
FEDERAL UNIVERSITY OF PAMPA

Ariel Góes De Castro

Towards Probe Planning for In-band
Network Telemetry

Alegrete
2023

Ariel Góes De Castro

Towards Probe Planning for In-band Network
Telemetry

Qualification submitted to the Graduate Pro-
gram in Software Engineering of Federal Uni-
versity of Pampa in partial fulfillment of the
requirements for the Master’s degree in Soft-
ware Engineering.

Supervisor: Prof. Dr. Marcelo Caggiani
Luizelli

Alegrete
2023

Ficha catalográfica elaborada automaticamente com os dados fornecidos
pelo(a) autor(a) através do Módulo de Biblioteca do

Sistema GURI (Gestão Unificada de Recursos Institucionais) .

Góes de Castro, Ariel
 Towards Probe Planning for In-band Network Telemetry /
Ariel Góes de Castro.
 69 p.

 Tese(Doutorado)-- Universidade Federal do Pampa, MESTRADO
EM ENGENHARIA DE SOFTWARE, 2023.
 "Orientação: Marcelo Luizelli".

 1. In-band Network Telemetry (INT). 2. Software-Defined
Network(SDN). 3. Probe. 4. Network Monitoring. 5. Fast Reroute
(FRR). I. Título.

G355t

ARIEL GÓES DE CASTRO

TOWARDS PROBE PLANNING FOR IN-BAND NETWORK TELEMETRY

Dissertação apresentada ao
Programa de Pós-Gradução
em Engenharia de Software
da Universidade Federal do
Pampa, como requisito
parcial para obtenção do
Título de Mestre em
Engenharia de Software.

Dissertação defendida e aprovada em: 20 de julho de 2023.

Banca examinadora:

__

Prof. Dr. Marcelo Caggiani Luizelli

Orientador

 UNIPAMPA

__

Prof. Dr. Fábio Diniz Rossi

 IFFAR

SEI/UNIPAMPA - 1191873 - SISBI/Folha de Aprovação https://sei.unipampa.edu.br/sei/controlador.php?acao...

1 of 2 9/12/23, 13:13

Prof. Dr. Roberto Irajá Tavares da Costa Filho

 IFSul

Assinado eletronicamente por MARCELO CAGGIANI LUIZELLI,
PROFESSOR DO MAGISTERIO SUPERIOR, em 20/07/2023, às 16:13,
conforme horário oficial de Brasília, de acordo com as normativas legais
aplicáveis.

Assinado eletronicamente por Fábio Diniz Rossi, Usuário Externo, em
20/07/2023, às 16:14, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

Assinado eletronicamente por Roberto Irajá Tavares da Costa Filho,
Usuário Externo, em 20/07/2023, às 16:15, conforme horário oficial de
Brasília, de acordo com as normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site
https://sei.unipampa.edu.br
/sei/controlador_externo.php?acao=documento_conferir&
id_orgao_acesso_externo=0, informando o código verificador 1191873 e o
código CRC 9FFE9920.

SEI/UNIPAMPA - 1191873 - SISBI/Folha de Aprovação https://sei.unipampa.edu.br/sei/controlador.php?acao...

2 of 2 9/12/23, 13:13

This work is dedicated to my family, friends, and everyone else who helped me somehow
to achieve this moment in my life.

ACKNOWLEDGEMENTS
I first would like to thank my family. They have always supported me and provided

all kinds of support to make me happy, without measuring efforts. Certainly, none of
this would have been possible without their help. I am forever grateful to Dr. Marcelo
Caggiani Luizelli (friend and supervisor) for having offered me all the motivation and
tools since the moment I started to conduct research. I would also like to thank Dr. Fábio
Diniz Rossi for his sincere friendship and constant support expressed in different ways.
Both were very close to me along these recent years and I believe that both are examples
of people and professionals to be followed

“I don’t play the odds. I play the man.” (Harvey Specter - Suits)

RESUMO

O Monitoramento de Rede em Banda (INT, do inglês In-band Network Telemetry) tem se
destacado como uma abordagem poderosa para monitorar redes programáveis, fornecendo
uma visibilidade detalhada dos eventos na rede. No entanto, as abordagens existentes
para a orquestração do INT frequentemente negligenciam a tolerância a falhas no plano
de dados, deixando os mecanismos de monitoramento comprometidos durante falhas na
rede. Para solucionar essa lacuna, propomos o InPatching, uma abordagem de tolerância
a falhas no plano de dados para o monitoramento baseado em INT. O InPatching
detecta autonomamente dispositivos com falhas e aplica desvios coordenados nos ciclos de
sondagem afetados, garantindo a coleta ininterrupta de dados de telemetria sem depender
do plano de controle. Ao transferir a recuperação para o plano de dados, o InPatching
reduz significativamente o tempo de recuperação em comparação com as estratégias
do plano de controle. Para viabilizar desvios eficientes, formalizamos o planejamento
de sondagem tolerante a falhas para INT usando um modelo de Programação Linear
de Inteiros Mistas (MILP). Esse modelo nos permite determinar de forma eficiente os
caminhos ótimos de desvio e minimizar o impacto no desempenho da rede. Nossa extensa
avaliação demonstra a eficácia do InPatching em comparação com as soluções do plano
de controle. Mostramos que o InPatching supera as abordagens do plano de controle em
um fator de 18X, proporcionando recuperação rápida e confiável para o monitoramento
baseado em INT, evitando um impacto substancial no desempenho. A compilação do
código em hardware também foi efetuada com sucesso e as métricas obtidas sobre o
uso de recursos – i.e., Match-Action UNIT (MAU) e Tagalong collections – indicam um
baixo uso de recursos de memória, em média, para alocação do componentes código
reescrito na arquitetura Tofino™ Native Architecture (TNA). Além das contribuições
técnicas, também disponibilizamos artefatos de software de código aberto que facilitam a
adoção e a reprodutibilidade do InPatching. Os operadores de rede podem aproveitar
essa solução para manter uma visibilidade abrangente da rede, mesmo durante falhas
na rede, garantindo uma cobertura contínua e atualizada dos dados de INT coletados.
No geral, nosso trabalho contribui para o avanço do monitoramento de rede tolerante a
falhas e destaca a importância de considerar a resiliência do plano de dados no projeto
das abordagens de orquestração do INT. Ao abordar esse aspecto crítico, o InPatching
aprimora significativamente a confiabilidade e a eficácia de sistemas de monitoramento
baseados em INT em redes programáveis.

Palavras-chave: Telemetria In-Band, Software-Defined Network(SDN), Probes, Moni-
toramento de Rede, Fast Reroute (FRR)

ABSTRACT

In-Band Network Telemetry (INT) has emerged as a powerful network monitoring approach
in programmable networks, providing fine-grained visibility into network events. However,
existing INT orchestration approaches often overlook fault tolerance in the data plane,
leaving monitoring mechanisms compromised during network failures. To address this gap,
we propose InPatching, an in-network fault-tolerant approach for INT-based monitoring.
InPatching autonomously detects faulty devices and applies coordinated detours in
affected probing cycles, ensuring uninterrupted telemetry data collection without relying
on the control plane. By offloading recovery to the data plane, InPatching significantly
reduces the recovery time compared to control plane strategies. To enable efficient
detours, we formalize fault-tolerant probing planning for INT using a Mixed-Integer Linear
Programming (MILP) model. This model allows us to efficiently determine the optimal
detour paths and minimize the impact on network performance. Our extensive evaluation
demonstrates the effectiveness of InPatching in comparison to control plane solutions.
We show that InPatching outperforms control plane approaches by a factor of 18X,
providing fast and reliable recovery for INT-based monitoring while avoiding substantial
overhead. The compilation of the code into hardware has also been successfully performed,
and the metrics obtained regarding resource usage – i.e., MAU and Tagalong collections
–indicate low memory resource utilization, on average, for allocating the rewritten code
components in the TNA architecture. In addition to the technical contributions, we
also release open-source software artifacts that facilitate the adoption and reproducibility
of InPatching. Network operators can leverage this solution to maintain network-wide
visibility even during network failures, ensuring continuous coverage and freshness of
collected INT data. Overall, our work contributes to the advancement of fault-tolerant
network monitoring and highlights the importance of considering data plane resilience in
the design of INT orchestration approaches. By addressing this critical aspect, InPatching
significantly enhances the reliability and effectiveness of INT-based monitoring systems in
programmable networks.

Key-words: In-band Network Telemetry (INT), Software-Defined Network(SDN), Probe,
Network Monitoring, Fast Reroute (FRR)

LIST OF FIGURES
Figure 1 – Overview of INT planning. 25
Figure 2 – P4 abstract forwarding model. 29
Figure 3 – INT operation modes. 30
Figure 4 – Simplified TNA block diagram. 31
Figure 5 – PHV carries information through the TNA pipeline. 32
Figure 6 – Overview of the in-network InPatching strategy. 41
Figure 7 – InPatching header structure. 42
Figure 8 – Overview of the InPatching data plane procedure. 44
Figure 9 – Round-robin heuristic . 47
Figure 10 – Control plane approach average time (ms). 48
Figure 11 – Control plane approach. 48
Figure 12 – InPatching𝜔 data plane approach. 49
Figure 13 – InPatching𝜌 data plane approach. 49
Figure 14 – Cooperative InPatching data plane vs non-cooperative. 50
Figure 15 – InPatching optimal model . 50

LIST OF TABLES
Table 1 – Comparison of proposals for telemetry collection in network monitoring. 40
Table 2 – MAU (“stage”) resources allocation. 54
Table 3 – PHV tagalong collection resources alocation. 56

LIST OF SYMBOLS
API Application Programming Interface

ASIC Application-Specific Integrated Circuit

DCN Data Center Network

DDoS Distributed Denial of Service

DFS Depth-First Search

ETSI European Telecommunications Standards Institute

EWMA Exponentially Weighted Moving Average

FIFO First In First Out

FPGA Field Programmable Gate Array

FRR Fast Rerouting

ILP Inter Linear Programming

INT In-Band Network Telemetry

INT-MD INT eMbed Data

INT-MX INT eMbed instruct(X)ions

INT-XD INT eXport Data

INTO In-Band Network Telemetry Orchestration

INTOPP In-band Network Telemetry Orchestration Plan Problem

MAU Match-Action UNIT

MILP Mixed-Integer Linear Programming

MTU Maximum Transmission Unit

NFV Network Function Virtualization

NPU Neural Processing Unit

P4 Programming Protocol-independent Packet Processors

PCAP Packet Capture

PHV Packet Header Vector

POF Protocol Oblivious Forwarding

Rx Receiver

SALU Static Arithmetic Logical Unit

SDK Software Development Kit

SDN Software-Defined Network

SGT Select Group Table

SLA Service Level Agreement

SmartNIC Smart Network Interface Card

SNMP Simple Network Management Protocol

SRAM Static Random-Access Memory

TNA Tofino™ Native Architecture

URLLC Ultra-Reliable and Low-Latency Communications

VLIW Very Long Instruction Word

VoIP Voice Over Ip

CONTENTS

1 INTRODUCTION . 23
1.1 Context and Motivation . 23
1.2 Research Problem . 24
1.3 Goals and Contributions . 25
1.4 Outline . 25

2 BACKGROUND AND RELATED WORK 27
2.1 Autonomous networks . 27
2.2 Data plane programmability . 28
2.3 Tofino™ Native Architecture . 30
2.4 In-Band Network Orchestration 32
2.5 Fast Rerouting mechanisms . 34
2.6 Outline . 36

3 INPATCHING DESIGN . 41
3.1 Overview . 41
3.2 Data plane design . 42
3.3 Control plane design . 43
3.4 Evaluation . 46
3.4.1 Setup . 46
3.4.2 InPatching Data Plane vs. Control Plane Approaches 47
3.4.3 The gain of overlapping probing INT cycles 51
3.4.4 The cost of overlapping . 52
3.4.5 Hardware Resource Usage . 52
3.4.5.1 MAU Resources . 53
3.4.5.2 Tagalong Collection Resources . 54

4 FINAL REMARKS . 57
4.1 Overview . 57
4.2 Challenges and limitations . 58
4.3 Future Work . 60

BIBLIOGRAPHY . 63

23

1 INTRODUCTION
This chapter discusses the problem of orchestrating probes for INT. First, we briefly

introduce INT networks, followed by the problem definition and constraints. Then, we
formally define the problem and our contributions to this research.

1.1 Context and Motivation

No matter how fast networking research evolves, challenges always seem to be
unsolved or, at least, partially solved. One of the culprits to existing limitations is the
growing demand for services with increasingly stringent restrictions – e.g., Ultra-Reliable
and Low-Latency Communications (URLLC) operation mode in 5G networks – that
push existing network architectures to the limit. Besides that, existing mechanisms limit
the operator’s ability to express their intentions about network behavior and are prone
to human error (e.g., device misconfiguration). With that in mind, recent efforts from
both the academia (FEAMSTER; REXFORD, 2017) and industry (Juniper Networks,
2017; Huawei, 2019) have tried to provide both automatic (i.e., independent of human
instructions) and autonomous (i.e., capable of making its own decisions) networks into the
concept of self-driving networks. In short, self-driving networks are autonomous networks
that act according to high-level intent from their users while automatically adapting to
network changes in the traffic (e.g., device/link failures) and user behavior (e.g., video
streaming, Voice Over Ip (VoIP)). AI/ML-assisted methods verify and make decisions
autonomously to ensure that operators’ input intents are satisfied over time. But, for that,
collecting information on the network is a crucial phase of the process, ensuring that the
data is provided promptly and with a particular frequency to the algorithms - considering
that there are no communication failures along its route.

INT is an emerging network monitoring approach in programmable networks (PAN
et al., 2019) that allows increasing network visibility of fine-grained network events (e.g.,
micro-bursts (CHEN et al., 2018) and network load imbalance (TAMMANA; AGARWAL;
LEE, 2018))). The INT concept has been fostered by the recent adoption of programmable
data planes and domain-specific languages such as Protocol Oblivious Forwarding (POF)
and Programming Protocol-independent Packet Processors (P4). More specifically, P4
provides a detailed data plane specification (The P4.org Applications Working Group, 2020)
on how INT operates. In short, INT works by continuously collecting low-level data plane
statistics (a.k.a. telemetry data) from the infrastructure in a per-packet manner. These
telemetry data include internal data plane statistics such as queue occupancy, per-packet
processing time, and aggregated/computed statistics such as inter-packet gap (SINGH et
al., 2020).

In the classical INT operation – also known as INT eMbed Data (INT-MD) –
network packets are instructed to properly collect telemetry data as they are routed through
the network. The instructions are added into an INT packet – i.e., a packet carrying an

24 Chapter 1. Introduction

INT header – , which can be embedded into active network flows (HOHEMBERGER
et al., 2019) or specially-crafted probing packets (CASTRO et al., 2021). These packets
are then interpreted by INT-enabled forwarding devices, which collect required telemetry
data. Figure 1 illustrates the whole INT procedure using probing packets. Observe there
are three probing cycles collecting data from the network – for instance, probing cycle 𝑓1

collects telemetry data from nodes 𝐴, 𝐸, 𝐹 , 𝐺, 𝐻, and 𝐼, returning to origin A (i.e., steps
(1) – (5)), and then to an INT collector.

Recent research (PAN et al., 2019; HOHEMBERGER et al., 2019; LIU et al., 2018;
MARQUES et al., 2019) have made consistent efforts regarding the In-Band Network
Telemetry Orchestration (INTO). The problem consists of efficiently using available
resources (in this case, spare space on network packets) to collect data plane network
statistics. In this context, Liu et al. (LIU et al., 2018) and Pan et al. (PAN et al., 2019)
have focused on optimizing the usage of probing packets to collect INT data. At the same
time, Marques et al. (MARQUES et al., 2019) and Hohemberger et al. (HOHEMBERGER
et al., 2019) have focused on embedding telemetry data into production network packets.
In turn, Castro et al. (CASTRO et al., 2020) leverages a shortest-path algorithm to
reconstruct probe paths from link failures in the control plane.

1.2 Research Problem

Despite the efforts toward INTO, little has been done to provide fault-tolerant
mechanisms for INT in the data plane. In case a network link fails, all of the INT
monitoring mechanism that relies on that device is compromised. In Figure 1, for example,
the failure of network link 𝐺–𝐻 directly affects probing cycles 𝑓1 and 𝑓2 (step 6). A
naive solution to provide fault-tolerance to this problem consists of computing a novel
solution or adapting existing ones upon a failure (e.g., (PAN et al., 2019) (CASTRO
et al., 2020)). In this case, a control plane application (step (7)) would be triggered to
compute a new telemetry solution. In Figure 1, for instance, the new solution comprises
a detour of probing cycles 𝑓1 and 𝑓2 through an alternative/updated path (step (8)).
Despite this solution, the recovery of the INT monitoring approach would take a few
hundred milliseconds in the best case. This limitation is mainly due to the time required to
identify the fault, the time spent to react (i.e., compute a new solution), and recovery (i.e.,
update the data plane). Consequently, the network-wide visibility required by monitoring
applications might degrade in terms of coverage and freshness (MARQUES et al., 2019)
during the faulty period.

1.3. Goals and Contributions 25

AE
B

C
F

G
H

DI

f2

f3

Control Plane(6)

(7)

(5)
(1)

(2)

(3)
(4)

(7)(8)

Receive fault notification

Update INT

INT Collector

f1

Figure 1 – Overview of INT planning.

1.3 Goals and Contributions

To fill this gap, in this work, we propose InPatching: an in-network approach to fast
recovery INT-based monitoring approaches. In the event of faulty devices, InPatching
autonomously (and without the control plane intervention) fix monitoring cycles by
identifying the defective device and applying detours in affected probing cycles to ensure
the required INT data is collected correctly. InPatching is mainly offloaded to the data
plane, and, therefore, the recovery time of INT-based monitoring mechanisms can be faster
than existing control plane strategies. To provide efficient detours to existing probing
cycles, we formalize the fault-tolerant probing planning for INT by extending the existing
orchestration model (CASTRO et al., 2021). Results show that InPatching outperforms
control plane solutions by reducing the communication delay by up to 18X. The main
contributions of this work can be summarized as follows:

• the proposal of an in-network strategy to quickly react to faulty network conditions;

• P4 code offloading to the TNA architecture;

• the formalization of the fault-tolerant probing planning for INT;

• an open-source code to foster reproducibility.

1.4 Outline

The remainder of this work is organized as follows. In Chapter 2, we discuss related
work in the area of in-band network telemetry with a focus on the programmability of
the data plan and its benefits. In Chapter 3, we introduce the InPatching design in
programmable data planes. Also, in Chapter 3, we present and discuss the results of
evaluating the proposed approach. Last, in Chapter 4, we conclude the work with final
remarks and perspectives for future work.

27

2 BACKGROUND AND RELATED WORK
In this chapter, we start by exploring the idea of autonomous networks and the

convergence of ideas that led us to the current notion of self-driving networks. Following,
we review data plane programmability and the benefits of offloading a range of tasks to
the data plane. Then, we review INTO. Finally, we review the most recent fast-rerouting
mechanisms.

2.1 Autonomous networks

Self-driving networks are an increasingly closer reality. Among its primary require-
ments are: (i) the ability to interpret and validate user intentions in high-level languages;
(ii) adapt to changes in the network – e.g., new devices, changing requirements, and
network conditions – over time while maintaining compliance with user intents without
its intervention. The first notion of networks that “run themselves” was introduced by
Horn (HORN, 2001) where the self-* properties were presented (i.e., self-star) – self-
awareness, self-protecting, self-optimizing, self-healing, and self-configuring. Similarly,
Clark et al. (CLARK et al., 2003) suggested building self-healing networks without exter-
nal intervention and proposed a Knowledge Plane relying on AI techniques to maintain
network visibility. However, at the time, such practices needed to be more extensive, and
a practical implementation did not take off. Later, the self-* properties were incorporated
by Jacob et al. (JACOB et al., 2004) in the MAPE-K loop model – an IBM automa-
tion toolkit. FOCALE (STRASSNER; AGOULMINE; LEHTIHET, 2006) is among the
first to propose a self-managing network. A breakthrough in this work was the intro-
duction of a Policy Manager responsible for translating natural language (e.g., English)
into vendor-specific device requirements. Similarly, the Autonomic Network Architecture
(ANA) (BOUABENE et al., 2009) introduced a system-level abstraction and provided an
Application Programming Interface (API) to manipulate the network elements.

The approaches above are limited to simplified AI models. It is because the
existing collection methods at the time (e.g., Simple Network Management Protocol
(SNMP)) provided low visibility over the network state and a low collection frequency,
making detecting certain network anomalies (e.g., micro-bursts) unfeasible. For example,
both MAPE-K loop (JACOB et al., 2004) and FOCALE (STRASSNER; AGOULMINE;
LEHTIHET, 2006) had learning components. However, these components are based on
storing temporal events and not in standalone decision models based on statistics – like
those presented in ML. Recent efforts from academia (FEAMSTER; REXFORD, 2017) and
industry (Juniper Networks, 2017) have tried to standardize self-driving networks shortly.
To consolidate previous ideas of self-managing networks, European Telecommunications
Standards Institute (ETSI) members released a white paper (ETSI, 2020) with the main
challenges and roles to be played by new network architectures. Although not mandatory,
the document mentions the use of current Software-Defined Network (SDN)-based network

28 Chapter 2. Background and Related Work

technologies (e.g., Network Function Virtualization (NFV) (JACOBS et al., 2017)) to
and “close” the loop of self-driving networks – i.e., no/minimal human interference in the
network management process.

2.2 Data plane programmability

There are many examples of applications being offloaded to the data plane, such
as Service Level Agreement (SLA) verification (MARQUES; LEVCHENKO; GASPARY,
2020), load balancing (HSU et al., 2020b), gray-failures (MOLERO; VISSICCHIO; VAN-
BEVER, 2022; JIA et al., 2020) or even Distributed Denial of Service (DDoS) detec-
tion (LAPOLLI; MARQUES; GASPARY, 2019) that provide more fine-grained and
low-latency solutions for a scenario of an increasing number of services (e.g., video stream-
ing (YAMANSAVASCILAR et al., 2020)). These solutions allow several benefits as (i) CPU
workload reduction on servers and (ii) less power and capital expenses while processing
a high amount of traffic. However, to properly detect network anomalies and manage
network behavior, there must be a way to collect metrics/statistics to provide more precise
insights for the network operator. More specifically, future approaches need to consider the
needs of applications (e.g., latency) promptly and with minimal human intervention — i.e.,
minimal control plane intervention. Traditionally speaking, network management tools are
either based on polling (CASE M. FEDOR, 1989) or sampling (e.g., NetFlow (CLAISE
et al., 2004), SFlow (PHAAL; PANCHEN; MCKEE, 2001)). These approaches incur (i)
narrow network coverage since few telemetry devices are used, anomalies/events may evade
the supervision of network operators, and; (ii) low scalability because a high sampling
frequency may degrade network resources (e.g., link bandwidth). With that in mind,
network programming languages such as P4 (BOSSHART et al., 2014) and POF (SONG,
2013) allow network operators to specify the internal pipeline of forwarding devices.

In contrast to traditional networks, P4 allows the customization of parsers, define
headers - hence protocols - and the packet processing logic with match-action tables.
Initially, it was designed for software/hardware switch programming. Still, now it is
available to various devices/targets (e.g., Smart Network Interface Card (SmartNIC)s,
network appliances, Application-Specific Integrated Circuit (ASIC)s, Neural Processing
Unit (NPU)s, and Field Programmable Gate Array (FPGA)s). Figure 2 summarizes the
abstract forwarding model. First, an incoming packet is processed by a programmable
parser. If the packet is in an allowed format (i.e., correct header fields), it is forwarded to
a set of user-defined match-action tables at the ingress pipeline. Then, these modifications
are stored in a buffer and copied to the egress pipeline - where another group of user-defined
tables again processes the packet. Finally, the packet is reconstructed by a deparser and
emitted to an egress port. With this flexibility, we can collect per-packet data collection
granularity. In recent years, INT (The P4.org Applications Working Group, 2020) is
becoming the de-facto representative of network telemetry. Since its conception in 2015 at

2.2. Data plane programmability 29

I
N
P
U
T

P
A
R
S
E
R

D
E
P
A
R
S
E
R

O
U
T
P
U
T

B
U
F
F
E
R

Match
Action

Ingress pipeline

Packet mods +
Egress selection Packet mods

Egress pipeline

Match
Action

Forwarding
Rules

Forwarding
Rules

Parse
graph

Control
program

Table
config

Action
set

Figure 2 – P4 abstract forwarding model.

P4.org, INT has suffered several changes summarized into three distinct operation modes
(see Figure 3).
INT eXport Data (INT-XD). In this mode, packet header modification is not allowed,

and it is known by the use of “postcards”, where a set of metadata is directly exported
from the data plane based on Flow Watchlists.
INT eMbed instruct(X)ions (INT-MX). In contrast, INT-MX allows embedding

per-packet instructions. In summary, the INT Source (the first node) embeds instructions,
then all INT nodes in the telemetry path send telemetry data to an external collector.
INT-MD. Similarly to INT-MX, this mode allows embedding instructions to packet

header fields. However, metadata may also be included, and only the last INT-enabled
node (INT sink) in the telemetry path is responsible for exporting data to a collector.

Regardless of the monitoring mode chosen, there must be a way to coordinate the
collection of metrics in the data plane, mitigating the use of network resources while taking
into account variables such as (i) the frequency of information collection, where a very
systematic collection can overwhelm buffer queues and available memory on the switch;
(ii) device coverage and metrics collected, to support greater device visibility and anomaly
location; (iii) the optimization of the goals above to reduce the cost of operation. Given
this importance, INTO (MARQUES et al., 2019) problems are concerned with solutions
that seek to coordinately minimize the activity of telemetry flows and the saturation
probability of network resources (e.g., CPU memory, link bandwidth) while maintaining
the network visibility.

30 Chapter 2. Background and Related Work

INT

EXport Data

INT-XD

In-band Network Telemetry

Each node exports metadata

based on Watchlist config.

(aka postcards)

No packet modifications
Limited packet modifications

(Instructions only)

EMbeded Instruct(X)ions

INT-MX

Embed only Instructions in the pkt.

Each node exports metadata.

(aka IOAM Immediate Export)

EMbed Data

INT-MD

Embed instructions and metadata,

export at the sink node.

(classic INT)

Packet modifications
(Instructions & Metadata)

Figure 3 – INT operation modes.

2.3 Tofino™ Native Architecture

The concept of TNA was developed by Barefoot Networks, a company acquired by
Intel in 2019, to revolutionize network design. Barefoot Networks introduced the Tofino™
family of network processing units, which followed a unique design philosophy. Unlike
traditional Application-Specific Integrated Circuits (ASICs), the Tofino™ chip focused on
hardware programmability, allowing software to dictate the device’s behavior and enabling
customization of the network processing pipeline. The core elements that unlocked the
potential of the Tofino™ chip were the Barefoot Network Tofino™ Software Development
Kit (SDK) and the P4 language (INTEL, 2021).

The Tofino™ chip was engineered to integrate with P4 and the P4 Runtime interface
seamlessly. These technologies empower network operators to dynamically configure and
control the forwarding plane of the device. By leveraging this capability, operators can
tailor the network’s behavior to the specific needs of their applications, resulting in
improved performance and reduced latency.

Within the Tofino™ chip, the traffic manager assumes a crucial role in effectively
managing network traffic flow. Its responsibilities include packet scheduling and queue
management within the switch. The switch architecture comprises ingress pipelines that
parse packets and extract metadata. In contrast, the egress pipeline utilizes the results of
the ingress processing to determine the next destination for each packet.

A noteworthy advantage of the TNA approach is its ability to update the device’s

2.3. Tofino™ Native Architecture 31

Traffic
Manager
&
Packet
Replication
Engine

Rx MACs

... Ingress
Pipeline Tx MAC

...

...

Egress
Pipeline

Rx MACs

Packet Recirculation

... Ingress
Pipeline Tx MAC ..

.

...

Egress
Pipeline

pipe 0

pipe 3

Figure 4 – Simplified TNA block diagram.

software without requiring modifications to the underlying hardware. This feature simplifies
adding new features and functionalities to the network, reducing deployment time and cost.
Figure 4 summarizes the organization of the architecture. First, the packet is received
by a Receiver (Rx) port. Then, in the ingress pipeline, the packet undergoes a parsing
process, extracting and verifying user-defined headers. In the ingress pipeline, the defined
match+action tables are applied according to the user’s logic and forwarded to the traffic
manager. At this point, the packet can either be recirculated directly to an Rx port in
the ingress again or undergo a deparser process and be forwarded to an egress pipeline,
where the process repeats. Then, the packet is transmitted to the egress port. While the
packet is traversing the ingress and egress pipeline, a set of Packet Header Vector (PHV)s
are responsible for handling/storing data such as packet header fields and conditional
operators (see Figure 5). More specifically, they carry information starting from the parser,
then through MAU (a.k.a. “stages”) to the deparser. Also, all the communication between
different blocks happens via PHV. The stage used by PHVs may be shared and assigned
to either the ingress or pipeline (never both), but both header fields and metadata may be
packed into any container or combination. Despite this flexibility in allocating information
in PHVs, the compiler is responsible for determining in which of the 12 stages – i.e., for
each pipeline – the information should be allocated. Moreover, Tofino™ is designed to be
fully programmable, allowing for seamless updates and incorporating new features and
functionalities without any hardware changes. Ultimately, TNA, in combination with P4,
empowers network operators to exert precise control over their networks, enabling them to
customize the network to meet the specific requirements of their applications.

32 Chapter 2. Background and Related Work

PHV

Figure 5 – PHV carries information through the TNA pipeline.

2.4 In-Band Network Orchestration

Existing INTO approaches rely either on using (i) active flows (HOHEMBERGER
et al., 2019; MARQUES et al., 2019; BASAT et al., 2020; SCANO et al., 2021) or (ii) probe
flows (RAMANATHAN; KANZA; KRISHNAMURTHY, 2018; LIU et al., 2018; PAN et al.,
2019; BHAMARE et al., 2019; GENG et al., 2019; LIN et al., 2020; YUAN et al., 2022) to
collect telemetry demands across the network topology. Marques et al. (MARQUES et al.,
2019) propose two heuristic strategies for collecting telemetry data, namely, concentrate
and balance. The first strategy strives to aggregate telemetry data on a restricted number
of flows. In contrast, the second tries to distribute equally the telemetry data over a more
comprehensive range of available network flows. Hohemberger et al. (HOHEMBERGER et
al., 2019) is the first attempt to collect telemetry items in real-time coordinately. It solved
the In-band Network Telemetry Orchestration Plan Problem (INTOPP) by designing a
machine-learning-based model and formalizing the collection problem. It must satisfy
both spatial and temporal requirements, i.e., the model considers the probes must collect
items from specific devices and, simultaneously, at a certain rate to properly feed machine-
learning applications on top of the network to detect anomalies (e.g., DDoS). Similarly,
SDProber (RAMANATHAN; KANZA; KRISHNAMURTHY, 2018) performs a random-
walk approach for embedding INT data into probe packets and increases the probe rate to
areas where congestion tends to occur, while Netvision (LIU et al., 2018), Pan et at. (PAN
et al., 2019) and Yuan et al. (YUAN et al., 2022) leverage Euler Circuits strategies to
orchestrate probing packets across the network. In the first (LIU et al., 2018), the network
operator operates an API to instruct the probes without manipulating the underlying
infrastructure. At the same time, in the second (PAN et al., 2019), it embeds source
routing into INT probes and develops an Euler trail-based algorithm to cover the whole
network with non-overlapping INT paths. INT-probe (PAN et al., 2021; YUAN et al.,
2022) extend Pan et al. (PAN et al., 2019) and formulates the constrained path planning
into an extended multi-depot k-Chinese postman problem (MDCPP-set) and then reduces
it to a solvable minimum weight perfect matching problem and recovers link failures with

2.4. In-Band Network Orchestration 33

the help of an adjacent list at a Redis database. Similarly, INT-react (YUAN et al., 2022)
developed a path-planning algorithm to achieve resilient network-wide telemetry over
large-scale networks. By eliminating the unnecessarily repetitive calculation and changing
the underlying data structure, which turns the time complexity from INT-path (PAN et
al., 2019) 𝑂(𝑘(3𝐸 + 𝑉 − 15𝑘/2)) to 𝑂(3𝐸), where k is the number of odd-degree vertices,
E is the edge number, and V is the vertex number. However, none of these works consider
devices/links may fail. Consequently, they do not provide a way to (i) detect a failure and
(ii) circumvent a fault entirely in the data plane to mitigate control plane communication
and synchronization. With both aspects above, ensuring low recovery latency and SLAs –
such as in 5G networks (e.g., ultra-low latency) – would become much easier to be met.

Scano et al. (SCANO et al., 2021) extend P4 INT to 5G. Packet flows carrying
selected latency-sensitive services are proposed to encompass the INT header from the user
equipment, allowing for rerouting packets when soft failures are detected (e.g., increased bit
errors, occasional packet loss, link congestion). Then, the collected data is sent to the ONOS
controller, which triggers optical connection rerouting. Patcher (CASTRO et al., 2020) is
a fault-tolerant mechanism that leverages the shortest path algorithm (DIJKSTRA et al.,
1959) performing “patches” on affected probe flows where device faults occurred - e.g., due
to energy failure, misconfiguration. Still, a control plane must be informed about the failure
location to perform the “patches” and communicate the changes to the corresponding data
plane devices. The failures must be transmitted to a control plane where the “patches”
are performed and informed to data plane devices, incurring high latency – intolerable
for low-latency applications (e.g., VoIP). RedPlane (KIM et al., 2021) is a fault-tolerant
system for stateful in-switch applications. It ensures that after a failure and reroute, the
same application state becomes available at the replacement switch by providing a set of
APIs in P4 and continuously replicating updates to the state store through the data plane
while Bankhamer et al. (BANKHAMER; ELSÄSSER; SCHMID, 2019) contributes with
three non-deterministic local fast rerouting algorithms to deal with multiple link failures
with minimal (first algorithm) to no header field modification (remaining algorithms).
PINT (BASAT et al., 2020) and LINT aim to reduce INT collection overhead. In the
first work, hash function outcomes are leveraged to probabilistically determine when
to collect INT information for each network device to reduce INT collection overhead.
Similarly, LINT (CHOWDHURY; BOUTABA; FRANÇOIS, 2021) independently decides
on selectively reporting telemetry data on passing packets. Specifically, a predictor function
leverages the Exponentially Weighted Moving Average (EWMA) computed in the data
plane to retrieve the moving average of a data stream according to the exponentially
decaying weights of the items in the stream according to the order they appear. Similarly,
DeltaINT (SHENG; HUANG; LEE, 2021) instructs each node to embed a state to only
a subset of traversed packets, thereby reducing the INT bandwidth usage. It measures
the difference between a previous and the most recent measurement embedded state for

34 Chapter 2. Background and Related Work

each traversed packet. Flexile (JIANG et al., 2022) prioritizes the availability of critical
flows at cloud provider WANs to reduce flow loss. The proposal is subdivided into an
offline phase and an online phase. Critical failure states are identified for each flow in the
first, while bandwidth is allocated to prioritized flows in the second. NetView (LIN et
al., 2020) supports multiple telemetry frequency collections. In summary, a greedy-based
telemetry coordinator handles user requests, prioritizing high-frequency query cluster
demands over the remaining requests. On the other hand, Fast-INT (YANG et al., 2020)
can implement specific INT monitoring tasks on target points to shorten the monitoring
time and make it more efficient. It uses “perspective INT packets” for the network’s global
view and “inspection INT packets” to feed a reinforcement algorithm that checks actions
and executes policies on target points of the network. Castro et al. (CASTRO et al., 2021)
generates probing packets according to an Inter Linear Programming (ILP) model to cover
all telemetry items (e.g., ingress timestamp) and verify link connectivity. However, the
model does not consider device/link failures that may occur. Similarly, SIMON (GENG et
al., 2019) generates a mesh of probes to cover all the network links in Data Center Network
(DCN)s to enable network state reconstruction with LASSO (TIBSHIRANI, 1996) network
tomography algorithm. Specifically, NICs retrieve state variables such as queuing times,
link utilization, and queue composition on edge devices. However, SIMON is limited to
operating in DCN networks where it has previous knowledge.

2.5 Fast Rerouting mechanisms

More recently, Fast Rerouting (FRR) mechanisms have been used to implement
fault-tolerant routing schemes directly on the fast path in the data plane. This ap-
proach reduces path recovery time by requiring minimal or no control plane intervention.
PURR (CHIESA et al., 2019) is an FRR primitive that supports multiple failures and
avoids re-circulations with a single TCAM lookup. First, the switches send the packet
on the first active port in a sequence. In failure, multiple mechanisms may be used to
re-establish the connection. However, it does not consider probe cycle space and time
requirements. Blink (HOLTERBACH et al., 2019) passively monitors non-negligible TCP
re-transmissions to detect remote link failures that disrupt end-to-end connectivity. The
Flow Selector monitors connections, and a Failure Inference module probes all the next
hops for availability and chooses a new working one. Subramanian et al. (SUBRAMANIAN
et al., 2021) and Hsu et al. (HSU et al., 2020a) provide policy-compliant paths. In the
first (SUBRAMANIAN et al., 2021), D2R logically split the topology into domains to
reduce the memory overhead of alternative path computation. When the failure is detected,
the D2R data plane stores this information in a register. When a packet arrives, the data
plane uses this updated local link state and computes an end-to-end route that does not
use the failed link, avoiding packet drops. Nevertheless, if a domain becomes internally
disconnected due to multiple failures, D2R may not find a route to the destination -

2.5. Fast Rerouting mechanisms 35

even if it exists -, while with Contra (HSU et al., 2020a), probes are generated according
to high-level policies (i.e., provided by the user). Then, these policies are converted to
automata and intersect with the network topology. Also, switches mark links as failed when
there have been no probes along the link for “k” probe periods. Similarly, Yamansavas-
cilar et al. (YAMANSAVASCILAR et al., 2020) combines fast fail-over groups and SDN
route calculations to keep QoS and QoE for video streaming applications. It continuously
monitors the latency values of different paths and selects the optimal alternative path based
on the current network conditions. It replaces the secondary path with a better alternative
path if it becomes overloaded or experiences higher latency. FlowStalker (CASTANHEIRA;
PARIZOTTO; SCHAEFFER-FILHO, 2019) subdivides the network into clusters and
introduces the concept of crawler packets. A Depth-First Search (DFS) search is then
applied on each cluster determines a single route that spans the whole cluster to gather
information without the intervention of a network controller. In turn, Omnimon (HUANG
et al., 2020) splits queries into partial operations and merges them to be executed on
network entities (e.g., end-hosts, switches) according to its resources’ constraint to monitor
flows across the entire network. Similarly, NetSeer (ZHOU et al., 2020) reduces the dupli-
cation of reported flow events by only reporting packets that experienced event flows (e.g.,
congestion) and merging them to discover drops and corruptions over links and recovering
the flow information of the events. In turn, SwitchPointer (TAMMANA; AGARWAL; LEE,
2018) combines in-network programmability and the available end-host resources to collect
and monitor telemetry data to debug network events. Tan and Kuo (TAN; KUO, 2022)
present a two-mode FRR mechanism with the (i) optimistic mode and the (ii) fallback
mode. After a packet encounters the first failed link, it is forwarded in the optimistic
mode, aiming solely to optimize the quality of fail-over routes. If it fails to provide high
quality, employ the fallback mode to guarantee packet delivery. Zheng et al. (ZHENG et
al., 2021) design a system named SR-INT. They propose a procedure to replace an SR
label field with a bundle of INT fields and allow to change labels on the source switch to
route through an alternative path at the last switch of each path segment to route SR-INT
packets judiciously. Similarly, SQR (QU et al., 2019) caches a small number of recently
transmitted packets on a switch, and in the event of a link failure, it re-transmits them
on the appropriate backup network path. Instead, Aceves, Hemmati (GARCIA-LUNA-
ACEVES; HEMMATI, 2019) only stores a vector in each data plane device to provide
on-demand or proactive loop-free route alternatives. Similar to NetView (LIN et al., 2020)
Sel-INT (TANG et al., 2019) and TeleNoise (DEMIANIUK; GORINSKY; KOGAN, 2021)
consider INT data collection frequency. Sel-INT (TANG et al., 2019) supports real-time
compilation and dynamic adjustment of telemetry instructions, sampling rate, and other
telemetry behaviors. It leverages Select Group Table (SGT)s to selectively insert INT
headers into OVS-POF based on its bucket’s weight and a certain probability. In contrast,
TeleNoise (DEMIANIUK; GORINSKY; KOGAN, 2021) inserts a few “sync bits” and

36 Chapter 2. Background and Related Work

introduces two primitives (group affiliation and group completion) to mitigate network
noises (e.g., packet reordering, packet loss). Wong et al. (WONG; LEE, 2023) is the first to
integrate auto bootstrapping, network monitoring, fast fail-over, and control plane security
in an in-band-controlled P4 network. Unlike OpenFlow switches, P4 switches behave
passively—waiting for communication from the controller to be identified. Therefore,
P4IBN sends device discovery messages periodically and allows rerouting with a set of
pre-installed paths.

Despite recent efforts (CASTRO et al., 2020; HOLTERBACH et al., 2019; CHIESA
et al., 2019; SUBRAMANIAN et al., 2021; TAN; KUO, 2022) to provide routing fail-
over mechanisms in the data plane, these solutions have limitations when it comes to
recovering INT data collection. Specifically, they struggle to meet the uninterrupted
demand for INT data since their fail-over mechanisms are not explicitly designed for
that purpose. Consequently, the downtime experienced in INT is primarily attributed to
the time required for path updates in the controller, which can take several hundreds of
milliseconds depending on the network size. Even with pre-computed paths, the delay in
receiving failure notifications at the controller and propagating/installing new forward
entries in the data plane devices remains significant, resulting in a loss of network visibility.

To overcome these challenges, we introduce InPatching as a pioneering approach
that combines the concepts of INTO and FRR. This unique integration allows us to achieve
a recovery decision-making approach with minimal reliance on the control plane. With
InPatching, the data plane gains the ability to autonomously and harmoniously respond
to faulty network conditions, ensuring swift responsiveness and outperforming existing
control plane solutions by a remarkable factor of 18X. It enables continuous and accurate
data collection even during network failures while maintaining efficient coordination. The
autonomous nature of our approach significantly reduces the dependency on the control
plane, thereby minimizing the time required for path updates and eliminating propagation
delays that hinder network visibility. Furthermore, our approach enables different probe
streams to exchange information in advance to reduce the convergence time for fault
identification and avoidance.

We demonstrate the superiority of InPatching over existing control plane solutions
through extensive evaluations. The efficiency of our approach is evident as it outperforms
control-plane-based techniques by a remarkable factor of up to 18X. By combining the
strengths of INTO and FRR, InPatching establishes a new paradigm in fault-tolerant
network probing and recovery, paving the way for enhanced network performance and
reliability.

2.6 Outline

This section summarizes all the presented works, sorting them into specific cate-
gories. The categories below detail the columns of Table 1. It provides a good insight into

2.6. Outline 37

the focus of these works, their limitations, and where our strategy fits concerning them.
Below we described the used categories:

• DP/CP. DP/CP indicates whether the implementation logic of the proposal is
located in the data plane (DP) and/or in the control plane (CP).

• Granularity. Granularity level indicates the level of control one has over the topology.
For example, consider an approach that examines each packet independently to make
a routing or forwarding decision. We can say that this approach has a “per-packet”
level of granularity.

• Fault-tolerant. An approach is said to be fault-tolerant if it is capable of identifying
and dealing with failures (e.g., link failures) through some mechanism either directly
in the data plane or with the assistance of the control plane.

• Orchestration awareness. The notion of orchestration, as the name suggests,
is information that summarizes essential details of the proposal’s logic and how it
organizes the collection of telemetry information and/or handles failures along the
routes of the collection probes or active flows.

38 Chapter 2. Background and Related Work

Proposal DP/CP Granularity Fault-
tolerant

Orchestration awareness

(LIU et al., 2018) no/yes per-RTT no It generates probe packets. Eu-
ler Circuits split the probe rout-
ing

(TAMMANA; AGARWAL;
LEE, 2018)

yes/yes per-flow no End-host and switch view.
Lacks visibility at the core of
the network

(RAMANATHAN; KANZA;
KRISHNAMURTHY, 2018)

no/yes per-link no Provides control over the link
probing rates

(PAN et al., 2019) yes/yes unclear no Source Routing (SR) and Euler
trail-based paths

(GENG et al., 2019) no/yes per-flow no Edge-based probe subsets for
network tomography

(CASTANHEIRA; PARI-
ZOTTO; SCHAEFFER-
FILHO, 2019)

yes/yes per-packet no Modular switch clustering for ef-
ficient data collection

(HOHEMBERGER et al.,
2019)

no/yes unclear no Machine learning-driven teleme-
try collection for monitoring ap-
plications

(MARQUES et al., 2019) no/yes per-flow no Prioritizes telemetry item col-
lection frequency based on the
heuristic approach

(HOLTERBACH et al.,
2019)

yes/yes per-flow yes Active for important prefixes,
Flow Selector, Failure Inference

(CHIESA et al., 2019) yes/no unclear yes Circular port sequence policy,
but ignores space and time re-
quirements

(LIN et al., 2020) yes/yes per-packet no Node-centric monitoring for fail-
ure location with query aggrega-
tion and frequency multiplexing

(JIA et al., 2020) yes/yes per-flow yes Probe multicasting and SR-
based proactive rerouting for
’gray failures’

(YANG et al., 2020) yes/no per-packet no INT packets provide global-view
for network monitoring and rein-
forcement algorithms

(CASTRO et al., 2020) yes/yes per-flow yes Performs “patches”/detours to
handle single link failures

(TANG et al., 2019) yes/yes per-flow no Selective INT header insertion
into OVS-POF using SGTs
based on weight and probability

(BASAT et al., 2020) yes/yes per-packet no Each device randomly embeds
INT data into a packet

(HUANG et al., 2020) yes/yes per-flow no Split and merge queries based on
resource constraints for network
execution

(ZHOU et al., 2020) yes/yes per-flow no ASIC tracing detects events and
gather flow information over
links

(YAMANSAVASCILAR et
al., 2020)

no/yes per
-RTT

yes Continuous monitoring of la-
tency values, selecting optimal
alternative path

(CASTRO et al., 2021) no/yes per-flow no An ILP model covers the whole
network links/devices to collect
INT metrics

2.6. Outline 39

(PAN et al., 2021) yes/yes per-flow yes Link failures are recovered lever-
aging an adjacent list at a Redis
database

(SHENG; HUANG; LEE,
2021)

yes/yes per-packet yes DeltaINT minimizes INT
bandwidth by embedding state
changes in a subset of packets

(KIM et al., 2021) yes/no per-flow yes RedPlane enables seamless in-
tegration and continuous state
replication in P4 applications
through APIs

(CASTANHEIRA; PARI-
ZOTTO; SCHAEFFER-
FILHO, 2019)

yes/yes per-packet no Switch clusters. DFS is run in
each cluster to determine a single
route that spans the cluster

(SCANO et al., 2021) yes/no per-packet yes Cover software failures. INT
headers collect latency metrics
for edge-cloud traffic mobility

(DEMIANIUK; GORIN-
SKY; KOGAN, 2021)

yes/no per-group no It inserts a few "sync bits" to dis-
tinguish packet groups and tells
how many packets were lost per-
group

(ZHENG et al., 2021) yes/yes per-packet yes An FRR mechanism allows to la-
bel the source switches through
an alternative path

(CHOWDHURY;
BOUTABA; FRANÇOIS,
2021)

yes/no per-flow no Selective reporting of passing
packets to reduce data plane
overhead

(SUBRAMANIAN et al.,
2021)

yes/yes per-packet yes Switch clusters. As failures are
detected, link states are updated
into registers and D2R computes
a new route

(TAN; KUO, 2022) yes/no per-flow yes Optimistic and fallback modes in
a fast rerouting framework for re-
liable packet delivery with high-
quality failover routes

(HSU et al., 2020a) yes/no per-flow yes Probes ensure user-based rout-
ing policies. A switch exceeding
’k’ cycles to receive a new probe
is considered a failure

(JIANG et al., 2022) yes/no per-flow yes Offline algorithm that prioritizes
certain flows and takes probabil-
ity of link failures into account

(GARCIA-LUNA-ACEVES;
HEMMATI, 2019)

yes/no per-packet yes The data plane has a vector of
loop-free route alternatives

(QU et al., 2019) yes/no per-packet yes SQR forwards packets normally
but creates a cached copy for
marked packets during the link
failure detection delay

40 Chapter 2. Background and Related Work

(BANKHAMER; EL-
SÄSSER; SCHMID, 2019)

yes/no per-flow yes Algorithm 1 (3-Permutations):
Nodes store random permuta-
tions, selecting based on hop
counter. Algorithm 2 (Inter-
vals): Nodes partition network
based on unique IDs, considering
failover edges within sets. Algo-
rithm 3 (Shared-Permutations):
Nodes agree on undisclosed per-
mutations, reducing maximum
load if unknown to adversary.

(YUAN et al., 2022) yes/yes per-flow no Euler-trail based probing paths
with balanced path lengths for a
more synchronized collection

(WONG; LEE, 2023) yes/yes per-flow no P4 switches wait for the con-
troller. Controller sends mes-
sages to discover new switches
and establish control paths. The
messages monitor links and de-
tect network failures.

Our work yes/no per-RTT yes The controller pre-installs
forwarding rules. The data
plane automatically recov-
ers the failure by performing
detours until the link fail-
ured is corrected.

Table 1 – Comparison of proposals for telemetry collection in network monitoring.

41

3 INPATCHING DESIGN
In this chapter, we introduce our mechanism entitled InPatching. First, we

provide an overview of the idea of the algorithm and discuss the benefits of using it in the
data plane. Next, the design and implementation details of the data plane and control
plane are presented. Finally, the experimentation environment and the main results
obtained are presented.

3.1 Overview

InPatching is an in-network fail-over approach to INT-based monitoring mecha-
nisms. Figure 6 depicts the in-network process in a programmable network infrastructure.
In the example, three probing cycles 𝑓1, 𝑓2, and 𝑓3 are responsible for continuously (i)
collecting telemetry data and (ii) checking network connectivity. For simplicity, we omit
the telemetry data collected at each device in the figure and assume a single independent
failure of network links. In the example, network link 𝐺–𝐻 has failed and therefore affected
probing cycles 𝑓1 and 𝑓3 – that is, INT packets are not returning to the INT Collector
with collected telemetry data.

AE
B

C
F

G
H

DI

f1
f2

f3

(1) Timeout: f1 f3(3)
Send packet throuth alternative path.
 Which one?

(4)

(5)
(6)

f1

(2) Node A instruct INT packet to take detours
 in a given order until reestablish probing cycle

Probes flows

Probe packet

Possible detour

Figure 6 – Overview of the in-network InPatching strategy.

InPatching aims to offload the fail-over mechanism to the data plane to reestablish
the monitoring with minimal to no control plane intervention. It relies (i) on alternative
paths computed in advance and (ii) on a data plane heuristic strategy to select the proper
alternative path. Upon a network link failure, probing packets start to time out in device
𝐴 (in the examples, probing packets from 𝑓1 and 𝑓3), indicating to the data plane that
probing packets have not arrived on time.

In turn, the data plane autonomously reacts by instrumenting the next packet
of affected probing flows to take a detour in the main probing path to circumvent the

42 Chapter 3. InPatching design

connectivity problem. In Figure 2, the data plane of device 𝐴 is in charge of making that
decision. The first attempt is to perform a detour between nodes 𝐴 and 𝐸. The packet
sent through this alternative path does not return (since the failure is on network link
𝐺–𝐻). Then, the data plane attempts to use an alternative detour on nodes 𝐸 and 𝐹 ,
which also does not solve the connectivity problem. Eventually, the data plane uses an
alternate path between nodes 𝐺 and 𝐻, reestablishing the INT monitoring mechanism.
Last, from time to time, the data plane attempts to utilize back the original forwarding
path. Note that the data plane is taking heuristic decisions, and in the worst case, the
number of attempts is 𝑂(𝑛), where 𝑛 is the length of the probing path. As we discuss
next, we can optimize these decisions to minimize the number of attempts, minimizing
the overall recovery time.

Two building blocks are required to realize the potential of InPatching. The first
is the data plane itself. As mentioned, the data plane must react to time-out conditions
and instrument other data planes to take a detour. The second is the orchestration model
(implemented in the control plane) responsible for constructing appropriate probing cycles
and detours for network links.

3.2 Data plane design

The proposed data plane follows a distributed design similar to the well-known
master-slave approach. One data plane logic is set as master and takes the major decisions
(e.g., whether or not to take a detour). The others (i.e., the slave data planes) implement
a simplified data plane logic to forward probing packets. It is essential to mention that
all data plane logic has primary and alternative paths installed in advance by the control
plane (we will discuss how we do that in the following subsection).

INT Header

0

P
at

h
id

Ta
rg

et
 id

15 31 39

F
la

gs

Figure 7 – InPatching header structure.

Our design works by extending the classical INT-based header struct. All probing
packets have an INT header instructing which INT telemetry data must be collected at
each forwarding device. The InPatching header struct is appended just after the INT
header and is 5 Bytes long (i.e., 0.003% of a regular 1500B Maximum Transmission Unit
(MTU) frame). These Bytes are used to monitor time-outs and to instruct the slave data
plane on how to react. Figure 7 depicts the InPatching header struct. The first 16 bits
represent the path id of a probing cycle. Then, the target id represents the slave data

3.3. Control plane design 43

plane id targeted by the master data plane. In other words, it represents the data plane
where the detour decision is made. Last, there is an 8-bit word to describe possible control
flags. InPatching utilizes these flags to notify the slave data plane to attempt to use the
main path or to force them to stay in the alternative route. Our approach periodically
injects a packet trying to return to the main course.

The master data plane logic needs to (i) keep track of probing cycle time-outs and
(ii) react in case of a time-out by instrumenting slave data planes on possible detours.
Figure 8 illustrates the whole procedure. The INT header is processed (steps 1-2) whenever
a packet ingresses the device pipeline. It interprets INT instructions and collects INT data
at a given device. The master data plane is uniquely identified by an id. It is responsible
for (i) encapsulating packets in the InPatching header (step 4), (ii) keeping track of
probing packet time-outs (steps 5 and 6), and (iii) choosing a slave/target data plane
to perform a detour (step 7). For each probing cycle, the master data plane keeps an
array of |𝑃 | register (each of 48 bits) to store data plane timestamps, where 𝑃 is the
set of probing cycles in the network. When a packet ingress the master data plane, the
data plane compares the packet ingress timestamp with the last seen packet timestamp
of the same probing cycle 𝑃 . If this difference exceeds a fixed threshold, the data plane
assumes a time-out has happened. Then the master data plane notifies a slave to follow
an alternative path (step 6). For that, the master stores a list of device ids in a probing
cycle using an array of registers. The order of this ids in the array defines the order in
which the data plane tries to apply a detour. This order is determined in advance by the
control plane and can be adjusted based on failure probabilities, for example. When a
detour is applied, the InPatching header is updated with the target data plane id (step
7). That information in the header field is used by the slaves to either apply alternative
paths (steps 8-9) or not (step 10). Furthermore, whenever a packet returns to the master
data plane (steps 11-12), we update the time-out data structure for each probing cycle to
track the last seen probing packet. To properly control returning packets to the master,
we use the field flags in the InPatching header. Last, the packet is sent out to a specific
port in step 13.

3.3 Control plane design

As previously mentioned, the primary decisions of the InPatching approach are
taken in the data plane. However, the control plane still plays a vital role by defining
the probing paths (PAN et al., 2019; HOHEMBERGER et al., 2019; LIU et al., 2018;
MARQUES et al., 2019), the detours, and the order in which they are applied by the data
plane. In particular, the probe planning in the control plane directly impacts the efficiency
of InPatching.

44 Chapter 3. InPatching design

tcurr - tlast >= time
out threshold?

Choose a slave data
plane to perform a

detour

1

2

Ingress of INT packet

Process INT header
 (INT operations)

Is this a master
data plane?

yes Process InPatching
header (e.g., add

header)

Is this the target
date plane?

no

Set packet to use the
primary path

yes

Update time out data
strucutre (tlast)

Forward packet

Set packet to use the
alternative path

no

Update InPatching
header

yes

Performed only in master
P4 pipelines

Performed in master/slave
P4 pipelines

no

3 4 5 6 7

yes

no

8

9

10
12 13

Is this a master
data plane?

11

Figure 8 – Overview of the InPatching data plane procedure.

To understand the impact of probing paths on the efficiency of InPatching, let’s
consider the example in Figure 6. In case a failure occurs at a network link covered by
only one probing path (e.g., network links 𝐸–𝐹 or 𝐵–𝐶), the heuristic strategy taken by
the InPatching data plane is in the worst case 𝑂(𝑛) (where 𝑛 is the probing cycle length).
It happens because affected probing paths 𝑓1 and 𝑓2 are disjointed, and independently
of the order InPatching applies a detour, the worst case remains 𝑂(𝑛). However, if the
failure happens at a network link shared by multiple probing paths, the decision can be
optimized by cooperatively applying the heuristic by the data plane.

Suppose the master data plane knows the subset of overlapped probing paths.
In the example of Figure 6, probing cycles 𝐹𝑠 = {𝑓1, 𝑓3} share network links 𝑆 =
{(𝐴 − 𝐸), (𝐺 − 𝐻)}. In case of a network failure in 𝑆, the master data plane would
reduce the search space to 𝑂(|𝑆|

|𝐹𝑠|). In that case, network flows in 𝐹𝑠 would time out, and
the master data plane could distribute the decision amongst them cooperatively. Whenever
a probing flow finds a valid detour, it updates the master data plane accordingly.
Defining Optimized Probing Paths. To implement this unified solution by the data
plane, the control plane runs an INTO model that can generate a valid set of probing
cycles to cover the network infrastructure links by multiple probing cycles. Therefore, in
the event of a network link failure, multiple affected INT cycles are promptly noticed and
repaired these links.

The optimization problem described next ensures a valid INTO solution with a
minimal number of probing cycles while providing at least a 𝒦 ∈ N+ cycle coverage
per network link. We adopt a revised (and extended) version of the model proposed
by (CASTRO et al., 2021). Similarly, we consider a programmable network infrastructure
𝐺 = (𝐷, 𝐿) and a set of telemetry items 𝑉 . Set 𝐷 of network 𝐺 represents P4-enabled
forwarding devices 𝐷 = {1, ..., |𝐷|}, while set 𝐿 links interconnecting devices (𝑑1, 𝑑2) ∈
(𝐷 × 𝐷). There is a set of available telemetry data 𝑉 , where each 𝑣 ∈ 𝑉 has its size
defined by the function 𝑆 : 𝑉 → N+. Each device 𝑑 ∈ 𝐷 can embed a subset of items

3.3. Control plane design 45

𝑉𝑑 ⊆ 𝑉 into a probing cycle packet 𝑝 ∈ 𝑃 . Packets in a probing cycle 𝑝 ∈ 𝑃 have limited
spare space to embed 𝑉 data, defined by the function 𝑈 : 𝑃 → N+. The set of probing
cycles 𝑃 is routed within the network 𝐺 – that is, the packet is generated at an INT sink,
routed through a subset of devices, and returns to its origin. A probing packet can visit a
device 𝑑 ∈ 𝐷 and not collect any associated telemetry items. We denote the origin of each
cycle 𝑝 ∈ 𝑃 as a fixed forwarding device 𝑑𝑜 ∈ 𝐷.

The variable set of the optimization model is defined as follows. Variable 𝑧𝑝,𝑣,𝑖, (∀ 𝑝 ∈
𝑃, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐷) indicate that a device 𝑖 embeds INT data 𝑣 into a probing packet from
cycle 𝑝. Variable 𝑥𝑝,𝑖,𝑗 (∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿) indicate that network link (𝑖, 𝑗) ∈ 𝐿 is being
used to route probing cycle 𝑝 ∈ 𝑃 . Last, variables 𝑦𝑝 (∀𝑝 ∈ 𝑃) and 𝑤𝑝,𝑖,𝑗 (∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿)
are used, respectively, to count probing cycles used by the solution and by network link.

Minimize
𝑃∑︁

𝑝=1
𝑦𝑝 (3.1)

Subject to:

𝑧𝑝,𝑣,𝑖 ≤
∑︁
𝑗∈𝐷

𝑥𝑝,𝑗,𝑖 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉𝑖 (3.2)

𝑧𝑝,𝑣,𝑖 + 𝑥𝑝,𝑖,𝑗 ≤ 2 · 𝑦𝑝 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿, 𝑣 ∈ 𝑉𝑖 (3.3)

∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗 −
∑︁
𝑗∈𝐷

𝑥𝑝,𝑗,𝑖 = 0 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷 (3.4)

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

𝑥𝑝,𝑖,𝑗 ≤ |𝑆| − 1 ∀𝑝 ∈ 𝑃, 𝑆 ⊆ {𝐷 − 𝑑𝑜}, |𝑆| ≥ 2 (3.5)

∑︁
𝑝∈𝑃

𝑥𝑝,𝑖,𝑗 + 𝑥𝑝,𝑗,𝑖 ≥ 1 ∀(𝑖, 𝑗) ∈ 𝐿 (3.6)

∑︁
𝑖∈𝐷

∑︁
𝑣∈𝑉𝑖

𝑧𝑝,𝑣,𝑖 · 𝑆(𝑣) +
∑︁
𝑖∈𝐷

∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗 ≤ 𝑈(𝑝) ∀𝑝 ∈ 𝑃 (3.7)

𝑥𝑝,𝑖,𝑗 ≤ ℬ · 𝑤𝑝,𝑖,𝑗 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿 (3.8)

∑︁
𝑝∈𝑃

𝑤𝑝,𝑖,𝑗 ≥ 𝒦 ∀(𝑖, 𝑗) ∈ 𝐿 (3.9)

𝑧𝑝,𝑣,𝑖 ∈ {0, 1} ∀𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐷 (3.10)

𝑦𝑝 ∈ {0, 1} ∀𝑝 ∈ 𝑃 (3.11)

𝑥𝑝,𝑖,𝑗 ≥ 0 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿 (3.12)

𝑤𝑝,𝑖,𝑗 ∈ {0, 1} ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿 (3.13)

46 Chapter 3. InPatching design

Constraint set (3.2) ensures that if telemetry item 𝑣 is collected from forwarding
device 𝑖, a probe should be routed through 𝑖. Constraint set (3.3) accounts for the number
of probing cycles in use. In turn, constraint sets (3.4) and (3.5) ensure that cycles are well
crafted. That is, constraint set (3.4) ensures flow conservation, while constraint set (3.5)
is the well-known sub-tour elimination constraint. Then, constraint set (3.6) guarantees
a probing cycle that covers at least one link direction. Constraint set (3.7) ensures the
available probing packet capacity is not violated by the telemetry items collected or the
network links being covered. Constraint sets (3.8) and (3.9) ensure a network link is
covered by at least 𝒦 probing cycles, where ℬ is a significant natural number. Last,
constraint sets (3.10)–(3.13) define the domains of output variables, while Equation (3.1)
aims at minimizing the number of probing cycles.
Defining Detours. Another key element of InPatching is the detours performed by
the probing cycles in the data plane in case of network link failure. We define detours as
simple paths in 𝐺 between two forwarding devices belonging to the same probing cycle 𝑃 .
We denote by 𝑁𝑝 = {𝑑1, 𝑑2, ..., 𝑑|𝑁𝑝|} the ordered set of forwarding device of a probing
path 𝑝 ∈ 𝑃 . For each ordered pair (𝑑1, 𝑑2), (𝑑2, 𝑑3), ..., (𝑑|𝑁𝑝|−1, 𝑑|𝑁𝑝|) we define a simple
alternative path between devices of a pair.

As previously mentioned, the data plane heuristically selects one alternative path
to address the faulty condition in the event of a failure. The control plane also defines the
order to instruct the master data plane on how to proceed. As for the experiments shown
next, we adopt a simplified round-robin alternative following the order of nodes in the
probing path 𝑃 . However, other approaches are easily implemented, such as prioritizing
high-probability faulty nodes first. Figure 9 summarizes the InPatching round-robin
procedure. In this topology, we have three linearly connected switches. 𝐴 is the master
data plane, and the remaining switches are the slave data planes. Once a failure is detected
by a time-out trigger at the master data plane (e.g., Time 1), 𝐴 reads the next-hop detour
list and selects the next switch (switch 𝐴 itself) to perform the detour in the attempt
to deviate the link failure. A detour is then performed at 𝐴 − 𝐵 by 𝐴’s alternative hop.
However, the time-out condition persists. Next, the master data plane tries the next
switch in the detour list (Time 2) – i.e., 𝐵 − 𝐶 – successfully bypassing the link failure.

3.4 Evaluation

3.4.1 Setup

We implemented our InPatching data plane approach in P4 using BMv2 virtual
switches and evaluated it in a Mininet environment. Probing cycles are defined according
to our optimal Model 3.3. In contrast, probing packets are generated using a custom-made
Scapy (BIONDI, 2010) code – a Python tool that allows us to handcraft customized
packets. All experiments were performed on a machine equipped with an AMD Ryzen

3.4. Evaluation 47

A B C

detour list:

pkt #1

time-out!

time-out!

pkt #2

pkt #3

packet:

master data plane:

control data plane:

n

X

3
ABC

3
ABC

3
ABC

A B CX (1)

(2)

A B CX (3)

Figure 9 – Round-robin heuristic

Threadripper 3990X with 64 physical processors and 32 GB of memory, running Ubuntu
18.04.
Baseline. We compare InPatching against: (i) a traditional control-plane-based approach
where requests are sent to a control plane, processed, and returned to the data plane; (ii)
a Euler-trail based heuristic (PAN et al., 2019) named opp that minimizes overlapping
probe circuits; and (iii) our previous theoretical model - where no failures were taken into
account.
Reproducibility. Each experiment was repeated 30 times, which was enough to guarantee
a confidence level higher than 95%. Our source code is available on GitHub (InPatching,
2022).

3.4.2 InPatching Data Plane vs. Control Plane Approaches

We first evaluate the effectiveness of InPatching in recovering the INT-based
monitoring mechanism from single-link failures compared to a control-plane based solu-
tion (CASTRO et al., 2020) that performs “patches” on affected links by performing the
shortest path algorithm (DIJKSTRA et al., 1959) on affected nodes/switches. To do that,
we deploy a set of disjoint probing cycles in Mininet and inject link failures to network
links in 𝑃 . For this experiment, we set all network links in Mininet to have a 1ms delay,
and we varied the time out in the data plane from 10ms to 100ms. The time-out is the
reaction time when the data plane waits for an injected probing packet before reacting to it.
More specifically, it is a threshold value to assume there is a port/link failure somewhere
in the probing path. Therefore, whenever a time-out event occurs, we can either (i) send
it to the InPatching mechanism, applying it over the next packet, or (ii) send it to the

48 Chapter 3. InPatching design

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 5 10 15 20 25 30

T
im

e
(m

s)

Controller Delay (ms)

Communication time (ms)
Control plane processing time (ms)

Reaction time (time out) (ms)

Figure 10 – Control plane approach average time (ms).

Figure 11 – Control plane approach.

control plane, and another mechanism will be responsible for computing a new route for
the packet flow. Also, it is essential to mention that the data plane InPatching comes in
three distinct “flavors” and all decisions. The first is stop-n-wait-based and is represented
by InPatching𝜔. In this strategy, whenever a packet times out, the upcoming packets
will follow the decision of the first one until the next time-out event (if any). The main
advantage is that if a failure occurs at the first attempted link, fewer packets will be lost by
bypassing the failure. The second strategy, represented by InPatching𝜌, is pipeline-based.
In this approach, all pre-programmed next-hop choices are pipelined and forwarded to
different neighbors simultaneously. In this way, it can find the failed link more rapidly
than the previous one – which must wait for the next time-out event until a new neighbor
chooses. Finally, the third approach is the cooperative InPatching (InPatching𝜎) on
which the behavior is based on the aforementioned stop-n-wait version (InPatching𝜔),
with the main advantage that flows now share information about network failures in
advance. More specifically, a different set of flows share a data structure that allows
probing paths to overcome network failures more efficiently, thus reducing the overall
convergence time.

Figure 11 shows the recovery time for the control plane, while Figure 12 and
Figure 13 illustrates the same information for the data plane approaches. Figure 12 depicts
the proposed stop-n-wait data plane approach (InPatching𝜔) considering an increasing
value of time out. For this experiment, we consider a 5-hop probing cycle (i.e., link #1 to
link #5). As we observe, the data plane increases the recovery time linearly as we increase
the time out. For instance, for a data plane time out of 10ms, the recovery time of the

3.4. Evaluation 49

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

Link #1 Link #2 Link #3 Link #4 Link #5

T
im

e
(m

s)

Link Failure

Reaction time 10 ms
Reaction time 20 ms
Reaction time 30 ms
Reaction time 40 ms
Reaction time 50 ms

Reaction time 60 ms
Reaction time 70 ms
Reaction time 80 ms
Reaction time 90 ms

Reaction time 100 ms

Figure 12 – InPatching𝜔 data plane approach.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

Link #1 Link #2 Link #3 Link #4 Link #5

T
im

e
 (

m
s
)

Link Failure

Reaction time 10 ms
Reaction time 20 ms
Reaction time 30 ms
Reaction time 40 ms
Reaction time 50 ms

Reaction time 60 ms
Reaction time 70 ms
Reaction time 80 ms
Reaction time 90 ms

Reaction time 100 ms

Figure 13 – InPatching𝜌 data plane approach.

50 Chapter 3. InPatching design

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

50 60 70 80 90 100

T
im

e
(m

s)

Reaction time (ms)

Non-cooperative In-Patching
Cooperative In-Patching Probe #1
Cooperative In-Patching Probe #2

Figure 14 – Cooperative InPatching data plane vs non-cooperative.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

100 200 400 800 1500

P
ro

b
es

 A
v
er

ag
e

Probe Capacity

PINT OPP InPatching

Figure 15 – InPatching optimal model

3.4. Evaluation 51

entire INT monitoring system is ∼19ms. Further, we can observe that the round-robin
heuristic approach affects the data plane recovery time. The more distant the failure
happens from the probing cycle origin, the more time is required to InPatching𝜔 to find
a valid detour. However, even in the more distant link (e.g., link #5), the recovery time is
below 60ms for a time out of 10ms. Finally, the results show minimal variance between
the minimum and maximum obtained within the 30 executions. Similarly, Figure 13
depicts the pipeline strategy (InPatching𝜌). In contrast to InPatching𝜔, the reaction
time remains constant for any link. It is because, in this strategy, whenever a packet times
out, each upcoming packet selects a different node to perform a detour on simultaneously –
hence the name pipeline – searching for the failed link in the topology and immediately
informing the master data plane. Similarly to Figure 12, the experiments demonstrate
little variation between the minimum and maximum values obtained during the executions.
Finally, Figure 11 illustrates the recovery time in the control plane. In this experiment,
we fixed the time out as 10ms. The control plane recovery time depends on (i) the control
plane processing time (i.e., the time required to compute a solution), which encompasses
an incoming cloned packet notification from the data plane, identification/notification of
failed links across the topology to the control plane, alternative rule appliance leveraging
the shortest path algorithm (DIJKSTRA et al., 1959); (ii) a user-defined reaction time (i.e.,
the time out) and; (iii) communication time (i.e., the time to send and receive information
between infrastructure and controller) which is directly influenced by the delay in the link
between the master data plane and the controller. When a packet is timed out by the data
plane, it clones the packet and sends it to the control plane. In the case of the control
plane, the network link failure order does not affect the reaction time since we are sending
them to the control plane. We varied the control plane distance from the probing path
origin (1 to 30 ms) to observe the communication time. In the best case (for 1ms control
plane latency), InPatching is up to 18x quicker than the control plane (i.e., ∼ 350ms to
the control plane vs. 19𝑚𝑠 of InPatching).

3.4.3 The gain of overlapping probing INT cycles

Next, we evaluate the gains attained to InPatching when probing cycles are
constructed by our model considering a given overlapping (i.e., 𝒦 >= 2) – i.e., 𝒦 is the
number of cycles overlapping each link in our topology. In our P4 implementation, we
allow 𝒦 = 2, ensuring that at least two probing paths simultaneously cover the same
network link. Figure 14 illustrates the recovery time for a reaction time (time out) varying
from 50ms to 100ms. In case of a failure, two probing paths time out, and the InPatching
data plane coordinately attempts to solve the failure by applying detours simultaneously
for each probing path. In the experiment, we consider two probing cycles sharing at least
one network link. In the event of a network link failure, both probing cycles attempt to
recover the network state by applying a detour. The first one to find a valid detour notifies

52 Chapter 3. InPatching design

the remaining ones in the master data plane. Figure 14 illustrates a non-cooperative
– in this case, we chose the InPatching𝜔 – and the cooperative version of InPatching
(InPatching𝜎) Also, we fixed link #5 as the failed link, which is physically closer to probe
#1. In the cooperative version, the first probing cycle (probe #1) is the one that finds
a valid detour first, notifying the second probing cycle (probe #2) in advance, reducing
the average convergence time. The cooperative InPatching (InPatching𝜎) achieves a
recovery time up to 50% and 300% faster than the non-cooperative version of InPatching
(InPatching𝜔) for the first and second probing cycles, respectively. This time gain occurs
because, as already mentioned, the cooperative flows share information about network
failure points. Specifically, when one of the flows encounters the switch where the failure
occurred, it notifies the other cooperative flows in advance about the switch where the
failure occurred, reducing the total search time of the algorithm.

3.4.4 The cost of overlapping

Last, we evaluate how our proposed optimal model impacts the number of probing
cycles generated in an INTO solution (in particular, Equations 3.8, 3.9, and 3.13). Our
model uses IBM CPLEX Optimization Studio 12.9 to obtain optimum solutions. Our
results are compared to (PAN et al., 2019; CASTRO et al., 2021). We follow a similar
approach to them to generate a workload, setting 𝒦 = 2 as this is the parameter evaluated
in the previous subsection. Figure 15 illustrates the number of probing cycles for increasing
the size of probing capacity (from 100B to 1500B). As we increase the probing capacity,
we observe a decrease in the number of deployed INT probing cycles, as we have more
space on packets to collect INT data. For small packets (100B, 200B, 400B), our model
requires, on average, 15% more probing cycles than the solution provided by (CASTRO et
al., 2021). While for larger packets (800B and 1500B), our solutions require, on average,
two additional cycles. Yet, our model produces 40% fewer cycles than (PAN et al., 2019).

3.4.5 Hardware Resource Usage

The discussed results so far have demonstrated how InPatching would behave in a
virtualized environment, i.e., with bmv2 switches. However, in an ideal scenario, it would be
desirable to analyze these same experiments realistically. Offloading our code to hardware,
e.g., to an architecture like TNA, incurs several limitations (see Section 4.2). However,
for the scope of this work, only the compilation of the code with similar components and
necessary logic for its operation has been performed, i.e., although the logic has not been
tested with packet sending/receiving in physical topology. Finally, Table 2 and Table 3
summarize the minimum resource utilization required for the operation of InPatching in
the TNA architecture.

3.4. Evaluation 53

3.4.5.1 MAU Resources

The presented Table 2 resources allocation offers insights into the stages of the
pipeline of the TNA architecture. Firstly, stages 9 to 11 are not being utilized, indicating
potential inefficiencies or unused portions within the architecture. Secondly, the Meter
ALU column stands out, as it is consistently allocated 100% of its resources across all
stages. This suggests the critical importance of the Meter ALU in performing calculations
related to traffic metering or rate limiting, emphasizing its role in ensuring efficient network
traffic management. Regarding the utilization of the Tind Result Bus, it is worth noting
that despite not having any declared tables in the code, the necessity of using the Tind
Result Bus for registers might depend on the specific implementation and requirements of
the TNA architecture. Further analysis or clarification may be needed to determine the
purpose or usage of the Tind Result Bus in such cases. Moreover, apart from the Meter
ALU column, no other resource allocation exceeds 12.5% across all stages. This suggests
a relatively balanced distribution of resources, ensuring efficient utilization of available
capacity while avoiding overutilization in any particular aspect of the MAU. It reflects
a well-designed allocation scheme that maximizes resource utilization without causing
bottlenecks or excessive resource consumption.

• Stage Number. This column represents the stage number or level in the pipeline
of the TNA architecture. Each stage performs specific operations on the incoming
packets.

• Exact Match Input xbar. This column shows the percentage of exact match input
crossbar utilization in each stage. The exact match input crossbar is responsible for
routing packets to the appropriate lookup units for exact matching.

• Gateway. This column represents the percentage of gateway utilization in each
stage. Gateways are responsible for forwarding packets to the appropriate next hop
or output port based on the lookup results.

• Static Random-Access Memory (SRAM). This column indicates the percentage
of SRAM utilization in each stage. SRAM is used to store intermediate results or
configuration data within the MAU.

• Map RAM. This column shows the percentage of map RAM utilization in each
stage. Map RAM stores the mapping information between input fields and the
corresponding actions to be performed.

• Very Long Instruction Word (VLIW). This column indicates the percentage
of VLIW instruction utilization in each stage. VLIW instructions allow multiple
operations to be executed in parallel, enhancing the processing capabilities of the
MAU.

54 Chapter 3. InPatching design

Stage
Num-
ber

Exact
Match
Input
xbar

Gateway SRAM Map
RAM

VLIW
Instr

Meter
ALU

Exact
Match
Search
Bus

Tind
Result
Bus

Action
Data
Bus
Bytes

Logical
TableID

0 0.00% 0.00% 10.00% 16.67% 9.38% 100.00% 0.00% 31.25% 5.47% 31.25%
1 1.56% 6.25% 0.00% 0.00% 6.25% 0.00% 6.25% 12.50% 0.00% 12.50%
2 4.69% 6.25% 2.50% 4.17% 6.25% 25.00% 6.25% 12.50% 0.78% 12.50%
3 1.56% 6.25% 0.00% 0.00% 3.12% 0.00% 6.25% 6.25% 0.00% 6.25%
4 2.34% 12.50% 5.00% 8.33% 6.25% 50.00% 12.50% 18.75% 1.56% 25.00%
5 1.56% 0.00% 2.50% 4.17% 3.12% 25.00% 0.00% 6.25% 0.00% 6.25%
6 1.56% 6.25% 0.00% 0.00% 3.12% 0.00% 6.25% 6.25% 0.00% 6.25%
7 3.91% 6.25% 5.00% 8.33% 3.12% 50.00% 6.25% 12.50% 0.00% 12.50%
8 2.34% 6.25% 2.50% 4.17% 3.12% 25.00% 6.25% 6.25% 3.12% 6.25%
9 0.00% 0.00% 0.00% 0.00% 3.12% 0.00% 0.00% 6.25% 0.00% 6.25%
10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Average 1.95% 5.00% 2.75% 4.58% 4.69% 27.50% 5.00% 11.88% 1.09% 12.50%

Table 2 – MAU (“stage”) resources allocation.

• Meter ALU. This column shows the percentage of Meter Arithmetic Logic Unit
(ALU) utilization in each stage. Meter ALU is responsible for performing calculations
related to traffic metering or rate limiting.

• Exact Match Search Bus. This column represents the percentage of utilization of
the exact match search bus in each stage. The exact match search bus is responsible
for transferring packets or data between the lookup units and other components in
the MAU.

• Tind Result Bus. This column indicates the percentage of utilization of the Tind
result bus in each stage. The Tind result bus is responsible for transferring the index
or address information obtained from the lookup units to other components within
the MAU.

• Action Data Bus Bytes. This column represents the number of bytes transferred
on the action data bus in each stage. The action data bus is responsible for carrying
the action data or instructions between stages or components.

• Logical TableID. This column represents the logical table ID associated with each
stage. It identifies the specific table or lookup unit being utilized in the MAU.

3.4.5.2 Tagalong Collection Resources

Table 3 presents the tagalong collection resource usage. A tagalong collection is a
grouping or container that holds essential information about the packet, such as source and
destination addresses, protocol information, and length associated with a particular packet

3.4. Evaluation 55

header. The table provides several important insights. Firstly, it is evident that only
tagalong collections 0 to 2 are utilized in the Ingress stage (i.e., Gress = “I”). This suggests
that the processing and manipulation of packet headers primarily occur during the ingress
phase. Secondly, the analysis reveals that PHV containers of 16 bits experience higher
usage compared to 8-bit or 32-bit containers. This observation can be attributed to a
higher frequency of registers and variables declared with a width of 16 bits. It implies that
the architecture prioritizes the storage and handling of data structures that require 16-bit
representation. Moreover, considering the cumulative utilization across all collections, it
is evident that approximately 30% of the available bits are allocated. This indicates a
significant amount of unused capacity, potentially providing room for future expansions or
enhancements to the system.

• Collection. This column represents the identifier or name of the collection.

• Gress. This column indicates the gress (stage) associated with each collection. "I"
represents the ingress stage.

• 8b Containers Used. This column shows the number of 8-bit containers used in
each collection, along with the corresponding percentage of utilization.

• 16b Containers Used. This column indicates the number of 16-bit containers
used in each collection, along with the corresponding percentage of utilization.

• 32b Containers Used. This column represents the number of 32-bit containers
used in each collection, along with the corresponding percentage of utilization.

• Bits Used. This column shows the total number of bits used in each collection,
which is calculated based on the utilization of containers.

• Bits Allocated. This column represents the total number of bits allocated for each
collection. It indicates the total capacity available for storing data.

56 Chapter 3. InPatching design

Collection Gress 8b Containers
Used

16b Containers
Used

32b Containers
Used

Bits Used Bits Allocated

0 I 4 (100 %) 6 (100 %) 4 (100 %) 256 (100 %) 320 (125 %)
1 I 3 (75 %) 6 (100 %) 4 (100 %) 248 (96.9 %) 248 (96.9 %)
2 I 0 (0 %) 3 (50 %) 0 (0 %) 48 (18.8 %) 48 (18.8 %)
3 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
4 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
5 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
6 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
7 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
Total 7 (21.9 %) 15 (31.2 %) 8 (25 %) 552 (27 %) 616 (30.1 %)

Table 3 – PHV tagalong collection resources alocation.

57

4 FINAL REMARKS
This chapter summarizes our approach and describes our next research steps to

finalize this work. We first provide an overview of the already accomplished results, then
describe all required steps toward the final goal and the corresponding schedule of each
activity.

4.1 Overview

This work introduced InPatching, an in-network fault-tolerant approach to INT
monitoring solutions. To the best of our knowledge, this is the first work that combines
the ideas of INTO and FRR. It occurs because InPatching performs (i) the orchestration
of probes for telemetry collection directly in the data plane of the network while (ii)
minimizing the role of the controller, reducing the network’s reaction time and making it
more autonomous to anomalous events. The main advantage of offloading this mechanism
to the data plane is the increased ease of ensuring SLAs in applications that require low
latency (e.g., remote surgeries, autonomous cars, VoIP). The key idea behind InPatching
is to offload the fail-over mechanism to the data plane, allowing for the reestablishment
of monitoring with minimal to no control plane intervention. This procedure relies on
precomputed alternative paths in programmable switches and employing a data plane
heuristic strategy to select the appropriate alternative path when a failure occurs.

The results of our experiments have demonstrated the effectiveness of InPatching.
Specifically, we have found that our solution outperforms control plane-based solutions by
a factor of 18X. Additionally, when coordinated with other probing flows, our approach
can find a valid detour solution up to 3X quicker than existing methods. Importantly, our
solution does not require more probing cycles, on average, than state-of-the-art In-Band
Network Telemetry Orchestration approaches.

Moving forward, our subsequent research steps may focus on four main aspects.
Firstly, while our current data plane heuristic strategy has shown promising results,
there may be alternative heuristics that can further optimize the selection of alternative
paths in the presence of failures or congestion. By exploring different heuristics, we can
identify more efficient and practical approaches to enhance the overall performance of
InPatching. By considering alternative strategies, we aim to recognize even more efficient
methods for selecting the appropriate alternative path in case of failures or congestion.
Secondly, we intend to implement our solution on programmable hardware. By leveraging
the capabilities of programmable networking devices, such as programmable switches or
network processors, we can achieve better control and flexibility in deploying and managing
InPatching within real network environments. This implementation step will allow us to
validate the practical feasibility of our approach and assess its performance in real-world
scenarios. Moving on, Finally, as observed, the experiments assume that there is only
probe traffic collecting information. However, this information is collected to determine the

58 Chapter 4. Final Remarks

behavior of real end-user traffic and applications autonomously. Therefore, it is expected
to eventually carry out experiments considering the presence of user traffic for different
applications in different scenarios to evaluate the impact of resources and decisions made
by InPatching.

In future work, one can consider different paths to develop further and more
robustly mature the idea of probe routing. For instance, an underexplored aspect in
this study is establishing a strategy for placing master switches in the topology for load
distribution. In the current implementation, a master switch is fixed, and all probe flows
are managed by it. However, in a real-world scenario, the solution must be scalable, similar
to the SDN controller placement problem, because (i) a single switch has limited memory
to store control information for all flows, and (ii) there is a single point of failure in the
network where the algorithm could cease to function.

4.2 Challenges and limitations

The TNA architecture introduced in Section 2.3 can be seen as a promising
candidate for implementing a hardware version of our mechanism for several reasons already
mentioned: (i) it supports P4 code, allowing our code to be rewritten for this platform;
(ii) the proprietary software includes tools that facilitate port mapping, customization of
channel speeds for different experimental scenarios. However, the code translation is not
as straightforward due to several limitations in the architecture organization:
RegisterActions. Unlike the bmv2 architecture, where built-in functions define read
and write functions for registers, it is possible to define up to four RegisterActions for
each register declared in the code. However, only one function can be called during packet
processing in the ingress or egress pipeline. It is a limitation of our approach, which was
not initially designed for the TNA architecture, as multiple register accesses are often
required for certain conditions.
Packet Header Vectors. As presented in Section 2.3, PHVs handle packet header fields
and other metadata along the packet processing pipeline. Among the metadata that
can be allocated, code snippets for branching are included, and our strategy involves a
considerable complexity of conditional code segments to ensure its correct functioning.
However, the strategy of allocating PHVs for each stage of the pipeline often fails to
find sufficient resources for the entire metadata structure of our code, which prevents its
complete compilation. Among the issues presented, some possible solutions can be used in
combination:

• Code repositioning: Certain conditional code segments can be rearranged to avoid
the compiler’s resource allocation strategies from using up all the resources of an
MAU and make better use of the available resources.

4.2. Challenges and limitations 59

• Creating more complex RegisterActions: Registers do not utilize PHV con-
tainer memory. Conditions defined within a RegisterAction rely on Static Arith-
metic Logical Unit (SALU), which is based on data stored in the registers and
does not have dedicated memory, and, therefore, does not utilize PHV resources.
Therefore, in more complex conditional segments, a register could be created to store
a value indicating whether a condition evaluated in a RegisterAction was satisfied,
thus avoiding using valuable PHV resources.

• Using more tables: In our current code version using the bmv2 architecture,
we solely utilized registers to store the information that should be maintained in
the switch. However, the TNA architecture provides tables with match-action
functionality, which can be leveraged to distribute and organize the metadata and
associated operations efficiently. By utilizing multiple tables, we can allocate different
parts of the metadata to different tables, thereby reducing the burden on individual
tables and increasing the chances of successful compilation.

By implementing these solutions in combination, we could address the limitations
of the TNA architecture and improve the compilation process for our code. Therefore,
applying these strategies so far has yet to solve the compilation implications that incur
from the compiler’s strategies for PHV resource allocation. Initially, an attempt was made
to use the @pragma stage <stage> [entries] directives available for table allocation in
the TNA architecture in order to force the instantiation of a table to a specific stage. For
example, let us assume that our table has 64 entries. Due to specific code requirements,
half of these entries must be in stage 1. The @pragma stage 1 32 directive can be placed
above the table declaration.

However, it is essential to note that the TNA architecture does not explicitly
support allocating specific table entries to different stages. The @pragma stage directive
primarily influences the pipeline stage, where the control flow logic associated with the
table is executed rather than dictating the allocation of individual entries.

A different approach may require more fine-grained control over table entry al-
location across stages. It could involve restructuring the code or implementing custom
logic within the table actions to distribute the entries according to specific requirements.
Another option that has worked for some cases is using RegisterActions to reduce the
memory used in conditional code segments within the algorithm. However, one disadvan-
tage is the need to use an auxiliary register for each necessary condition throughout the
implementation, which can hinder readability and flexibility for modifications.

While utilizing RegisterActions can help optimize resource usage and improve
performance, it is essential to consider the trade-offs carefully. The increased complexity
and potential reduction in code readability can make it harder to maintain and modify
the code in the future.

60 Chapter 4. Final Remarks

To mitigate these challenges, it may be beneficial to thoroughly document the
purpose and functionality of each RegisterAction and provide explicit comments to
improve code understanding. Additionally, modularizing the code and organizing the
RegisterActions in a structured manner can help alleviate some of the difficulties of
maintaining and modifying the code.

Ultimately, the decision to use RegisterActions should be based on a thorough
assessment of the specific requirements and constraints of the TNA architecture, considering
both performance optimization and code maintainability aspects.

4.3 Future Work

In this section, we discuss future directions for this work, including topics not
covered in the scope of this work and solutions to the current limitations presented.
Multiple master data planes. One of the first limitations to be observed in the current
proposal is the simplification of experiments, where only one master data plane is used to
manage the flows, meaning that all flows originate and return to the same switch. In the
conducted experiments, a maximum of 2 flows were used simultaneously. However, in a
real scenario, there could be hundreds or thousands of monitoring flows for application
and service flows. Therefore, it is necessary to have a way to parameterize and position a
certain number of master data planes in the physical topology.
Probe flow load balancing. Assuming that a set of master data planes exists, it is
necessary to distribute/balance the flow load across these nodes to mitigate the impact
on the available bandwidth and not hinder user traffic. Another way to achieve this is to
consider the frequency at which these probes will be injected into the network (e.g., one
packet per second).
Multiple link failures. Another identified future opportunity is to extend the logic of
our mechanism to support multiple link failures along the probe paths since our approach
can handle a single failure through a round-robin-based trial-and-error heuristic.
Failure selection heuristics. In addition to our round-robin-like strategy, it would
also be interesting to investigate how other heuristics behave to minimize the total time
required to detect failures directly in the data plane—for example, First In First Out
(FIFO).
Evaluate hardware-based solution. So far, the code compiled for the TNA-like
architecture – i.e., in terms of declarations and logic – is similar to the code for the virtual
switch bmv2 and, overall, has low resource utilization. However, the compiled code has
not yet been adequately tested in an evaluation environment with packet injection and
failures. This evaluation could confirm the already presented results or demonstrate other
as-yet-unidentified aspects.
Background traffic injection. Lastly, background traffic injection is essential for placing
and balancing probe flows. This particular need could generate parallel work. For example,

4.3. Future Work 61

evaluating whether the best way to inject traffic is through traces – i.e., Packet Capture
(PCAP) – or through a traffic generator tool and how this traffic should/can be generated
is necessary.

63

BIBLIOGRAPHY
BANKHAMER, G.; ELSÄSSER, R.; SCHMID, S. Local fast rerouting with low
congestion: A randomized approach. In: IEEE. 2019 IEEE 27th International
Conference on Network Protocols (ICNP). [S.l.], 2019. p. 1–11. Cited 2 times in
the pages 33 and 40.

BASAT, R. B. et al. Pint: Probabilistic in-band network telemetry. In: . New York, NY,
USA: ACM, 2020. (SIGCOMM ’20), p. 662–680. ISBN 9781450379557. Cited 3 times in
the pages 32, 33, and 38.

BHAMARE, D. et al. Intopt: In-band network telemetry optimization for nfv service
chain monitoring. In: IEEE. ICC 2019-2019 IEEE International Conference on
Communications (ICC). [S.l.], 2019. p. 1–7. Cited in page 32.

BIONDI, P. Scapy documentation (!). vol, v. 469, p. 155–203, 2010. Cited in page 46.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. ACM
SIGCOMM 14, ACM, New York, NY, USA, v. 44, n. 3, p. 87–95, jul. 2014. ISSN
0146-4833. Cited in page 28.

BOUABENE, G. et al. The autonomic network architecture (ana). IEEE Journal on
Selected Areas in Communications, IEEE, v. 28, n. 1, p. 4–14, 2009. Cited in page
27.

CASE M. FEDOR, M. S. C. D. J. Simple Network Management Protocol (SNMP).
[S.l.], 1989. Disponível em: <https://www.hjp.at/doc/rfc/rfc1098.txt>. Cited in page 28.

CASTANHEIRA, L.; PARIZOTTO, R.; SCHAEFFER-FILHO, A. E. Flowstalker:
Comprehensive traffic flow monitoring on the data plane using p4. In: IEEE. ICC
2019-2019 IEEE International Conference on Communications (ICC). [S.l.],
2019. p. 1–6. Cited 3 times in the pages 35, 38, and 39.

CASTRO, A. G. et al. Patcher: Towards fault-tolerant probing planning for in-band
network telemetry. In: IEEE. 2020 IEEE Latin-American Conference on
Communications (LATINCOM). [S.l.], 2020. p. 1–6. Cited 5 times in the pages 24,
33, 36, 38, and 47.

CASTRO, A. G. et al. Near-optimal probing planning for in-band network telemetry.
IEEE Communications Letters, IEEE, v. 25, n. 5, p. 1630–1634, 2021. Cited 6 times
in the pages 24, 25, 34, 38, 44, and 52.

CHEN, X. et al. Catching the microburst culprits with snappy. In: Proceedings of the
SelfDN. New York, NY, USA: ACM, 2018. p. 22–28. ISBN 9781450359146. Cited in
page 23.

CHIESA, M. et al. Purr: a primitive for reconfigurable fast reroute: hope for the best and
program for the worst. In: Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies. [S.l.: s.n.], 2019. p. 1–14.
Cited 3 times in the pages 34, 36, and 38.

CHOWDHURY, S. R.; BOUTABA, R.; FRANÇOIS, J. Lint: Accuracy-adaptive and
lightweight in-band network telemetry. In: IEEE. 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). [S.l.], 2021. p. 349–357.
Cited 2 times in the pages 33 and 39.

https://www.hjp.at/doc/rfc/rfc1098.txt

64 Bibliography

CLAISE, B. et al. Cisco systems netflow services export version 9. RFC 3954, October,
2004. Cited in page 28.

CLARK, D. D. et al. A knowledge plane for the internet. In: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for
computer communications. [S.l.: s.n.], 2003. p. 3–10. Cited in page 27.

DEMIANIUK, V.; GORINSKY, S.; KOGAN, K. Telenoise: A network-noise module for
in-band real-time telemetry. In: IEEE. 2021 IFIP Networking Conference (IFIP
Networking). [S.l.], 2021. p. 1–9. Cited 2 times in the pages 35 and 39.

DIJKSTRA, E. W. et al. A note on two problems in connexion with graphs. Numerische
mathematik, v. 1, n. 1, p. 269–271, 1959. Cited 3 times in the pages 33, 47, and 51.

ETSI. Autonomous Networks, supporting tomorrow’s ICT business. 2020. Cited
in page 27.

FEAMSTER, N.; REXFORD, J. Why (and how) networks should run themselves. arXiv
preprint arXiv:1710.11583, 2017. Cited 2 times in the pages 23 and 27.

GARCIA-LUNA-ACEVES, J.; HEMMATI, E. Odvr: A unifying approach to on-demand
and proactive loop-free routing in ad-hoc networks. In: IEEE. 2019 28th International
Conference on Computer Communication and Networks (ICCCN). [S.l.], 2019.
p. 1–11. Cited 2 times in the pages 35 and 39.

GENG, Y. et al. Simon: A simple and scalable method for sensing, inference and
measurement in data center networks. In: NSDI 19. [S.l.: s.n.], 2019. p. 549–564. Cited
3 times in the pages 32, 34, and 38.

HOHEMBERGER, R. et al. Orchestrating in-band data plane telemetry with machine
learning. IEEE Communications Letters, v. 23, n. 12, p. 2247–2251, Dec 2019. ISSN
1558-2558. Cited 4 times in the pages 24, 32, 38, and 43.

HOLTERBACH, T. et al. Blink: Fast connectivity recovery entirely in the data plane. In:
16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). [S.l.: s.n.], 2019. p. 161–176. Cited 3 times in the pages 34, 36, and 38.

HORN, P. Autonomic computing: Ibm’s perspective on the state of information
technology. New York, 2001. Cited in page 27.

HSU, K.-F. et al. Contra: A programmable system for performance-aware routing. In:
17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2020. [S.l.: s.n.], 2020. Cited 3 times in the pages 34, 35, and 39.

HSU, K.-F. et al. Adaptive weighted traffic splitting in programmable data planes. In:
Proceedings of the Symposium on SDN Research. [S.l.: s.n.], 2020. p. 103–109.
Cited in page 28.

HUANG, Q. et al. Omnimon: Re-architecting network telemetry with resource efficiency
and full accuracy. In: Proceedings of the ACM SIGCOMM. [S.l.: s.n.], 2020. p.
404–421. Cited 2 times in the pages 35 and 38.

Bibliography 65

Huawei. Huawei Core Network Autonomous Driving Network White Paper.
2019. Disponível em: <https://carrier.huawei.com/~/media/CNBGV2/download/adn/
Huawei-Core-Network-Autonomous-Driving-Network-White-Paper.pdf>. Cited in page
23.

InPatching. InPatching - GitHub Repo. 2022. Accessed on Nov, 2022. Disponível em:
<https://github.com/arielgoes/InPatching>. Cited in page 47.

INTEL. Intel Tofino. 2021. [Access: July 04, 2023]. Disponível em: <https://www.
intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/
tofino-series.html>. Cited in page 30.

JACOB, B. et al. A practical guide to the ibm autonomic computing toolkit. IBM
Redbooks, IBM Corp. International Technical Support Organization North Castle, NY,
USA, v. 4, n. 10, p. 1–268, 2004. Cited in page 27.

JACOBS, A. S. et al. Affinity measurement for nfv-enabled networks: A criteria-based
approach. In: IEEE. 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). [S.l.], 2017. p. 125–133. Cited in page 28.

JIA, C. et al. Rapid detection and localization of gray failures in data centers via in-band
network telemetry. In: IEEE. NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium. [S.l.], 2020. p. 1–9. Cited 2 times in the pages 28
and 38.

JIANG, C. et al. Flexile: meeting bandwidth objectives almost always. In: Proceedings
of the 18th International Conference on emerging Networking EXperiments
and Technologies. [S.l.: s.n.], 2022. p. 110–125. Cited 2 times in the pages 34 and 39.

Juniper Networks. The Self-Driving Network: The Future State of
Operations for Cloud-Grade Networking. 2017. Disponível em: <https:
//www.juniper.net/assets/fr/fr/local/pdf/pov/3200053-en.pdf>. Cited 2 times in the
pages 23 and 27.

KIM, D. et al. Redplane: Enabling fault-tolerant stateful in-switch applications. In:
Proceedings of the 2021 ACM SIGCOMM 2021 Conference. [S.l.: s.n.], 2021. p.
223–244. Cited 2 times in the pages 33 and 39.

LAPOLLI, C.; MARQUES, J. A.; GASPARY, L. P. Offloading real-time ddos attack
detection to programmable data planes. In: 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). [S.l.: s.n.], 2019. p. 19–27.
ISSN 1573-0077. Cited in page 28.

LIN, Y. et al. Netview: Towards on-demand network-wide telemetry in the data center.
Computer Networks, Elsevier, p. 107386, 2020. Cited 4 times in the pages 32, 34, 35,
and 38.

LIU, Z. et al. Netvision: Towards network telemetry as a service. In: IEEE ICNP. [S.l.:
s.n.], 2018. p. 247–248. ISSN 1092-1648. Cited 4 times in the pages 24, 32, 38, and 43.

MARQUES, J.; LEVCHENKO, K.; GASPARY, L. Intsight: Diagnosing slo violations with
in-band network telemetry. In: Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies. [S.l.: s.n.], 2020. p.
421–434. Cited in page 28.

https://carrier.huawei.com/~/media/CNBGV2/download/adn/Huawei-Core-Network-Autonomous-Driving-Network-White-Paper.pdf
https://carrier.huawei.com/~/media/CNBGV2/download/adn/Huawei-Core-Network-Autonomous-Driving-Network-White-Paper.pdf
https://github.com/arielgoes/InPatching
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.juniper.net/assets/fr/fr/local/pdf/pov/3200053-en.pdf
https://www.juniper.net/assets/fr/fr/local/pdf/pov/3200053-en.pdf

66 Bibliography

MARQUES, J. A. et al. An optimization-based approach for efficient network monitoring
using in-band network telemetry. Journal of Internet Services and Applications,
n. 1, p. 16, Jun 2019. Cited 5 times in the pages 24, 29, 32, 38, and 43.

MOLERO, E. C.; VISSICCHIO, S.; VANBEVER, L. Fast in-network gray failure
detection for isps. In: Proceedings of the ACM SIGCOMM 2022 Conference. [S.l.:
s.n.], 2022. p. 677–692. Cited in page 28.

PAN, T. et al. Int-probe: Lightweight in-band network-wide telemetry with stationary
probes. In: IEEE. 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). [S.l.], 2021. p. 898–909. Cited 2 times in the pages 32
and 39.

PAN, T. et al. Int-path: Towards optimal path planning for in-band network-wide
telemetry. In: IEEE INFOCOM. [S.l.: s.n.], 2019. p. 1–9. Cited 8 times in the pages
23, 24, 32, 33, 38, 43, 47, and 52.

PHAAL, P.; PANCHEN, S.; MCKEE, N. Inmon corporation’s sflow: A method for
monitoring traffic in switched and routed networks. RFC 3176, 2001. Cited in page 28.

QU, T. et al. Sqr: In-network packet loss recovery from link failures for highly reliable
datacenter networks. In: IEEE. 2019 IEEE 27th International Conference on
Network Protocols (ICNP). [S.l.], 2019. p. 1–12. Cited 2 times in the pages 35 and 39.

RAMANATHAN, S.; KANZA, Y.; KRISHNAMURTHY, B. Sdprober: A software defined
prober for sdn. In: Proceedings of the Symposium on SDN Research. [S.l.: s.n.],
2018. p. 1–7. Cited 2 times in the pages 32 and 38.

SCANO, D. et al. Extending p4 in-band telemetry to user equipment for latency-and
localization-aware autonomous networking with ai forecasting. Journal of Optical
Communications and Networking, Optica Publishing Group, v. 13, n. 9, p.
D103–D114, 2021. Cited 3 times in the pages 32, 33, and 39.

SHENG, S.; HUANG, Q.; LEE, P. P. Deltaint: Toward general in-band network telemetry
with extremely low bandwidth overhead. In: IEEE. 2021 IEEE 29th International
Conference on Network Protocols (ICNP). [S.l.], 2021. p. 1–11. Cited 2 times in
the pages 33 and 39.

SINGH, S. K. et al. Revisiting heavy-hitters: Don’t count packets, compute flow
inter-packet metrics in the data plane. In: ACM SIGCOMM Poster. New York, NY,
USA: ACM, 2020. p. 1–4. Cited in page 23.

SONG, H. Protocol-oblivious forwarding: Unleash the power of sdn through a future-proof
forwarding plane. In: Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking. New York, NY, USA: Association for
Computing Machinery, 2013. (HotSDN ’13), p. 127–132. ISBN 9781450321785. Cited in
page 28.

STRASSNER, J.; AGOULMINE, N.; LEHTIHET, E. Focale: A novel autonomic
networking architecture. 2006. Cited in page 27.

SUBRAMANIAN, K. et al. D2r: Policy-compliant fast reroute. In: Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR). [S.l.: s.n.], 2021. p.
148–161. Cited 3 times in the pages 34, 36, and 39.

Bibliography 67

TAMMANA, P.; AGARWAL, R.; LEE, M. Distributed network monitoring and debugging
with switchpointer. In: 15th USENIX NSDI 18. Renton, WA: [s.n.], 2018. p. 453–456.
ISBN 978-1-931971-43-0. Cited 3 times in the pages 23, 35, and 38.

TAN, H.-K.; KUO, T.-W. Optimistic fast rerouting. In: IEEE. ICC 2022-IEEE
International Conference on Communications. [S.l.], 2022. p. 1692–1697. Cited 3
times in the pages 35, 36, and 39.

TANG, S. et al. Sel-int: A runtime-programmable selective in-band network telemetry
system. IEEE transactions on network and service management, IEEE, v. 17, n. 2,
p. 708–721, 2019. Cited 2 times in the pages 35 and 38.

The P4.org Applications Working Group. In-band Network Telemetry (INT)
Dataplane Spec ification. 2020. Disponível em: <https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_1.pdf>. Cited 2 times in the pages 23
and 28.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), Wiley Online Library, v. 58,
n. 1, p. 267–288, 1996. Cited in page 34.

WONG, T.-S.; LEE, S. S. Design of an in-band control plane for automatic bootstrapping
and fast failure recovery in p4 networks. IEEE Transactions on Network and Service
Management, IEEE, 2023. Cited 2 times in the pages 36 and 40.

YAMANSAVASCILAR, B. et al. Fault tolerance in sdn data plane considering network
and application based metrics. Journal of Network and Computer Applications,
Elsevier, v. 170, p. 102780, 2020. Cited 3 times in the pages 28, 35, and 38.

YANG, F. et al. Fast-int: Light-weight and efficient in-band network telemetry in
programmable data plane. In: IEEE. 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall). [S.l.], 2020. p. 1–5. Cited 2 times in the pages 34 and 38.

YUAN, Q. et al. Int-react: An o (e) path planner for resilient network-wide telemetry
over megascale networks. In: IEEE. 2022 IEEE 30th International Conference on
Network Protocols (ICNP). [S.l.], 2022. p. 1–11. Cited 3 times in the pages 32, 33,
and 40.

ZHENG, Q. et al. Highly-efficient and adaptive network monitoring: When int meets
segment routing. IEEE Transactions on Network and Service Management, IEEE,
v. 18, n. 3, p. 2587–2597, 2021. Cited 2 times in the pages 35 and 39.

ZHOU, Y. et al. Flow event telemetry on programmable data plane. In: Proceedings
of the ACM SIGCOMM. [S.l.: s.n.], 2020. p. 76–89. Cited 2 times in the pages 35
and 38.

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Contents
	Introduction
	Context and Motivation
	Research Problem
	Goals and Contributions
	Outline

	Background and Related Work
	Autonomous networks
	Data plane programmability
	Tofino™ Native Architecture
	In-Band Network Orchestration
	Fast Rerouting mechanisms
	Outline

	InPatching design
	Overview
	Data plane design
	Control plane design
	Evaluation
	Setup
	InPatching Data Plane vs. Control Plane Approaches
	The gain of overlapping probing INT cycles
	The cost of overlapping
	Hardware Resource Usage
	MAU Resources
	Tagalong Collection Resources

	Final Remarks
	Overview
	Challenges and limitations
	Future Work

	Bibliography

