100 Mbps with destination In-

ternet Protocol (IP) 10.0.0.2 and a custom header to be sent via physical port 5. Additionally,

the user defines configuration details such as the pipeline generation port, port bandwidth,

and the type of traffic limitation desired. As mentioned, the user can also define a P4 code
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Algorithm 1 Example of PIPO-TG traffic generation input.

import PipoTG
# i n s t a n t i a t e the t r a f f i c generator
myTG = PipoGenerator ( )
# define the generation port
myTG. addGenerationPort (68)
#Phys port , Port ID (D_P) , Port BW
myTG. addOutputPort ( 5 , 160 , "100G" )
# s e t IP header with dst addr
myGenerator . addIP ( dst= " 1 0 . 0 . 0 . 2 " )
# c r e a t e a 8 b i t s custom header
customHeader = Header (name="myHeader" , s i z e =8)
customHeader . addField ( Field ( "metadata" , 8 ) )
myTG. addHeader ( customHeader )
# define Throughput (Mbps) and the type
# ( port_shaping or meter )
myTG. addThroughput (100 , "meter" )
# s t a r t t r a f f i c generator
myTG. generate ( )

to run simultaneously along with PIPO-TG. The P4 code is optional because the user can di-

rectly send the generated traffic to an external server without the need to go through a new

P4 code.

• Preprocessing module The preprocessing module parses, analyzes, and prepares the

input data for the processing module. In this step, PIPO-TG analyzes whether user-

defined traffic is consistent with Tofino restrictions (for example, checking whether

custom headers are byte-aligned) and whether all configuration parameters have been

declared with valid values. In case of any problem, the unit returns a message to the

user with what needs to be corrected. Otherwise, the unit only configures the data

structures the processing module will use.

• Processing module The processing module uses the data structures configured by the

preprocessing module to process the input data and generate all the necessary config-

uration files. In this process, we use the user-defined traffic patterns to generate the

PIPO-TG P4 code, the table entries script, the port configurations, and the script for

execution and interaction. Note that this processing generates unique configuration

files that match the defined traffic patterns, and any changes require the generation of

new files.

• Generated files The generated files are the configuration files necessary to run the traf-

fic generator. They include the PIPO-TG P4 code, which receives the packets generated

by the Tofino unit and performs additional processing on the packets according to the

specified traffic patterns. They also have a Python script that adds all the table en-

tries necessary to activate the traffic generator, in addition to configuring the meters
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and defining the required packet streams. Finally, they have the execution script (shell

script) and the file configuring the ports after Tofino is started.

• Execution module This step coordinates the execution of PIPO-TG. It includes com-

piling the P4 codes, initializing the switch, configuring the ports, adding the table en-

tries, and then initiating traffic generation. The output of this module is the traffic

being generated and forwarded to the user’s P4 code or the defined physical port.

3.2 Main features

PIPO-TG offers several features and characteristics for traffic generation. These fea-

tures allow users to generate different types of traffic, being able to simulate unlimited net-

work scenarios. The main features available in PIPO-TG are summarized below:

• Packet crafting. The most basic function of PIPO-TG is the ability to generate basic

Ethernet packets for a defined output port. By default, PIPO-TG will generate 64B Eth-

ernet packets at 100 Gbps and forward them to the configured port.

• Throughput definition. Users can specify their desired traffic transfer rate in Mbps,

with the ability to set rates of up to 100 Gbps for a particular port. Furthermore, users

can assign up to 10 ports to receive identical traffic, resulting in a maximum achievable

throughput of 1 Tbps.

• Common protocols. Users can create packets with protocols like Ethernet, IP, TCP, and

UDP. Furthermore, the user can define the specific value for the fields (e.g., a fixed IP

source and destination) or a random number of values to alternate (e.g., 100 random

IPs). Alternatively, the user can specify a limited distribution (e.g., 10% of packets with

IP X, etc).

• Custom protocols. In addition to conventional protocols, PIPO-TG allows the defi-

nition of any customized protocol or header for the generated packets. Unlike other

strategies that only support traditional protocols such as Ethernet and IP, with PIPO-

TG, the user is free to create any custom protocol, defining its fields and distributions

(similarly to conventional headers).

• Packet size definition and distribution. The users define the packet size for the gen-

erated packets using a fixed definition (i.e., 64B, 128B, 256B, 512B, 1024B, 1280B, and

1518B) or following a desired distribution (e.g., 20% 64B, 20% 128B, 40% 512B, 20%

1024B).

• Workload assay. Instead of the user defining a fixed transfer rate for the traffic, the

idea is to enable users to define parameters such as minimum and maximum points in

addition to the time distribution in those points. It allows users to reproduce different
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traffic distributions, such as those presented in (ALMEIDA et al., 2023) for workload

assay generation. Currently, PIPO-TG only supports a limited number of throughput

points and enables the creation of a simplified version of the Flashcrowd model.

• User P4 code support. Users can use the multiple pipeline support to execute a user-

defined P4 code that receives the traffic generated by PIPO-TG. More details about this

feature will be discussed in the next section.

Note that the features discussed are not the literal commands present in the PIPO-TG script.

To see the available commands and how to use each feature, access our GitHub reposi-

tory (COSTA et al., 2023).

3.3 Implementation

Next, we will discuss the PIPO-TG implementation, presenting the strategies for im-

plementing the available features. Table 3 summarizes the strategies used to implement each

feature. Additionally, we discuss each of them in more detail below.

• Traffic crafting To create the packets, we use the packet definition available in Tofino

packet generation. The most basic packet that can be defined is an Ethernet packet

with a size of 64B. Furthermore, the user can generate traffic on multiple ports (e.g.,

to generate up to 1 Tbps) with the traffic manager multicast function to replicate the

generated packets.

• Throughput To ensure the throughput defined by the user, we use two methods: port

shaping, limiting the output port, or the meter configuration. In the high-level script,

the user can choose between both options.

• Common protocols We leverage the packet definition available in the Tofino traffic

generation for standard protocols. Since Tofino already generates packets with the

desired protocols, we only change the P4 code when the user defines more complex

configurations (e.g., Random IPs).

• Custom protocols To generate flows with customizable protocols, we generate the

packets with the standard Ethernet headers and use the P4 code to define and add the

user-defined headers. In the P4 code, in addition to including customizable headers,

we use tables and table entries to configure the fields.

• Packet size To define the packet size and switch between different packet sizes, we

use the eight packet streams available in Tofino traffic generation. With this, we can

generate up to 8 different package sizes, and we control their distribution through the

P4 code.
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Table 3 – PIPO-TG implementation overview.

Feature Implementation approach

Traffic crafting
Tofino internal traffic generation unit to create
P4 code to parse, edit, and forward

Throughput [Mbps]
Port shaping in the output port, or
Meter algorithm to drop packets

Common headers
Tofino packet generation unit to define
P4 code to edit using tables and the random extern

Custom headers
P4 code to include custom headers
Tables and table entries to modify fields

Packet size
Tofino TG unit to create different streams
P4 code with random extern to coordinate

Workload assay
P4 code and hardware timestamp to measure time
Different meters to control throughput

User P4 code support
Tofino multi pipeline support
Traffic manager + bypass egress to change pipeline

• Workload assay For workload generation and complex traffic patterns, we use the def-

inition of multiple meters combined with hardware timestamp monitoring. Therefore,

we define multiple throughput limits using the meters and switch between them ac-

cording to the time.

• User P4 code support PIPO-TG takes advantage of Tofino’s multiple pipeline support

for executing different P4 codes in different pipelines. Our scripts configure the PIPO-

TG P4 code to run in one pipeline and the user code to run in another. The generated

traffic is received by the PIPO-TG P4 code, and after processing, changes for the user

P4 code pipeline using the traffic manager (See Figure 1). To do this, we forward the

packet to the recirculation port of the user pipeline and set the eg r ess_by pass flag.

Thus, the packet switches to the user’s pipeline without executing egress processing

but is recirculated to be executed by the ingress processing of the user’s pipeline.

3.4 Limitations

While PIPO-TG enhances the traffic generation capabilities of Tofino and offers a

user-friendly interface and high flexibility, it is essential to acknowledge that it also has some

existing limitations. Firstly, as we use a P4 code to generate PIPO-TG traffic when testing

a user P4 code, there will be one less pipeline to receive and send traffic, that is, 16 fewer

physical ports available. Furthermore, packets sent to the user’s P4 code must pass by recir-

culation in the user pipe so the user code can receive a maximum of 100 Gbps.
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Although PIPO-TG has several features, we have some restrictions when using mul-

tiple elements together. For example, it is impossible to combine the generation of random

packet sizes with the generation of random IPs with the variation of customizable header pa-

rameters (see our GitHub documentation for more details). Additionally, PIPO-TG does not

support stateful connections (such as TCP) and only sends packets without saving the state

or waiting for a response. Finally, unlike P4TG, T-REX, and other traffic generators, PIPO-TG

does not have an integrated interface for monitoring the generated traffic.
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4 EVALUATION

In this chapter, we delve into the comprehensive evaluation of PIPO-TG. First, we

present a brief comparison between PIPO-TG and other traffic generators. Next, we present

three use cases for PIPO-TG: workload alternation, burst simulation, and Distributed Denial

of Service (DDoS) simulation. These use cases seek to demonstrate the potential of PIPO-TG

in reproducing the most varied events.

Setup. The experiments were conducted in a Tofino switch (Edge-Core Wedge100BF-32X)

directly connected to a local server (Intel Xeon E5-2620v2, dual-port 10G Intel X540-AT2 NIC,

and 64GB of memory running Ubuntu 20.04) connected via 10G SFP+ interfaces.

4.1 Resource utilization

In this section, we present the resource utilization of our PIPO-TG P4 code compiled

for the Tofino 1 using the SDE version 9.9. Table 4 compares the PIPO-TG resource utiliza-

tion with the resource utilization of the switch.p4, baseline of P4 code for switching. For the

measured example, we consider traffic generation using a throughput definition with me-

ters and the definition of two customizable protocols. We chose this case because these are

the features that have the most influence on the P4 code due to the use of meters and the

definition of new headers.

As we can see in the table, PIPO-TG uses very few switch resources, proving to be a

lightweight tool for Tofino traffic generation. In addition to the resources presented in the

table, PIPO-TG uses only 4 of the 12 available processing stages. This gives indications of

the scalability of PIPO-TG, demonstrating that it is still possible to implement many other

features, as we still have a large amount of resources available.

Table 4 – Hardware resource utilization

Resource Switch.p4 PIPO-TG
Hash Bits 32.3% 1.7%
SRAM 29.8% 1.0%
TCAM 28.4% 0.0%
VLIW Actions 34.6% 2.3%
Stateful ALUs 15.6% 0.0%

4.2 PIPO-TG vs state-of-the-art

We compare PIPO-TG against P4TG (LINDNER; HÄBERLE; MENTH, 2023) and Hy-

perTester (ZHOU et al., 2019) towards different facets. Given that PIPO-TG and P4TG utilize

the same hardware unit for traffic generation and HyperTester uses Tofino for traffic replica-

tion, the results would be similar in performance and accuracy. Then, in Table 5, we compare

PIPO-TG, P4TG, and HyperTester qualitatively regarding their characteristics. Below, we de-

scribe key characteristics and how each generator fits into them.
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• Custom protocols. Refers to working with customizable headers, including new user-

defined protocols. HyperTester and PIPO-TG support custom protocols, while P4TG is

limited to generating Ethernet/IP packets.

• Number of flows. We assess the limitation of traffic generators in creating many dis-

tinct flows. P4TG is restricted to 7 different flows due to Tofino traffic generation limi-

tations. In contrast, PIPO-TG, which extends Tofino’s traffic generation with P4 modi-

fications, and HyperTester CPU-based packet generation do not face this limitation.

• Tofino internal traffic generation. We evaluate whether the traffic is generated using

the Tofino internal generation unit, that is, without the need for a CPU or any other

server. In this case, P4TG and PIPO-TG generate traffic using the Tofino unit, while

HyperTester relies on the CPU to generate packets and only amplifies its traffic with

Tofino.

• Workload generation. We assess the capacity of traffic generators to produce diverse

traffic behaviors rather than adhering to a static throughput. It allows users to cre-

ate various workload models, including random bursts and throughput fluctuations.

Among the generators, only PIPO-TG provides support for this feature, while the oth-

ers are restrained to generating traffic at a fixed rate.

• User-defined P4 code. This feature evaluates the traffic generator’s native support for

a user’s P4 code. It means that in addition to generating traffic with Tofino, users can

direct this traffic to a P4 code running on the same device. Only PIPO-TG supports

user-defined P4 since the other two generators use Tofino to generate traffic.

• Stateful connections. We assess whether the traffic generator is capable of establish-

ing stateful connections (e.g., TCP and Quick UDP Internet Protocol (QUIC)) and send-

ing traffic according to the messages it receives (e.g., sending a Syn-Ack after a Syn or

responding to messages with Acks). In this feature, despite having limitations, only

HyperTester is capable of establishing connections.

• Open-source artifacts. We assess whether the traffic generator has artifacts available

to the community. In this sense, despite having a public repository on Github, Hyper-

Tester does not make its TNA P4 codes available, while P4TG and PIPO-TG have their

solutions completely open for community use.

4.3 Use case I : Workload alternation

The first use case is the ability of PIPO-TG to generate workload alternation patterns.

This behavior may be helpful in different scenarios. For instance, we can monitor conges-

tion control (BALADOR et al., 2022), such as data centers, by alternating traffic workload to
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Table 5 – Qualitative evaluation of PIPO-TG vs state-of-the-art

Characteristic HyperTester P4TG PIPO-TG
Custom protocols Yes No Yes
Number of flows Yes No Yes
Tofino internal traffic generation No Yes Yes
Workload generation No No Yes
Support for user P4 code No No Yes
Open-source artefacts No Yes Yes
Stateful connections Yes No No

Algorithm 2 PIPO-TG traffic alternation code snippet.

import PipoTG
# i n s t a n t i a t e the t r a f f i c generator
myTG = PipoGenerator ( )
# define the generation port
myTG. addGenerationPort (68)
#Phys port , Port ID (D_P) , Port BW
myTG. addOutputPort ( 5 , 160 , "100G" )
#courve ( a ) − 4 seconds
myTG. addThroughput (max=500 ,min=100 , i n t e r v a l =4)
#courve ( b ) − 8 seconds
myTG. addThroughput (max=500 ,min=100 , i n t e r v a l =8)
myTG. addIP ( src=" 192.168.1.10 " , dst= " 192.168.2.20 " )
# s t a r t t r a f f i c generation
myTG. generate ( )

assess how well the network manages congestion and prioritizes traffic. Similarly, it may be

interesting to stress-test (SOÓS; JANKY; VARGA, 2019) a network testbed/device to under-

stand how it performs under different loads. In this case, a traffic alternation pattern can be

valuable. Figure 6 presents two distinct square curve patterns. For both scenarios, we send

alternating traffic where the user defines a lower- (100 Mbps) and upper-bound (500 Mbps).

On the Figure 6(a), we alternate the throughput every 4 seconds, while at the Figure 6(b),

we perform this modification at half the frequency – i.e., every 8 seconds. The Algorithm 2

presents the necessary code in PIPO-TG to generate both curves. We only need seven lines of

code to generate the two curves using PIPO-TG. It means there is 98.58% (or 70X) less code

when compared to the generated files.

4.4 Use case II: Burst simulation

Our second use case is a burst simulation. In real network scenarios, traffic bursts

may occur for several reasons – e.g., Flash crowds (ARI et al., 2003), TCP Incast scenar-

ios (ALIZADEH et al., 2010), TCP segment offloading or application-level batch processing

(KAPOOR et al., 2013). These bursts can cause problems like congestion, packet losses, in-

creased latency, and others. Therefore, developing and efficiently evaluating solutions for

this type of event is essential in current networks.
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Figure 6 – Simulated traffic alternation.

We demonstrate how to use PIPO-TG to simulate traffic bursts in the network. PIPO-

TG allows users to define traffic bursts at specific intervals. Algorithm 3 presents the addi-

tional code necessary to generate burst traffic using PIPO-TG. In this example, we define that

the bursts will be standard IP packets sent to port 5. Instead of limiting a throughput, we use

the command addV ar i ance() to define that we will have a throughput of 10 Gbps for 8s,

followed by 90 Gbps for 2s. It means that we will have regular traffic of 10 Gbps, and every 8s,

we will have a burst of 90 Gbps lasting 2s.

In just six lines of code, we define an experiment simulating bursts, whereas the

PIPO-TG codes (P4 and table entries) for the same burst scenario consist of around 500 lines.

It means that PIPO-TG reduces code effort by 98.8% (or 83.3X) for this scenario. Figure 7

shows the result of the generated bursts, with bursts of approximately 2 seconds arriving

every 8 seconds on the server
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Algorithm 3 PIPO-TG burst traffic code snippet.

import PipoTG
# i n s t a n t i a t e the t r a f f i c generator
myTG = PipoGenerator ( )
# define the generation port
myTG. addGenerationPort (68)
#Phys port , Port ID (D_P) , Port BW
myTG. addOutputPort ( 5 , 160 , "100G" )
# s e t IP header with dst addr
myGenerator . addIP ( dst= " 1 0 . 0 . 0 . 2 " )
# ( [ Throughputs ] , [ I n t e r v a l s ] )
myTG. addVariance ([10000 , 90000] , [ 8 , 2 ] )
# s t a r t t r a f f i c generator
myTG. generate ( )
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Figure 7 – Generation of network bursts every 8 seconds.

4.5 Use case III: DDoS simulation

The third use case involves simulating a DDoS attack scenario (VANITHA; UMA; MAHID-

HAR, 2017). Strategies for modeling DDoS attacks (VANITHA; UMA; MAHIDHAR, 2017; CETINKAYA;

ISHII; HAYAKAWA, 2019) can take various factors into account, such as attack distribution,

including protocols, payload, and load. For instance, users can specify a pool of IP attack-

ers targeting a single destination. In this setup, a monitoring application considers the load

distribution per flow and can identify the source of attackers based on source IPs.

Algorithm 4 outlines the DDoS attack scenario. The user specifies a desired through-

put, in this case, 10 Gbps, and provides a pool of IP addresses for the attackers, each with an

IP base and a mask. Attackers can use a portion of the available link bandwidth to send traf-

fic randomly. The destination IP, representing the target address for the attackers, is defined.

Traffic generation starts subsequently.

While the PIPO-TG script consists of only six lines, the generated files contain around

480. This results in a remarkable code reduction of 98.5% (or 80X) using PIPO-TG. Finally,

Figure 8 displays the source IP distribution in the traffic. We captured the first 10K packets
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Algorithm 4 PIPO-TG DDoS simulation code snippet.

import PipoTG
# i n s t a n t i a t e the t r a f f i c generator
myTG = PipoGenerator ( )
# define the generation port
myTG. addGenerationPort (68)
#Phys port , Port ID (D_P) , Port BW
myTG. addOutputPort ( 5 , 160 , "100G" )
# define troughtput (Mbps) and the type ( port_shaping or meter )
myTG. addThroughput(10000 , "meter" )
myTG. addIP ( src=" 192.168.1.0 " ,srcRandom = True , srcMask = 24 , dst= " 192.168.2.2 " )
# s t a r t t r a f f i c generator
myTG. generate ( )
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Figure 8 – Average of packets per IP address.

in each run (30 runs) and counted the number of packets per source IP. Ideally, all IPs would

have around 39 packets. The observed distribution is relatively uniform, ranging from 35.27

to 42.37 packets per IP, demonstrating PIPO-TG’s efficiency in simulating this network sce-

nario.

4.6 Discussion

PIPO-TG stands out in supporting custom protocols, allowing users to work with cus-

tomizable headers. This feature is crucial for adapting to diverse networking scenarios where

predefined protocols may not suffice. P4TG is limited to generating Ethernet/IP packets, lim-

iting its flexibility in this aspect. The Number of flows, PIPO-TG excels in creating a higher

number of distinct flows compared to P4TG, which is restricted to 7 different flows due to

Tofino traffic generation limitations. This flexibility is essential for simulating complex net-

work scenarios with diverse flow patterns. In Tofino internal traffic generation, both PIPO-

TG and P4TG leverage the Tofino internal generation unit, eliminating the need for an exter-

nal CPU or server. HyperTester, on the other hand, relies on the CPU for packet generation.
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This distinction impacts the efficiency of traffic generation in terms of resource utilization.

• Workload Alternation: The demonstrated ability of PIPO-TG to generate workload al-

ternation patterns proves valuable in scenarios such as congestion control monitoring

and network stress testing. The concise code implementation, as illustrated in Algo-

rithm 2, emphasizes PIPO-TG’s efficiency in generating complex traffic patterns with

minimal coding effort.

• Burst Simulation: PIPO-TG’s capability to simulate traffic bursts, as showcased in Algo-

rithm 3, addresses real-world scenarios where bursty traffic can lead to network chal-

lenges. The significant reduction in code effort (98.8%) highlights PIPO-TG’s practical-

ity in defining and implementing burst simulations with ease.

• DDoS Simulation: The DDoS simulation use case, outlined in Algorithm 4, demon-

strates PIPO-TG’s effectiveness in modeling sophisticated network attack scenarios.

The substantial reduction in code effort (98.5%) underscores PIPO-TG’s efficiency in

simulating complex distributed attacks, offering a streamlined approach for researchers

and practitioners.

In conclusion, PIPO-TG emerges as a versatile and efficient traffic generator, surpassing its

counterparts in several key aspects. Its support for custom protocols, ability to generate

diverse traffic patterns, and open-source nature contribute to its appeal in the networking

community. The presented use cases showcase PIPO-TG’s practical utility in simulating a

wide range of scenarios with minimal coding effort, making it a valuable tool for network

researchers and practitioners.





57

5 FINAL REMARKS

In this chapter, we present a comprehensive overview of the key aspects addressed

in this study. We begin by summarizing the main points covered throughout this work, high-

lighting the key findings and contributions. Additionally, we review the results obtained from

our research until here, efforts and discuss their implications in the context of the research

objectives. Furthermore, to conclude this study, we outline potential avenues for final work,

including areas that warrant further investigation, aspects that were not addressed within

the scope of this research, and proposed solutions to address any limitations identified. By

examining these aspects, we aim to provide a holistic perspective on the contributions of

this work and lay the foundation for future advancements in the field.

5.1 Conclusion

Traffic generation in computer networks is crucial for assessing and optimizing net-

work performance. By simulating various scenarios and traffic patterns, it enables researchers

and network engineers to identify potential bottlenecks, evaluate the efficiency of protocols,

and enhance overall system reliability. Additionally, realistic traffic generation is fundamen-

tal for testing and validating the scalability and resilience of networks, ensuring they can

handle diverse loads and remain robust in real-world usage. In this work, we presented

PIPO-TG, a Tofino-based traffic generator, to perform parametrizable experiments with high

performance and flexibility. PIPO-TG can generate traffic with custom protocols and dif-

ferent throughput distributions, reaching up to 1 Tbps. In our evaluation, we explored the

PIPO-TG capabilities through three key use cases: traffic alternation, burst simulation, and

DDoS attack modeling. PIPO-TG demonstrated its ability to efficiently generate diverse net-

work traffic patterns with a straightforward syntax, reducing code complexity significantly.

We conducted experiments in a demanding network environment using a Tofino switch, em-

phasizing the distinguishing capabilities of PIPO-TG and showcasing its potential in conges-

tion control, stress testing, and security scenarios.

5.2 Future Work

In future works, we plan to develop a platform for monitoring the generated traffic.

This expansion will allow real-time analysis and detailed configuration of the traffic being

generated. Besides that, we want to incorporate the support for stateful connections, en-

compassing widely used protocols like TCP, QUIC, and others. This is currently supported

in a basic way by HyperTester with TCP traffic. However, we plan to resolve all limitations

and also implement other stateful protocols. Additionally, we aim to enrich PIPO-TG’s capa-

bilities by enabling the replaying of packet captures, with a specific emphasis on accommo-

dating .pcap files as input.
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In a strategic move towards comprehensive improvement, we have outlined specific

plans to evaluate the scalability of PIPO-TG. This evaluation will delve into the impact of nu-

merous custom headers on its performance, for example, allowing us to meticulously study

and analyze the results. By doing so, we aim to refine and optimize PIPO-TG to ensure its

robustness and efficiency under varying conditions.

In conclusion, our roadmap for future work on PIPO-TG has many paths. From ex-

panding functionalities to evaluating scalability and integrating with P7(RODRIGUEZ et al.,

2022), each initiative is carefully designed to contribute to the ongoing evolution and efficacy

of PIPO-TG. As we undertake these efforts, our focus is on delivering high-quality solutions

that empower users to effectively address their networking challenges working in the SDN

environment.
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