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RESUMO 

Por um tempo, micro-organismos foram considerados danosos para a saúde e o 

funcionamento normal do corpo humano, e com isso, estudava-se principalmente as 

patologias associadas a esses organismos. Com a evolução da microbiologia, e mais 

recentemente, o desenvolvimento e expansão das tecnologias de sequenciamento, 

os micro-organismos passaram a ser vistos sob novas perspectivas. Com o uso do 

sequenciamento para catalogar comunidades microbianas, é possível identificar de 

centenas a milhares de micro-organismos em uma única amostra, e com isso se 

tornou acentuada a interdependência do ser humano com os diferentes tipos de 

comunidades microbianas. Sendo assim, pesquisas de microbiomas buscam 

identificar correlações não somente de micro-organismos isoladamente, mas também 

a nível comunitário, onde há alterações de correlações, ou coocorrência, que leva a 

desequilíbrios metabólicos dessa comunidade refletindo no hospedeiro. Além disso, 

gestantes possuem uma comunidade microbiana vaginal característica e distinta da 

mulheres não-gestantes. E durante a gestação essa comunidade também passa por 

transformações importantes numa gestação saudável. Durante o parto vaginal, o bebê 

passa pelo canal vaginal materno, portanto, também entra em contato com a 

microbiota do local. Com isso, buscamos entender com a microbiota vaginal materna, 

ao final da gestação, está associada com a microbiota do recém-nascido. Ao realizar 

esse estudo, percebemos que as ferramentas existes são insuficientes para lidar com 

a variabilidade intragrupo, a esparsidade dos dados. Por isso, criamos e validamos 

uma ferramenta chamada PIME (Prevalence Interval for Microbiome Evaluation, em 

português, Intervalo de Prevalência para Avaliação de Microbioma), que é capaz de 

diminuir a variabilidade intragrupo aplicando diferentes níveis de prevalência para 

filtragem. PIME também é capaz de, utilizando algoritmo Random Forests, classificar 

as unidades taxonômicas mais importantes para diferenciação entre grupos.  

 

Palavras-Chave: 16S. Diversidade microbiana. Sequenciamento de nova geração. 

Gravidez. Core microbioma. Bioinformática.  



 

ABSTRACT 

 

For a while, microorganisms were considered harmful to the health and normal 

functioning of the human body, and the pathologies associated with these organisms 

were the chief objective of studies. With the evolution of the microbiology field, and 

more recently, the development and expansion of sequencing technologies, 

microorganisms came to be seen under a new perspective. The advent of sequencing 

for cataloging microbial communities has made possible to identify hundreds to 

thousands of microorganisms in a single sample. This highlighted the interdependency 

of humans with the different types of microbial communities. Therefore, microbiome 

research seeks out to identify correlations, not only with microorganisms in isolation, 

but also at community level, where there are altered correlations, or co-occurrences, 

that lead to community metabolic unbalancing that reflects on the host. Furthermore, 

pregnant women harbor characteristic vaginal microbial communities that are distinct 

from that of non-pregnant women. Also, during a healthy pregnancy, these 

communities also undergo important transformations. During a vaginal delivery, the 

baby goes through the birth canal and gets in contact with the local microbiota. 

Considering this, we sought to understand how the maternal vaginal microbiota, at the 

end of pregnancy, is associated with the newborn’s microbiota. When carrying out this 

study, we realized that the tools available were not adequate to deal with the intragroup 

variability, or data sparsity. For this reason, we created and validated a tool called 

PIME (Prevalence Interval for Microbiome Evaluation) that is capable of reduce 

intragroup variability by using varying levels of prevalence for filtering. PIME is also 

capable of classifying the most important taxonomic units for differentiating between 

groups, by using Random Forests algorithm.  

 

Keywords: 16S. Microbial diversity. Next Generation sequencing. Pregnancy. Core 

Microbiome. 
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1. INTRODUÇÃO 

 

No passado, o entendimento de comunidade de micro-organismos não 

patogênicos foi limitado, pois acreditava-se que os benefícios destes organismos para 

a saúde tinham pouco efeito comparado com seu potencial patogênico.  

O avanço das metodologias de sequenciamento permitiu a descrição mais 

precisa de comunidades microbianas, e aprimorou nosso entendimento do 

estabelecimento e funcionamento dessas comunidades. O sequenciamento massivo 

de regiões especificas, como o gene da região 16S do RNA ribossomal, e o 

aperfeiçoamento de bancos de dados permitem a identificação e estimativa da 

abundância de micro-organismos presentes em amostras ambientais (WEINSTOCK, 

2012). 

O termo microbioma, pela definição mais recente por Berg et al. (2020), pode 

ser brevemente definido como uma comunidade de micro-organismos característica, 

presente em um ambiente bem definido e formando um ecossistema dinâmico e 

integrado, entre si e ao ambiente. O termo microbiota define todos os micro-

organismos parte de um microbioma. 

O microbioma tem se apresentado como um importante mecanismo para 

manutenção da saúde e bem-estar dos humanos, e até mesmo durante a gestação. 

No decorrer da gestação, a microbiota vaginal também passa por alterações e é um 

fator adicional na manutenção de um prognóstico positivo da gestação (ROMERO et 

al., 2014a; AVERSHINA et al., 2017). Ainda assim, não há estudos explorando como 

se apresenta a microbiota vaginal de gestantes brasileiras ao final da gestação, 

próximo do parto. Outra questão de grande relevância, é de como a microbiota vaginal 

materna está associada a microbiota intestinal do recém-nascido logo ao nascer e 

como contribui para a composição microbiana inicial. O primeiro contato do recém-

nascido com o mundo externo se dá por meio do canal do parto, em partos vaginais, 

onde é exposto a microbiota vaginal materna. Esse contato inicial representa um 

aspecto relevante dado que a colonização microbiana inicial do bebê influencia 

expressivamente sua saúde ao longo da vida. Além disso, o estabelecimento de uma 

microbiota disfuncional também é atribuído a problemas no desenvolvimento do 

sistema imune como alergias e asma (MILANI et al., 2017). 
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Posto isso, é importante compreender como a microbiota da gestante brasileira 

se arranja no momento do parto, bem como entender como essa está associada a 

microbiota do seu recém-nascido. Esse entendimento pode ser relevante para futuros 

estudos onde se analisa intervenções perinatais, utilizando a microbiota como alvo, 

que visem o bem-estar materno e infantil. 

Com isso, a primeira parte desta tese objetiva-se a analisar a microbiota vaginal 

de gestantes brasileiras saudáveis, ao final do terceiro trimestre de gestação, e como 

esta está associada a microbiota do recém-nascido no momento do parto. 

Durante o desenvolvimento da pesquisa dessa tese, e de outros projetos 

desenvolvidos no decorrer do doutorado, percebeu-se que a grande variabilidade 

individual da microbiota impacta profundamente as análises que buscam encontrar 

diferenças na composição destas comunidades associadas a um tratamento, 

característica fenotípica ou ambiental.  

Para além disso, amostras de origem humana são especialmente afetadas por 

essa grande variabilidade interindividual na composição da microbiota. Em muitos 

casos, essa variabilidade é tão acentuada que em um grupo de amostras, uma única 

espécie pode apresentar mais que 20% de todas as sequências, enquanto encontra-

se ausente em outro (KRAAL et al., 2014). Atualmente utiliza-se pré-filtragens para 

retirada de sequências em baixa abundância, e também existem algumas ferramentas 

para comparação de fatores experimentais nos estudos de microbiomas. No entanto, 

essas abordagens ainda se apresentam insuficientes para solucionar a questão da 

variabilidade intragrupo. Se bem sucedidas, permitiria conhecer diferenças 

subjacentes, e correlações não detectados originalmente. 

Posto isso, na tentativa de contornar essas dificuldades presentes nos estudos 

de microbiomas, formulamos a hipótese que a aplicação de níveis de prevalência 

intragrupo para remoção de micro-organismos contribui para diminuir a variabilidade 

interna. Com isso, buscamos construir e validar uma ferramenta para filtragem de 

sequências (unidades taxonômicas) por níveis de prevalência intragrupo.  

Por fim, esta tese organiza-se da seguinte forma: Introdução, Referencial 

Teórico, Artigos, Conclusão, Referências, Apêndices e Anexo. Outros trabalhos e 

pesquisas desenvolvidos durante o doutorado, em colaboração com outros 

pesquisadores, são apresentados no formato de artigo e incluídos como Apêndice. 

Ressalta-se que as Referências ao final da tese, abrangem as citações na estrutura 
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da tese, Introdução e Referencial Teórico, uma vez que os Artigos têm suas 

referências apresentadas na sua respectiva composição.  
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2. REFERENCIAL TEÓRICO 

 

2.1. Ecologia Microbiana 

 

Ecologia microbiana é a ecologia dos micro-organismos, que observa suas 

interações, entre eles e com o habitat (fatores bióticos e abióticos). Micro-organismos, 

ou micróbios, são organismos microscópicos que abrangem todos os domínios da vida 

– Eucarya, Archaea e Bacteria – bem como os vírus, e se apresentam tanto em formas 

unicelulares ou pluricelulares (TORTORA; FUNKE; CASE, 2000).  

Micro-organismos estão presentes em todos os diversos tipos de ambientes 

que impactam toda biosfera. desde a fixação de carbono, a digestão de alimentos no 

intestino de mamíferos (KONOPKA, 2009). Com grande variedade genética, 

metabólica e fisiológica, os processos coletivos chaves dos micro-organismos têm 

importante papel em regular sistemas biogeoquímicos (incluindo fixação de nitrogênio 

e metabolismo de metano), e reciclagem de nutrientes pela decomposição 

(FENCHEL; BLACKBURN; KING, 2012).   

 

2.2. Microbioma e Microbiota 

 

Historicamente, a área de pesquisa em microbioma emergiu da pesquisa em 

ecologia microbiana, e oferece uma plataforma interdisciplinar para diversas áreas 

como agricultura, biotecnologia, matemática (informática, estatística e modelagem), e 

especialmente, medicina humana.  

Comumente, comunidades microbianas têm sido definidas como sendo uma 

coleção de micro-organismos, ou “montagem multi-espécies”, que interagem em um 

determinado ambiente. O termo “microbioma” foi primeiramente descrito por Whipps 

et al. (1988), como uma combinação dos termos “micro” e “bioma”, para nomear uma 

comunidade microbiana característica (micro) em um habitat razoavelmente bem 

definido e que possui propriedades físico-químicas distintas (bioma). Muitas outras 

definições para “microbioma” foram publicadas no decorrer dos anos, sendo a de 

Lederberg e Mccray (2001) a mais citada. Nessa definição, os microbiomas são 

descritos em um contexto ecológico, como uma comunidade com micro-organismos 

comensais, simbióticos e patogênicos, dentro de um corpo ou outro ambiente.  
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Berg et al. (2020) propõe um sistema conceitual que abarca a definição original 

de Whipps et al. (1988) e constrói uma definição que considera os novos modelos 

conceituais em ecologia, definindo o microbioma como uma comunidade microbiana 

característica ocupando um habitat razoavelmente bem definido com características 

físico-químicas bem definidas. O microbioma não se refere somente aos micro-

organismos envolvidos, mas também o “cenário de atuação” destes, e que resulta na 

formação de nichos ecológicos específicos. O microbioma, que forma um micro 

ecossistema dinâmico e pró-ativo sujeito a mudanças em tempo e escala, é integrado 

num macro ecossistema incluindo hospedeiros eucarióticos, e cruciais para seu 

funcionamento e saúde (Figura 1).  

 

 

Figura 1 - Representação da definição de microbioma e microbiota. 

Fonte: Adaptado de Berg et al. (2020). 

A microbiota consiste na reunião de micro-organismos de diferentes reinos 

como Procariotos (Bactéria e Arqueia), Eucariotos (e.g. Protozoários, Fungos e 

Algas).  
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2.3. Microbioma Humano 

 

As propriedades da microbiota humana, já chamada de “flora” permaneceram 

desconhecidas por muito tempo. Novas técnicas moleculares, baseadas em DNA, 

permitiram pesquisadores desvendar essas informações, que usando somente 

métodos de cultura não eram acessíveis. Essas técnicas moleculares, sobretudo o de 

sequenciamento, permitem a identificação de milhões de moléculas de DNA 

microbiano presentes em uma única amostra, possibilitando a identificação de 

milhares de espécies de micro-organismos.  

Com isso, permite-se uma visão menos enviesada destas comunidades e 

possibilita a identificação de micro-organismos que são difíceis, ou ainda impossíveis, 

de serem isolados em laboratório (FIERER et al., 2012). Estima-se que, 

coletivamente, a microbiota humana possui aproximadamente 1013 - 1014 células 

microbianas, com uma razão de 1:1 de células microbianas para células humanas 

(SENDER; FUCHS; MILO, 2016). E, talvez refletindo a essencialidade das diferentes 

comunidades, estima-se que a microbiota humana possui cerca de 50 – 100 vezes 

mais genes que o hospedeiro, servindo assim como uma expansão funcional do 

genoma hospedeiro. Esses genes extras adicionam uma diversidade de proteínas 

enzimáticas, não codificadas pelo hospedeiro, contribuindo  para a regulação 

fisiológica e facilitando o metabolismo do hospedeiro (HOOPER; GORDON, 2001). 

Estas comunidades associadas ao corpo humano, da pele, ao estômago e 

intestino, são compostas por diferentes filos e caracterizam microbiotas específicas, 

como demostrado na Figura 2 (CHO; BLASER, 2012). As diferentes partes do corpo 

humano podem ser vistas como diferentes pequenos habitats, com diferentes 

exposições ambientais e demandas energéticas e metabólicas. A diversidade de 

micro-organismos em um habitat pode ser definida como o número e abundância dos 

diferentes tipos de organismos. No corpo humano, comunidades microbianas orais e 

do intestino são especialmente diversas, enquanto que comunidades presentes na 

vagina são as menos diversas (HUTTENHOWER et al., 2012). 

No decorrer do tempo, a composição da microbiota humana sofre menos 

variação em cada individuo do que entre indivíduos. Essa singularidade da 

comunidade microbiana de cada individuo aparenta ser estável ao longo do tempo, 

podendo ser uma característica associada a uma microbiota saudável 

(HUTTENHOWER et al., 2012). 
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Figura 2 - Diferenças na composição bacteriana do microbioma humano. 

 

Fonte: CHO; BLASER (2012). 

 

 

 

2.3.1. Microbioma Intestinal: homeostase e disbiose  

 

O intestino humano abriga a maior parte das células microbianas do corpo 

humano e é colonizado por uma diversa comunidade de simbiontes e comensais. O 

desenvolvimento dessas relações pode ser uma consequência da coevolução 

adaptativa de humanos e micro-organismos. Relações simbióticas são aquelas onde 

se apresentam funções metabólicas únicas ou outros benefícios, enquanto que 

relações comensais são as que nenhuma parte é prejudicada (HOOPER; GORDON, 

2001).  
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O relacionamento simbiótico entre microbiota intestinal e o hospedeiro é 

regulado e estabilizado por uma rede complexa de interações que englobam troca de 

sinais entre metabolismo, sistema imune e neuroendócrino. A fermentação de amido 

e fibras solúveis pela microbiota intestinal produz ácidos graxos de cadeia curta (como 

butirato, propionato, acetato e lactato). Esses ácidos graxos metabolizados pela 

microbiota contribuem para 70% da produção de ATP no cólon, contribuindo para a 

homeostase energética (DONOHOE et al., 2011; KHO; LAL, 2018).  

Outra função importante da microbiota intestinal é a de resistência à 

colonização, onde a microbiota nativa: i) confere proteção ao hospedeiro contra a 

colonização de organismos patogênicos invasores e ii) controla o super crescimento 

de micro-organismos patogênicos, membros da microbiota. Membros dominantes da 

microbiota são essenciais na ocupação de nichos e assim, impede a colonização e 

crescimento de patógenos (UEMATSU et al., 2008; YIU; DORWEILER; WOO, 2017).  

Alterações anormais, ou disbiose, da microbiota intestinal estão associadas a 

diversos tipos de doenças como infecção por Clostridium difficile, Doença Inflamatória 

Intestinal, e Doença Celíaca.  

 

 

2.3.2. Microbioma Vaginal Materno 

 

O trato genital inferior feminino abriga comunidades microbianas complexas e 

essenciais para manutenção da saúde e homeostase. Mesmo complexa em termos 

de composição microbiana, a microbiota vaginal, de uma mulher não gestante, é 

dominada por espécies de Lactobacillus. Lactobacillus spp. tem o ácido lático como 

principal produto da sua fermentação, o que contribui para manter o ambiente vaginal 

saudável devido ao efeito antimicrobiano associado a redução do pH (BOSKEY et al., 

1999). 

Outra função importante de uma microbiota vaginal saudável é o prognóstico 

de um recém-nascido. A microbiota intestinal dos recém-nascidos também é formada 

durante o parto, o que influencia a organização inicial da comunidade microbiana. 

(DOMINGUEZ-BELLO et al., 2010; MILANI et al., 2017).  

Durante a gestação, o corpo passa por mudanças hormonais que contribuem 

para o ganho de peso e modulações das funções imunes que podem estar associadas 

a mudanças da composição da microbiota materna (NURIEL-OHAYON; NEUMAN; 
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KOREN, 2016). Diferentemente dos diversos estados de doença, onde alterações na 

microbiota são correlacionadas a efeitos adversos, as mudanças na microbiota 

durante a gestação podem contribuir para uma gestação saudável e completa.  

No decorrer do primeiro trimestre, a abundância relativa de Lactobacillus spp. 

aumenta enquanto a de outras bactérias anaeróbicas, como Sneathia, Gardnerella, 

Parvimonas, Gemella e Dialister diminuem. No decorrer do terceiro trimestre a 

microbiota vaginal estabiliza, mas com menor diversidade quando comparada com 

não-gestantes (ROMERO et al., 2014a).  No final da gestação, entre a 36ª semana e 

o parto, a diversidade tende a aumentar, com diminuição discreta de Lactobacillus 

spp. e aumento de outros micro-organismos das famílias Staphylococcaceae, 

Sphingomonadaceae, Pseudomonadaceae, Chitinophagaceae, entre outros 

(AVERSHINA et al., 2017). 

Mesmo com estas variações, a microbiota vaginal tende a ser mais estável em 

gestantes do que em não gestantes (ROMERO et al., 2014b), podendo indicar que 

essa estabilidade confere maior resiliência e representa um papel protetivo a 

infecções ascendentes do trato genital. 

 

2.3.3. Microbiota Intestinal Inicial do Recém-Nascido 

 

Na primeira evacuação do recém-nascido (Mecônio), composto de células 

epiteliais e resíduos de líquido amniótico ingeridos a partir da 12ª semana gestação, 

já é possível encontrar uma microbiota um tanto complexa (GOSALBES et al., 2013; 

HANSEN et al., 2015; MOLES et al., 2013). 

A microbiota vaginal materna contribui para a colonização inicial do intestino do 

recém-nascido e tem grande importância para saúde no curto e longo prazo. A 

transferência inicial anormal de micro-organismos pode afetar o desenvolvimento do 

sistema imune, como no desenvolvimento futuro de alergias e asma (JOHNSON; 

OWNBY, 2017; MILANI et al., 2017), e pode contribuir para complicações pós-natais 

como sepse precoce (DORNELLES et al., 2020; WORTHAM et al., 2016; MADAN et 

al., 2012). Durante o parto o bebê entra em contato com essa microbiota vaginal, 

durante a passagem pelo canal do parto, podendo então ter contato com diferentes 

micro-organismos, a depender do tipo de comunidade apresentada pela mãe logo 

antes do parto.  
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2.4. Sequenciamento como Ferramenta para Estudo da 

Microbiota 

 

O sequenciamento de marcadores genético amplificados, e.g., o gene 16S do 

RNA ribossomal, é tradicionalmente usado para teste de hipóteses em composição 

de comunidades microbianas. O principal desafio em utilizar dados obtidos dessas 

pesquisas com amplificados é a sua interpretação para a descoberta de reguladores 

da diversidade microbiana. Aparte de microbiomas simples, como provenientes de 

ambientes extremos, pesquisas usando amplificados normalmente identificam um 

elevado número de taxa (também chamados de unidades de taxonomia operacional 

ou variantes de sequenciamento de amplificado que não são compartilhados entre 

todas amostras (também chamados de taxa de baixa prevalência) (SZE; SCHLOSS, 

2016).  

 

 

2.5. Processamento das Sequências e ‘Core’ Microbiano 

 

Durante o processo de análise de dados provenientes de sequenciamento de 

amplificados, existem etapas de pré-filtragens, que normalmente removem muitas das 

taxas com baixa prevalência. Uma dessas etapas é a remoção de sequências 

encontradas somente uma vez em uma amostra. Essas sequências são chamadas de 

singletons (do inglês, “coisa única”) (EDGAR, 2013), e de acordo com Tedersoo et al. 

(2010) esses singletons são artifícios e também são considerados como fonte da 

maior parte do viés no sequenciamento de nova geração. Outra consideração 

importante, é de que sequências com muito baixa abundância podem ser resultantes 

de contaminação em baixa escala provenientes de kits comerciais (EISENHOFER et 

al., 2019).  

Outra abordagem durante a pré-filtragem, envolve a exclusão das unidades 

taxonômicas com baixa prevalência entre todas as amostras. A prevalência de micro-

organismos no microbioma humano é caracterizado por padrões de distribuição bem 

variáveis  (KRAAL et al., 2014) com abundância proeminente de algumas cepas em 

alguns indivíduos enquanto que virtualmente ausente em outros. Mesmo que a 
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presença de micro-organismos em baixa prevalência, e entre todas as amostras, pode 

representar um interesse de pesquisa para futuros estudos experimentais (KRAAL et 

al., 2014), a identificação destes micro-organismos presentes na maioria dos 

indivíduos, também chamado core microbiome (microbioma essencial), tem sido o 

principal objetivo do Projeto do Microbioma Humano (HUTTENHOWER et al., 2012).  

A identificação de um core microbiano pode ser importante para entender a 

estabilidade, plasticidade, e funcionamento por agregação complexa de micro-

organismos em determinado ambiente. Podendo ainda, ser usado como um padrão 

para identificar variações significativas que podem estar associadas a estados de 

doença, outros tratamentos ou variáveis fenotípicas. 

Com a exploração mais abrangente do microbioma, desenvolveram-se 

diversas ferramentas para contrastar fatores experimentais em estudos de 

microbiomas, como por exemplo Phyloseq (MCMURDIE; HOLMES, 2013), Qiime 

(CAPORASO et al., 2010), mg-rast (MEYER et al., 2008), Mothur (SCHLOSS et al., 

2009), e MicrobiomeAnalyst (DHARIWAL et al., 2017). A escolha por um determinado 

pacote ou programa para análise é normalmente baseado nas questões de interesse 

do usuário, nível de experiência em bioinformática (já que alguns programas 

demandam familiaridade com uso de linhas de comando), e nos recursos disponíveis 

na instituição do usuário (POLLOCK et al., 2018). Ainda assim, a maior parte das 

abordagens inseridas nestes pacotes raramente consideram a prevalência microbiana 

intragrupo com uma opção a ser usada.  

Por fim, dados provenientes de estudos de microbioma são desafiadores, com 

muitas unidades taxonômicas presentes de forma esparsa que leva a grande variação 

na distribuição. Novas abordagens aplicadas aos dados de microbiomas são 

imperativos para o desenvolvimento futuro da área.   
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Esta tese está organizada na forma de capítulos, onde cada capitulo é 

apresentado na forma deu um artigo. O Artigo 1 foi publicado na World Journal of 

Microbiology and Biotechnology, e formatado de acordo com as regras desta revista. 

O Artigo 2 foi publicado na Molecular Ecology Resources, e também foi formatado de 

acordo com as regras desta revista. Os materiais suplementares destes, estão 

presentes nos endereços localizados no início das respectivas apresentações.  
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The female lower genital tract harbors a complex microbial community essential for 

homeostasis and health. During pregnancy, the female body undergoes unique 

hormonal changes that contribute to weight gain as well as modulations in immune 

function that can affect microbiota composition. Several studies have described the 

vaginal microbiota of pregnant women from the USA, Europe and Mexico. Here we 

expand our knowledge about the vaginal microbial communities during the third 

trimester to healthy expectant Brazilian mothers. Vaginal samples were collected from 

patients delivering at the Hospital de Clínicas de Porto Alegre, Brazil. Microbial DNA 

was isolated from samples and the V4 region of the 16S rRNA gene was amplified and 

sequenced using the PGM Ion Torrent. Brazilian pregnant women presented three 

distinct types of microbial community at the time of labor. Two microbial communities, 

Cluster 1 and Cluster 3, presented an overall dominance of Lactobacillus while Cluster 

2 tended to present higher diversity and richness, with the presence of Pseudomonas, 

Prevotella and other vaginosis related bacteria. About half of the Brazilian mothers 

sampled here had dominance of L. iners. The proportion of mothers without dominance 

of any Lactobacillus was higher in Brazil (22%) compared to UK (2.4%) and USA, 

where this community type was not detected. The vaginal microbiota showed 

significant correlation with the composition of the babies’ gut microbiota (p-value=0.002 

with a R2 of 15.8%). Mothers presenting different vaginal microbiota shared different 

microorganisms with their newborns, which would reflect on initial colonizers of the 

developing newborns’ gut. 

 

Keywords: 16S rRNA; Microbial diversity; Next Generation Sequencing; Pregnancy; 

Vaginal Microbiome 

 

 

 

 

 

 

 

 

1 Introduction 
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The female lower genital tract harbors a complex microbial community 

essential for homeostasis and health. Although complex in terms of microbial 

composition, the healthy vaginal microbiota, in non-pregnant woman, is dominated by 

Lactobacillus species. Lactobacillus spp. produce lactic acid as their main fermentation 

product which contributes to maintaining a healthy vaginal environment by 

antimicrobial effect associated with a reduced pH (Boskey et al. 1999; Tachedjian et 

al. 2017). Newborn’s health outcome is another important role of a healthy vaginal 

microbiota. Infant’s gut microbial community is shaped also during birth, trough the 

birth canal, influencing the initial gut microbial community assembly (Dominguez-Bello 

et al. 2010; Milani et al. 2017). 

During pregnancy, the female body undergoes hormonal changes 

contributing to weight gain as well as modulations in immune function that could be 

associated with changes in mothers’ microbiota composition (Nuriel-Ohayon et al. 

2016). In contrast to various disease states, where microbiota alterations correlate with 

adverse outcomes, microbiota changes during pregnancy might contribute to a healthy 

full term pregnancy. Throughout the first trimester, the relative abundance of 

Lactobacillus spp. increases while the abundance of other anaerobic bacteria such as 

Sneathia, Gardnerella, Parvimonas, Gemella and Dialister decreases. Towards the 

last trimester the vaginal microbiota stabilizes but with lower diversity compared to non-

pregnant woman (Romero et al. 2014a, b).  

The presence of Lactobacillus spp. as a member of the healthy vaginal 

microbiota seems to occur irrespective of geography or racial background, though 

varying in overall abundance and prevalence. One of the questions this study seeks to 

answer is if this would also be found on a Brazilian cohort. Several studies have 

described the vaginal microbiota of pregnant women from the USA, Europe or Mexico 

(Hernández-Rodríguez et al., 2011; Hyman et al., 2014; MacIntyre et al., 2015; Romero 

et al., 2014a, 2014b). Romero et al. (2014b) compared the vaginal microbiota of non-

pregnant (N=32), 50% African American (AA) with pregnant women (N=22, 86% AA) 

and monitored microbiota changes throughout a term pregnancy. In another study 

Romero et al. (2014a) investigated microbiota differences between term (N=72, 86% 

AA) and preterm (N=18, 94% AA) delivery. Hernández-Rodríguez et al. (2011) 

described the vaginal microbiota during the third trimester of gestation in 23 pregnant 

Mexican women. MacIntyre et al., (2015) found a higher proportion of women with 
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dominance of L. jensenii in the UK compared to women from USA.  Bisanz et al. (2015) 

also described the vaginal microbiota of 56 pregnant women (53 with term gestation) 

in a rural region of Tanzania, though there were no description of types of vaginal 

communities. They found that the majority of the women sampled had dominance of 

Lactobacillus spp. (no species resolution). Prevotella, Gardnerella, Sneathia were also 

found in lower proportions. 

The maternal vaginal microbiota contributes to the colonization of the 

newborn’s gut. Initial infant’s gut colonization is very important for early and long-term 

health. Initial abnormal microbial transfer can affect the immune system development, 

allergy and asthma future incidence (Johnson and Ownby 2017; Milani et al. 2017), 

and can contribute to postnatal complications including early onset sepsis (Madan et 

al. 2012; Wortham et al. 2016). Women with distinct vaginal microbial communities 

during labor onset might transfer different microbial seeds to their newborn’s gut. Thus, 

understanding how these different vaginal microbial communities are presented during 

labor, could provide an avenue for developing microbiota-targeting interventions that 

can improve maternal and newborn’s health.  

The purpose of this study was to characterize the vaginal microbial 

community of healthy pregnant Brazilian women at the end of their third trimester, and 

understand how it correlates with their respective infant’s gut microbiota colonization 

at time of birth. To our knowledge, there are no reports on how the vaginal microbiota 

of healthy pregnant women from Brazil. 

 

2 Materials and Methods 

 

We performed an observational, cross-sectional study based on a 

convenience sampling strategy. Participants were recruited at the Neonatology Section 

of Hospital de Clínicas de Porto Alegre (HCPA), Brazil, between the years of 2014 and 

2015. Expectant mothers were enrolled at hospital admission for delivery and provided 

written informed consent. The study protocol was approved by the Ethics Committee 

of Hospital de Clínicas de Porto Alegre (HCPA), approval number 

39164114.0.0000.532. Exclusion criteria: 1) HIV carrier, 2) recreational drug user or 

alcohol dependent (self-reported), 3) urinary tract infections, 4) any antibiotic usage 

during third trimester, 5) gestational diabetes and 6) congenital infections in newborn. 
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We obtained samples from a total of 45 pregnant women delivering at 37-40 weeks of 

gestational age and 45 first fecal samples (meconium) from their babies. Samples from 

18 women were excluded from the analysis based on: collection after delivery (n=1), 

lack of records for collection time (n=8), urinary tract infection in the third trimester 

(n=2), intrapartum antibiotic treatment (n=2), gestational diabetes (n=2), and low 

sequence coverage, with less than 1000 sequences (n=3). Thus, vaginal samples from 

27 expecting mothers were retained for this analysis, and 26 samples of first pass 

meconium from their respective newborns. All babies, except one, were vaginally 

delivered. Vaginal samples were collected after hospital admission and shortly before 

delivery by rotating a sterilized swab five times along the vaginal lumen with a circular 

motion. Speculum was not used. There were no occurrences of PROM (Premature 

Rupture of Membranes) or administration of intravenous antibiotics during delivery. 

Meconium samples were collected within 24h of birth from a single diaper directly into 

a sterile collection tube. All samples were immediately stored at -80°C for later 

analysis.  

 

2.1 Microbial DNA extraction, 16S rRNA amplification and library 

preparation 

 

Microbial DNA isolation from vaginal and meconium samples, amplification 

of the 16S rRNA, and sequencing protocol were performed following Dobbler et al., 

(2017, 2018). Raw sequences were deposited in the Sequence Read Archive (SRA), 

accession SRP093885. Records are accessible at 

https://www.ncbi.nlm.nih.gov/sra/SRP093885. Run numbers SRR7657414 to 

SRR7657440. 

 

2.2 Sequence processing and statistical analysis 

 

The 16S rRNA raw sequences were analyzed following the 

recommendations of the Brazilian Microbiome Project (Pylro et al. 2014) and as 

previously described (Dobbler et al. 2017). For downstream analysis, the data set was 

filtered by removing Chloroplast/Cyanobacteria sequences and only OTUs with more 

than 5 sequence reads were kept before rarefying to the same number of sequences 

(Lemos et al. 2011). Observed OTU richness and Shannon diversity index estimators 
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were calculated using the “phyloseq” package (McMurdie and Holmes 2013), and 

plotted using the “ggpubr” package, both in the R environment. Alpha diversity 

measurements were tested for normality with Shapiro-Wilk test, and clusters 

differences were evaluated with the Kruskall-Wallis test. Clinical data was also 

evaluated, including testing of quantitative variables for normality with Shapiro-Wilk 

Normality Test. Quantitative variables with normal distribution were compared by the 

ANOVA test while the non-normal distributed variables were compared by Kruskal-

Wallis rank sum test. 

We applied an unsupervised clustering approach on the different vaginal 

microbial communities occurring in Brazilian expectant mothers. First, a Bray-Curtis 

dissimilarity matrix was built with the OTUs identified in each sample. A Hopkins 

statistic test was used to verify cluster tendency, followed by the Gap statistical 

analysis (Tibshirani et al. 2001) to discover the number of clusters in the dataset. Gap 

statistic was performed with 500 Monte Carlo simulations. The members of each 

cluster were then identified using k-means with the number of clusters derived from 

the previous analysis, with 25 different random starting assignments. Analysis was 

carried out using the “cluster” and “phyloseq” packages (Maechler 2013; McMurdie 

and Holmes 2013) implemented in R environment.  

To test the hypothesis that different vaginal microbial communities occur in 

healthy Brazilian mothers, Bray-Curtis dissimilarity matrix was ordinated by 

Multidimensional Scaling (MDS) and differences among community states were tested 

by Permutational Multivariate Analysis of Variance (PERMANOVA) (Anderson 2001) 

implemented in the vegan package (Oksanen J et al. 2015), and a pairwise 

PERMANOVA. Also, in order to identify the main taxa responsible for the differences 

among each community type, the 30 most abundant OTUs were biploted with the Bray-

Curtis dissimilarity matrix in the MDS space and the mean relative abundance were 

computed for each community type.  

High-level phenotype of these microbial communities was investigated 

through BugBase platform (Ward et al. 2017). For that, the raw 16S rRNA dataset was 

prepared following the instructions of Langille et al., (2013). After quality filtering and 

trimming, OTUs were picked against the Greengenes (McDonald et al. 2012) 

database. Hypothesis testing was performed with Pairwise Mann-Whitney-Wilcoxon 

Tests. 
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After exploration of maternal vaginal microbial communities, we also sought 

to understand whether these different vaginal microbial communities were associated 

with differences in the newborn’s gut microbial community assembly at birth. To 

accomplish this, OTUs with more than 5 reads were retained and Bray-Curtis 

dissimilarity and Binary matrices were constructed and ordinated by MDS, where 

babies’ samples were grouped according with their respective mother’s cluster. 

Hypothesis testing was performed with PERMANOVA. Also, in order to visualize how 

maternal and newborn’s sample are clustered, a heatmap was constructed with taxa 

present in at least 10% in one sample using the ‘pheatmap’ R package (Kolde 2019).  

MetaCoMET (Metagenomics Core Exploration Tool) (Wang et al. 2016) was 

used to find shared OTUs between mother’s clusters and their newborns. An OTU was 

considered member of a group when the cumulative relative abundance was above 

0.1%. 

 

3 Results 

 

3.1 Overall 16S sequencing report and diversity description 

 

After initial quality filtering that retained all OTU’s except singletons, Good’s 

coverage at 97% similarity cutoff ranged from 89 to 99% of sequencing coverage 

(Supplementary Table S1).  Further analyses were performed after removing OTUs 

with less than six sequences across all samples. In all, after quality assessment and 

pruning of low representative OTUs, 745,688 sequences were retained with a median 

of 7,236 sequences per sample.  

Alpha diversity of the vaginal microbial communities at 37-40 weeks of 

gestational age varied greatly among mothers. On average, the number of observed 

OTUs among the subjects was 26, with a minimum of 9 and a maximum of 345 OTUs. 

The Shannon diversity index ranged from 0.14 to 5.18 with an average of 1.27. The 

number of phyla and genera also presented great variation among the mothers ranging 

from one to 15 and 1 to 81 respectively. 

Similarly, the newborn’s gut microbiota also presented great variation in 

alpha diversity. The number of OTUs ranged from 12 to 199 with a mean of 74.7 OTUs 

per sample. Shannon Diversity Index ranged from 0.4 to 4.1 with a mean of 2.1 per 

sample. 
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3.2 Determining whether vaginal microbial communities differ among 

healthy pregnant mothers 

 

To determine whether the vaginal microbial community of Brazilian pregnant 

woman represented distinct clusters, we applied an unsupervised machine learning 

approach (Supplementary Table S2). The first step consisted in verifying the cluster 

tendency using the Hopkins statistic. The Hopkins statistical analysis of the Bray-Curtis 

dissimilarity distance matrix at OTU level was 0.19, which indicated the presence of 

clusters. Gap statistic, using the same dissimilarity matrix ordinated by a 

Multidimensional Scaling space, identified that Brazilian mothers had three distinct 

vaginal microbiota clusters. With a Gap statistic value of 0.407 and a standard error of 

0.037 (Supplementary Table S2).  

The k-means clustering function was applied to determine cluster 

membership. The analysis was carried out using the number of clusters specified by 

the Gap statistic and with 25 different random starting cluster assignments. K-means 

clustering method selects the best assignment of cluster members that produces the 

lowest within cluster variation. Seven pregnant mothers were assigned to the Cluster 

1, six pregnant mothers were assigned to Cluster 2 and fourteen pregnant mothers 

were assigned to Cluster 3.  

 

3.3 Microbial community analysis among clusters 

 

The Shannon Diversity Index and the number of OTUs were used in order 

to evaluate how alpha diversity compared between the clusters. We found that there 

was a marginal difference in alpha diversity between the vaginal microbial clusters, 

global p-value for Shannon Index was 0.069, but no overall difference in number of 

observed OTUs (p-value = 0.19 (Fig. 1a, 1b). There was a tendency of higher Shannon 

diversity in Cluster 2 compared to Cluster 3 (p-value = 0.076). There was no difference 

in Shannon diversity (Fig. 1C) and number of observed OTUs (Fig. 1d) of the microbial 

community of the babies’ gut when considering their respective mothers cluster.  

In order to understand how the structure of the microbial communities of 

each vaginal sample compared between groups. We applied the MDS to the Bray-
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Curtis dissimilarity matrix, as a measure of Beta-diversity, and plotted it with taxa 

abundance. The first two axis alone explained 54.7% of the variation between the 

microbial communities, and the mothers’ vaginal microbial communities formed three 

clearly distinct groups (Fig. 2). In addition, a PERMANOVA analysis revealed that the 

microbial composition of the three community types were different (p-value = 0.001, R2 

= 0.50), and indicated that 50% of the distance variation was explained by the different 

microbial communities’ membership (Table 1). All clusters were statistically different 

(p-adjusted = 0.003) and the largest R2 was observed between Cluster 3 and Cluster 

1, which explained more than 56% of the difference between these communities (Table 

1). The large difference observed among clusters (measured by the R2) indicated this 

contrast present biological relevance. In addition, analysis of multivariate homogeneity 

of group dispersions suggests that differences between Cluster 1 and Cluster 3 are not 

caused by differences in homogeneity of variance (Supplementary Table S3). 

 

 

3.4 Clinical features of each vaginal community type and microbial 

composition 

 

After community state assignment, the clinical characteristics of each group 

were evaluated. We investigated whether gestational age, maternal age, number of 

pregnancies or number of prenatal visits differed between community states (Table 2). 

After testing for data normality, Kruskal-Wallis was applied for non-normal data, and 

Analysis of Variance were applied for data with normal distribution. We found that there 

was no significant difference in gestational age (p-value = 0.5), mother’s age (p-value 

= 0.54), in the number of pregnancies (p-value = 0.25) or number of prenatal visits (p-

value = 0.3801) between the community states. Though, our few samples might not 

have enough power to detect differences. 

Vaginal microbial composition differed greatly between groups. On average 

mothers assigned to Cluster 1 had dominance of an unidentified species of 

Lactobacillus making up an average of 68.1% of the vaginal microbial community. Also, 

L. iners, L. antri, L. jensenii, Prevotella timonensis, P. bivia and P. copri were also 

detected (Fig. 3). This vaginal community could not be matched to a specific CST 

(Community State Type) described by Romero et al. (2014a, b). Women grouped into 

Cluster 2 was marked mainly by very low abundance, or absence, of Lactobacillus spp. 
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and presence of P. bivia, P. copri, P. disiens, Gardnerella vaginalis and Bacteroides 

(Fig. 3). This vaginal community matches the CSTIV described by Romero et al. 

(2014a, b), which has low abundance of Lactobacillus spp. and high frequency and 

abundance of taxa related to bacterial vaginosis, such as Gardnerella, Prevotella, and 

Atopobium. 

Moreover, more than half the women sampled were grouped into Cluster 3, 

which had the highest abundance of L. iners among the three vaginal community types, 

with mean abundance of 74.73%. And in addition to dominance of L. iners, G. vaginalis, 

Atopobium vaginae, Sneathia sanguinegens and Veillonellaceae were also found (Fig. 

3). This description matches the CSTIII described by Romero et al. (2014a, b). Also, 

L. iners was present in all vaginal communities, though, with different overall mean 

abundance.  

Following the characterization of vaginal communities’ microbial profiles, we 

sought to find whether the different microbial composition also reflected on overall 

differences on hither phenotype characteristics. The BugBase (Ward et al. 2017) 

platform was applied for phenotype prediction. We found that differences on vaginal 

microbial composition also reflected on overall community phenotype characteristics. 

Cluster 1 had higher mean abundance of aerobic bacteria than Cluster 3, 50.19% and 

4.99%, respectively (Table 3). Mean abundance of facultative anaerobic was different 

between all clusters, ranging from 5.78%, for Cluster 2, to 70%, for Cluster 3. There 

was no significant difference in abundance of anaerobic bacteria between vaginal 

communities. Also, Cluster 1 and 3 were mainly composed of gram-positive bacteria, 

80.56 and 85.38% respectively, while Cluster 2 was composed of mainly gram-

negative, 69.18% (Table 3).  

 

 

3.5 Newborn’s gut similarity with mother’s vaginal microbial community 

cluster 

 

After finding and characterizing three different vaginal microbial community 

clusters in Brazilian mothers, we explored how much of those differences were 

associated with the composition of babies’ gut microbiota at birth. 
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Beta diversity of infants’ samples was measured with Bray-Curtis 

dissimilarity and Binary distance, ordinated with MDS (Fig. 4), and tested with 

PERMANOVA. Overall, the three vaginal maternal clusters were sufficient to cluster 

infants’ samples regarding the presence and/or absence (p-value=0.002), however 

explained little of the variation, with R2 of 15.8% (Fig. 4a).  Bray-Curtis dissimilarity 

showed no difference, p-value 0.509, between infants from mothers from different 

clusters (Fig. 4b).  

In order to better examine how maternal vaginal microbial composition 

compared to the newborn’s gut composition, we constructed a heatmap with the most 

abundant taxa across mothers and infants. We found that there was not a clear 

clustering of these samples, with some common low frequent taxa in low abundance 

shared between them (Fig. 5), such as Bacteroides, Clsotridiales and Faecalibacterium 

prausnitzii. Pseudomonas lini and Prevotella copri were the shared taxa with the 

highest abundance in the newborns’ gut, and that were also present in the maternal 

vaginal bacterial community. 

Considering the correlation of mothers’ microbes with the composition of the 

babies’ gut, we also found that common OTUs between mothers and infants differed 

between the clusters. Overall, pairs of babies and mothers form Cluster 1 shared 15 

different OTUs, while Cluster 2 and 3 shared 25 and 7, respectively. Babies from 

Cluster 2 had 60.31% of their gut bacterial composition similar with the mother’s 

vaginal microbiota, while babies from the Lactobacillus dominated clusters, Cluster 1 

and 3, had 32.54 and 50.32%, respectively (Table 4). Babies from Cluster 2 had the 

highest proportion of Lactobacillus, 5.67%, while babies from mothers on Cluster 1 and 

3 had only 2.03 and 0.75%. In addition, on average babies from all three clusters had 

the same two OTUs, the same 200nt sequence, as the most abundant of the shared 

OTUs and identified as Pseudomonas lini and Prevotella copri. The 30 most abundant 

OTUs comprising the gut microbiota of each newborn is presented in Supplementary 

Fig. S1. 

Caution is warranted regarding detection of Pseudomnoas lini, as it’s 

commonly found on soil samples, and should be considered part of the “kitome” (Salter 

et al. 2014). 

 

 

4 Discussion 
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The Brazilian population is composed mainly by European, African and 

Amerindian ancestry.  However, race in Brazil does not refer directly to ancestry rather 

it refers mostly to phenotype, such as skin color. This ambiguity nature of race in Brazil 

allows for individuals drift from one racial category to another, for example siblings and 

parents can often identify themselves as member of different racial groups (Telles 

2004). This ambiguity is due to the highly miscegenation of the Brazilian population 

and therefore skin color becomes irrespective of ancestry. Recent research has shown 

that European ancestry in the Brazilian population is larger than expected, ranging 

between 60 to 77% depending on the region (Pena et al. 2011; Rodrigues de Moura 

et al. 2015). However, when Parra et al. (2003) compared white Brazilians with 

Portuguese (Europeans) and black Brazilians with Africans, they found that these 

populations were statistically different regarding to the alleles surveyed. They also 

found extensive overlaps in the African ancestry index among white, intermediate 

(pardos/brown) and blacks. Therefore, it is imprudent to use the standard stratifications 

of Caucasian/white and black/African Americans with the Brazilian population. It also 

strengthens the need to independently investigate populations with high miscegenation 

rates.  

The vaginal microbiota changes rapidly over time, and fluctuations may 

occur in a matter of days (Gajer et al. 2012). Here we described the vaginal microbiota 

of pregnant healthy Brazilian mothers, right before delivery. To our knowledge, there 

is few descriptions of the vaginal microbiota of laboring mothers, immediately before 

delivery (Martín et al. 2007; Avershina et al. 2017). 

A literature review of studies addressing the vaginal microbial communities 

at third trimester of pregnancy is presented in Table 5. Lactobacillus spp. were 

detected in higher frequency and in higher abundance among all women irrespective 

of the women background. However, a low proportion of pregnant women presented a 

vaginal microbial community that was not dominated by Lactobacillus. Those women 

did not present clinical symptoms of vaginosis, their vaginal microbial community was 

more diverse (greater number of taxa) and presented greater abundance of 

Atopobium, Pseudomonas, Gardnerella and Prevotella.  

In this study, we found three different vaginal microbial community 

assemblies in Brazilian mothers at their third trimester of a healthy gestation. The 
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Cluster 3 found here, matches the descriptions of the CSTIII (Community State Type) 

described in other populations, which has dominance of Lactobacillus iners. Cluster 2 

matches descriptions of the CSTIV, which has low abundance of Lactobacillus spp. 

and high frequency and abundance of taxa related to bacterial vaginosis, such as 

Gardnerella, Prevotella, and Atopobium (Romero et al. 2014a, b). However, our 

Cluster 1, dominated by unidentified species of Lactobacillus spp., can be matched to 

any other CSTs dominated by Lactobacillus spp. (L. crispatus, L. gaseri, L. jensenii) 

described in the literature, even though it presented low abundance of L. antri, L. iners, 

L. jensenii. Nevertheless, despite the similarities of the community clusters dominated 

by Lactobacillus with the others already described, the clusters dominated by 

Lactobacillus found in Brazilian mothers had prevalence, albeit low abundance, of 

bacterial vaginosis associated bacteria. The majority of the sampled Brazilian mothers 

presented a cluster dominated by Lactobacillus spp. About half (51.8%) of the mothers 

had dominance of L. iners, which are in consonance with both reports (59.4% and 

59.1%) from USA (Romero et al. 2014a, b), though reports from UK had lower rates 

(31%) of dominance of L. iners. It is important to highlight the high proportions of black 

women in both reports from USA (90% and 86%). The prevalence of the diverse cluster 

in Brazilian mothers was the same as one of the reports form USA, 22%, however it 

was much higher compared to UK and another report from USA, 2.4% and 0%, 

respectively (Romero et al. 2014b; MacIntyre et al. 2015). Although our primers are 

able to amplify L. crispatus and L. gasseri, these two microbial species were not 

detected in our samples. They might not be present in our dataset or their abundance 

was below the detection level of our technique.  

During pregnancy, increasing levels of oestrogen lead to the maturation of 

the vaginal epithelium and accumulation of glycogen, which is broken down into 

maltose, maltotriose, and maltotetraose supporting Lactobacillus spp. colonization 

(Spear et al. 2014). This increase in oestrogen levels is thought to drive the increase 

in proportion of Lactobacillus spp. in the vagina throughout pregnancy. On the other 

hand, Avershina et al. (2017) investigated the vaginal microbiota of women at labor 

and found that by the time of labor onset the number of observed species are 

increased. In particular, the phylotypes that are characteristic of CST IV (Peptoniphilus, 

Anaerococcus, Corynebacterium, Finegoldia, Prevotella) were overrepresented at 

labor. This supports our findings, that even the vaginal microbial communities 
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dominated by Lactobacillus spp. had considerable abundance of BV related bacteria 

at labor onset.  

The uterine environment has been considered sterile, in which babies were 

thought to be born sterile, acquiring their gut microbial community after birth. Recent 

several studies have described the microbial composition of first pass meconium 

(Jiménez et al. 2008; Mshvildadze et al. 2010; Madan et al. 2012; Dobbler et al. 2017), 

placenta (Aagaard et al. 2014) and amniotic fluid (Collado et al. 2016) suggesting that 

microbial seeding of the fetus gut might occur before birth. Overall, the mothers’ vaginal 

microbial community cluster at time of labor was associated with the microbial 

presence and absence in the gut microbiota of their newborn at birth, though not strong 

enough to affect the community structure. Reflecting the different composition of each 

vaginal community type, common OTUs between mothers and babies were also 

different. 

More than half of the composition of the babies’ gut microbiota of mothers 

from Cluster 2 was found in their mothers, which could be a result of the higher 

diversity. Even though Lactobacillus spp. were most frequently the most abundant in 

the vagina, it was in very low abundance in the meconium samples, while OTUs 

identified as Pseudomonas lini and Prevotella copri were the most frequently shared 

and abundant in the babies’ gut at time of birth. Low resemblance of the newborn gut 

with the maternal vaginal microbiota have been recently reported in vaginally delivered 

babies. It was suggested that babies receive microbes from several maternal body 

sites, though the microbes from maternal gut were more persistent (Ferretti et al. 

2018). The OTUs shared between babies and mothers of different clusters, might 

reflect on initial colonizers of the developing newborns’ gut.   

The reads obtained by high throughput 16S rRNA gene sequencing surveys 

represent a random sample of the relative abundance of DNA molecules. According to 

Gloor et al. (2017), due to the nature of the data it cannot be related to the absolute 

number of microbes in a sample. The data presenting such random component are 

referred to as compositional (Aitchison et al. 2000; Gloor and Reid 2016) and the 

multivariate approaches, usually applied in microbial ecology studies, such as 

ordination and clustering are considered inappropriate (Pawlowsky-Glahn et al. 2015). 

While the arguments in favor of compositional analyses are plausible, most tools 

available for microbiome analysis do not take into account the compositionality of the 
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data. This opens a discussion on whether or not any other work based on non-

compositional models should be rejected. Here we reanalyzed our results using a 

compositional approach described by Gloor and Reid (2016) by converting 16S rRNA 

counts using the centered log-ratio (clr) transformation.  The results are presented in 

the supplementary material (Supplementary Data S1) of this manuscript. For our 

particular dataset the same biological conclusion was reached irrespective of the 

approach chosen for data analysis. 

 

5 Conclusion 

 

Here, we characterize three different vaginal microbial community types 

found in Brazilian mothers at time of labor. Two of these community types were 

dominated by Lactobacillus spp. and one was marked by lower abundance of 

Lactobacillus spp. and higher abundance of BV related bacteria. Irrespective of cluster 

membership, vaginosis related bacteria were frequently found in Brazilian mothers. 

Other community types were not detected in this cohort and might be due to our small 

number of women sampled here. In addition, the vaginal microbiota showed significant 

association with presence of microbes in the babies’ gut at the time of birth. On the 

other hand, high abundance of those vaginal microbes did not correlate with high 

abundance in the infant’s gut microbiota. Overall, maternal vaginal microbiota had low 

resemblance with initial baby’s gut colonization, and maternal vaginal clusters 

dominated with Lactobacillus were not associated with Lactobacillus in the babies’ 

meconium at time of birth. 
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Fig. 1. Violin plot representing alpha diversity measurements. (A) Shannon Diversity Index and (B) 

Observed OTUs of maternal vaginal samples. (C) Shannon Diversity Index and (D) Observed OTUs of 

newborns’ meconium samples. Colors indicate cluster classification, babies samples are colored 

according to mother’s cluster. Observed stands for the number of OTUs found in each cluster and 

Shannon stands for Shannon Diversity Index. Boxes span the first to third quartiles; the horizontal line 

inside the boxes represents the median black dots represents all samples in each group and red dots 

represent outliers. 
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Fig. 2. Multidimensional Scaling of the Bray-Curtis distance of vaginal samples. Each symbol 

represents a microbial community of an individual sample. (A) Presents the different clusters of vaginal 

microbial communities. Each color represents a cluster, large circles around samples represents a 

confidence ellipse of 95%. (B) Represents the 30 most abundant OTUs across all vaginal samples, 

summarized at the highest taxonomy level with at least 80% confidence, into 22 different taxa. Each 

circle represents a different OTU, while different colors represent different taxonomy assignments and 

indicate which OTU/taxa are driving sample clustering.  
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Fig. 3. Bar plot presenting the relative abundance of the 30 most abundant OTUs of vaginal 

samples. OTUs were summarized at the highest taxonomy level with at least 80% confidence, into 22 

different taxa. Each stacked bar represents the relative abundance of each vaginal maternal sample, 

grouped according to its respective community cluster. 
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Fig. 4. Beta diversity ordinated with MDS of microbial communities present in meconium 

samples. Each symbol represents a microbial community of an individual sample and each color 

represents a cluster assigned to newborns’ respective mother. (A) Binary distance of microbial 

communities, based on presence and absence. (B) Bray-Curtis dissimilarity. 
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Fig. 5. Heatmap with the most abundant taxa across maternal and infant microbiota. 

Each line represents a taxon, summarized at the highest taxonomy level, and each column represents 

an individual sample. These are the taxa with more than 10% relative abundance in at least one sample. 
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TABLES 

 

Table 1. Permutational Multivariate Analysis of Variance among the vaginal microbial 

communities of different community clusters found in this study. 

 

*P-value adjusted for multiple comparisons with Bonferroni 

 

 

Table 2. Sample group characteristics summarized according to the different vaginal 

microbial communities found in this study.  

 

 Values expressed in means and standard deviations of the mean. 

*ANOVA 

**Kruskal-Wallis rank sum test 

*** Gestational age for delivery time and sample collection time 

 

 

 

 

 

 

 DF SS F. Model R2 P-value P-

adjusted 

Clusters 2 4.283 12.245 0.50505 0.001 - 

Residuals 24 4.197 - 0.49495 - - 

Total 26 8.481 - 1.0 - - 

Pairwise Clusters Comparisons     

Cluster 3 vs Cluster 2   10.873101 0.3765824 0.001 0.003* 

Cluster 3 vs Cluster 1   24.232420 0.5605150 0.001 0.003* 

Cluster 2 vs Cluster 1   5.125949 0.3178696 0.001 0.003* 

 

 Cluster 1 (n=7) Cluster 2 (n=6) Cluster 3 (n=14) p-values 

Mothers’ Characteristics     

Gestational Age 

(weeks)*** 
39.77 ± 1.0 39.14 ± 1.1  39.73 ± 1.1 

0.5* 

Mother’s Age (years) 27.14 ± 7.4  24.33 ± 3.6 23.71 ± 6.0 0.3931** 

Number of Pregnancies 2.3 ± 1.1 2.3 ± 0.5 1.7 ± 0.9 0.2308** 

Prenatal Visits 6.71 ± 2.14 8.17 ± 1.72 7.14 ± 1.92 0.3801** 

Newborns’ Characteristics     

Weight at Birth (grams) 3362.86 ± 414.82 3370.83 ± 279.15 3924.43 ± 270.78 0.838* 

Length (cm) 48.92 ± 1.5 48.5 ± 1.61 48.54 ± 0.82 0.782* 

APGAR 1 8.29 ± 1.25 8.67 ± 0.52 8.21 ± 2.33 0.7581** 

APGAR 5 9.14 ± 0.69 9.67 ± 0.52 9.29 ± 0.83 0.3412** 

Head Circumference (cm) 33.17 ± 1.51 33.5 ± 1 34.14 ± 1.51 0.337* 

Thoracic Circumference 

(cm) 

33.67 ± 1.37 33.58 ± 1.24 33.54 ± 1.25 0.978* 
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Table 3. Predicted phenotypes of different vaginal microbial cluster found in this 

study.  

 

 

*Pairwise Mann-Whitney-Wilcoxon Test  

 

 

Table 4. Relative mean abundance of shared OTUs between vaginal and meconium 

samples within each cluster.  

 

OTU ID Taxonomy Meconium Vaginal 

Cluster 1 15 Shared Phylotypes   

OTU1 Pseudomonas_lini 10.97% 3.46% 

OTU2 Prevotella_copri 8.10% 1.01% 

OTU3 Prevotella_copri 3.53% 0.46% 

OTU4 Bacteroides 3.08% 0.11% 

OTU5 Prevotella_copri 2.23% 0.21% 

OTU6 Lactobacillus 1.09% 55.78% 

OTU7 Nitrobacter 1.02% 0.25% 

OTU8 Lactobacillus_iners 0.77% 8.07% 

OTU9 Alistipes 0.45% 0.06% 

OTU10 Lachnospiraceae 0.32% 0.22% 

OTU11 Prevotella_timonensis 0.28% 5.52% 

OTU12 Spartobacteria_genera_incertae_sedis 0.21% 0.08% 

OTU13 Firmicutes 0.21% 0.21% 

OTU14 Lactobacillus 0.17% 1.65% 

OTU15 Flavobacterium 0.11% 0.18% 

Cluster 2 25 Shared Phylotypes   

OTU1 Pseudomonas_lini 32.53% 18.02% 

OTU2 Prevotella_copri 7.73% 4.22% 

OTU6 Lactobacillus 4.66% 0.44% 

 Mean abundance (%) p-value 

 Cluster 1 Cluster 2 Cluster 3 Cluster 1 vs 

Cluster 2 

Cluster 1 vs 

Cluster 3 

Cluster 2 vs 

Cluster 3 

Aerobic 50.19 34.20 4.99 0.2948 0.00003* 0.2391 

Anaerobic  13.35 53.09 24.21 0.1014 0.8557 0.0757 

Facultative 

Anaerobic 

28.69 5.78 70.13 0.0011* 0.0022* 0.00005* 

Gram-Negative 19.44 69.18 14.62 0.0081* 0.5352 0.0006* 

Gram-Positive 80.56 30.82 85.38 0.0081* 0.5352 0.0006* 

Mobile Elements 11.28 19.15 2.87 0.945 0.0007* 0.1093 
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OTU5 Prevotella_copri 3.06% 1.24% 

OTU3 Prevotella_copri 2.43% 6.73% 

OTU4 Bacteroides 1.68% 1.37% 

OTU16 Bacteroides_uniformis 1.31% 0.44% 

OTU8 Lactobacillus_iners 1.01% 1.36% 

OTU17 Faecalibacterium_prausnitzii 0.90% 0.88% 

OTU18 Clostridiales 0.88% 1.42% 

OTU19 Parabacteroides_merdae 0.69% 0.16% 

OTU20 Bacillus_bataviensis 0.41% 0.25% 

OTU21 Prevotella_copri 0.34% 0.23% 

OTU9 Alistipes 0.34% 0.33% 

OTU22 Bacillus 0.31% 0.23% 

OTU23 Spartobacteria_genera_incertae_sedis 0.29% 0.98% 

OTU32 Ruminococcaceae 0.28% 0.10% 

OTU24 Faecalibacterium_prausnitzii 0.26% 0.44% 

OTU25 Prevotella_copri 0.26% 0.16% 

OTU26 Leptotrichiaceae 0.23% 0.93% 

OTU27 Gp1 0.20% 0.36% 

OTU11 Prevotella_timonensis 0.18% 0.41% 

OTU28 Pseudomonas 0.16% 0.57% 

OTU29 Faecalibacterium_prausnitzii 0.11% 0.72% 

OTU30 Bacteroides_coprocola 0.05% 0.33% 

Cluster 3 7 Shared Phylotypes   

OTU1 Pseudomonas_lini 22.50% 2.68% 

OTU2 Prevotella_copri 14.93% 0.19% 

OTU3 Prevotella_copri 4.43% 0.46% 

OTU31 Sneathia_sanguinegens 4.00% 3.24% 

OTU26 Leptotrichiaceae 3.70% 1.54% 

OTU8 Lactobacillus_iners 0.57% 69.82% 

OTU6 Lactobacillus 0.18% 0.67% 

 

 

 

 

 

 

 

Table 5. Review of studies addressing the vaginal microbial communities at the third 

trimester of pregnancy. 
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Authors Country 
Type of study and 

methodology 

Study 

Characteristics 
Most abundant Taxa 

Avershina et 

al. (2017) 
Norway 

Randomized double 

blind clinical trial 

V3-V4 hypervariable 

region of the 16 S 

rRNA 

256 pregnant 

women with term 

gestation 

L. iners, L. crispatus, 

Enterobacteriaceae and 

Prevotella 

Chu et al. 

(2017) 
USA 

Prospective cohort 

study 

V5-V3 hypervariable 

region of the 16S 

rRNA gene 

81 pregnant 

women with term 

gestation 

Lactobacillus spp., 

Prevotella spp., 

Streptococcus spp., 

Corynebacterium spp. 

MacIntyre et 

al. (2015) 
UK 

Longitudinal study 

V1-V2 hypervariable 

regions of 16S 

rRNA gene 

42 pregnant 

women with term 

gestation; 

23 (54.8%) White, 

5 (11.9%) Black; 13 

(31%) Asian 

Lactobacillus crispatus, 

L. iners, L. jensenii, L. 

gasseri, Prevotella spp. 

Bisanz et al. 

(2015) 
Tanzania 

Longitudinal open-

label study 

V4 hypervariable 

region of 16S rRNA 

gene 

56 pregnant 

women, 53 with 

term gestation 

Lactobacillus spp., 

Prevotella spp., 

Gardnerella spp., 

Sneathia spp. 

Romero et 

al. (2014a) 
USA 

Retrospective case–

control longitudinal 

study 

V1-V2 hypervariable 

regions of 16S 

rRNA gene 

22 pregnant 

women with term 

gestation; 

19 (86%) African 

American, 2 (9%) 

White, 

1 (5%) Hispanic 

L. iners, L. crispatus, 

Atopobium vaginae, 

Lactobacillus, L. 

Jensenii 

Romero et 

al. (2014b) 
USA 

Nested case–

control study 

V1-V3 hypervariable 

regions of 16S 

rRNA gene 

72 pregnant 

women with term 

gestation; 

62 (86.1%) African 

American, 

4 (5.6%) White, 

6 (8.3%) Others 

L. iners, L. crispatus, 

Gardnerella vaginalis, 

L. Jensenii, BVAB1 



52 

Hernández-

Rodríguez et 

al. (2011) 

Mexico 

Transversal study 

V3 hypervariable 

region of 16S rRNA 

gene 

23 pregnant 

women with term 

gestation 

L. acidophilus, L. iners, 

Ureaplasma 

urealyticum, L. gasseri, 

BVAB1 

This work Brazil 

Cohort study                                 

V4 hypervariable 

region of 16S rRNA 

gene 

27 pregnant 

women with term 

gestation 

L. iners, Lactobacillus, 

Pseudomonas lini, G. 

vaginalis, Prevotella 

copri 
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The data used for profiling microbial communities is usually sparse with some microbes 

having high abundance in a few samples and being nearly absent in others. However, 

current bioinformatics tools able to deal with this sparsity are missing.  PIME 

(Prevalence Interval for Microbiome Evaluation) was designed for remove those taxa 

that may be high in relative abundance in just a few samples but have a low prevalence 

overall. The reliability and robustness of PIME were compared against existing 

methods and tested using 16S rRNA independent datasets. PIME filters microbial taxa 

not shared in a per treatment prevalence interval starting at 5% prevalence with 

increasing increments of 5% at each filtering step. For each prevalence interval, 

hundreds of decision trees are calculated to predict the likelihood of detecting 

differences in treatments. The best prevalence-filtered dataset is user-selected by 

choosing the prevalence interval that keeps a large portion of the 16S rRNA sequences 

in the dataset while also showing the lowest error rate. To obtain the likelihood of 

introducing type I error while building prevalence-filtered datasets, an error detection 

step based is also included. A PIME reanalysis of published datasets uncovered other 

expected microbial associations then previously reported, which may be masked when 

only relative abundance was considered. 

 

Keywords: microbial prevalence, Next Generation Sequencing, 16S-rRNA, taxa 

filtering, Core microbial taxa, microbial biomarkers. 

 

 

 

 

 

 

 

 

 

 

 

1 INTRODUCTION 
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Sequencing of amplified genetic markers (amplicon survey), e.g. the 16S rRNA 

gene, is traditionally used for testing hypotheses on microbial community composition. 

The major challenge for using the data obtained by these surveys is their interpretation 

for the discovery of the drivers of microbial diversity.  Excluding microbiomes from 

simple ecosystems (e.g. habitats with extreme temperature or pH), amplicon surveys 

usually identify a large number of taxa (also called Operational Taxonomy Units – 

OTUs or Amplicon Sequence Variants – ASVs) not shared among all samples (also 

called low prevalent taxa) (Sze & Schloss, 2016).  Often pre-filtering steps in the data 

analysis eliminate many of these taxa with low prevalence.  Those steps include, but 

are not limited to, the exclusion of sequences found only once in a sample.  These are 

the so-called singletons (Edgar, 2013; Edgar & Flyvbjerg, 2015). According to 

Tedersoo et al., (2010), singletons are artifactual and account for the greatest source 

of bias in Next Generation Sequencing. Also, very low abundant reads might be the 

result of a low level of contaminants from commercial kits (Eisenhofer et al., 2019; 

Salter et al., 2014).  

Another pre-filtering approach involves the exclusion of microbial taxa of low 

prevalence across all samples. The prevalence of microbes in the human microbiome 

is characterized by variable distribution patterns (Kraal, Abubucker, Kota, Fischbach, 

& Mitreva, 2014) with prominent abundance of some strains in some subjects while 

nearly absent in others. While the presence of microbes with low prevalence across all 

samples can be the focus of research for future experimental study (Kraal et al., 2014), 

the identification of microbial taxa present in the majority of the subjects, also known 

as the core microbiome, has been one of the primary goals of the Human Microbiome 

Project (Consortium, 2012; Huse, Ye, Zhou, & Fodor, 2012). The microbial core can 

be used as standard to identify significant variations that might be associated with 

disease states or other treatments.  

 Many tools such as Phyloseq (McMurdie & Holmes, 2013), Qiime (Caporaso et 

al., 2010), UPARSE (Edgar, 2013), MG-RAST (Meyer et al., 2008), Mothur (Schloss 

et al., 2009), and MicrobiomeAnalyst (Dhariwal et al., 2017) have been developed to 

contrast experimental factors in microbiome studies. The choice of a given analysis 

package is usually based on the user's questions of interest, level of experience in 

bioinformatics, and on the available resources at the user's host institution (Pollock, 
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Glendinning, Wisedchanwet, & Watson, 2018).  Nevertheless, most approaches 

embedded in these packages rarely consider microbial prevalence within treatments. 

Here we propose a new workflow based on the core microbiome concept that 

is designed to identify and remove the within group variation found in amplicon surveys 

(16S rRNA datasets) by capturing only biological differences at high sample 

prevalence levels. That means in an experiment comparing two treatments (e.g. 

healthy versus diseased subjects) one core for each treatment will be calculated and 

relevant microbial taxa responsible for differences within microbial cores will be 

detected. That is, we are asking the question of the extent to which core microbiomes 

differ.  To implement this concept, we developed an R package called PIME 

(Prevalence Interval for Microbiome Evaluation). PIME is a tool specifically designed 

to work with datasets with high variation among samples. PIME removes low 

abundance taxa in each treatment or group keeping only those taxa that are shared at 

some level of prevalence. It calculates prevalence levels in 5% intervals from 5% to 

95%.  For each prevalence level a list of the most relevant taxa responsible for 

differences between or among treatments is provided. We also implemented an error 

detection step based on randomizations. It consists in calculating the likelihood of false 

predictions (i.e. existence of distinct groups when there are not) throughout the dataset 

filtration process. 

 

 

2 MATERIALS AND METHODS 

 

2.1 Program Description 

 

2.1.1 Bioinformatics Workflow 

 

The bioinformatics workflow described here is embedded in an R package 

called PIME (Prevalence Intervals for Microbiome Evaluation) available at: 

https://github.com/microEcology/PIME. PIME identifies statistically significant bacterial 

community differences considering the proportion of samples hosting a specific 

microbial community in a given time period. For the purpose of this work, prevalence 

was defined as the proportion of samples in a specific group (e.g. treatment or any 
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other factor the user want to compare) that share taxa, irrespective of the relative 

abundance, at the time of sampling. For example, a prevalence cutoff of 50% means 

that the taxa selected at this prevalence interval are found in 50% of the samples. 

PIME’s strategy is based on four fundamental steps depicted in Figure 1 that we 

describe below.  

 

I) Prediction of differences in full dataset: 

PIME takes a phyloseq object (McMurdie & Holmes, 2013) as input. Phyloseq 

enables handling many data formats. PIME then builds hundreds of randomized 

decision trees, where each gives a vote for the prediction of the target variable, using 

a supervised non-parametric machine learning algorithm and combines them into a 

single model to predict the likelihood of detecting any user defined treatments or 

variables as source of sample variation (Breiman, 2001). The model performance is 

indicated by the out-of-bag (OOB) estimate of the error rate calculated by training the 

algorithm on a subset of samples and tested on the remaining samples. Values can 

vary between 0 and 1, where 0 and 1 indicate the model has 100% or 0% accuracy, 

respectively. This overall measurement of accuracy can be interpreted as an estimate 

of error obtained when the model is applied to new observations. Higher OOB error 

indicates low accuracy of the model in predicting differences among the categorical 

variables tested. 

This first PIME step is implemented in a function called pime.oob.error. This 

function is run using the dataset without any filtering proposed by PIME. After obtaining 

the OOB error rate, the user decides whether PIME is adequate for the dataset. For 

example, an OOB error near zero indicates the prevalence filtering with PIME is not 

necessary, as the model accuracy is already reasonably good. On the other hand, if 

OOB error rate is greater than zero, filtering the dataset using PIME might improve the 

model accuracy. In this case only, the user can proceed and execute the function 

pime.split.by.variable. This step is defined below. 

 

II) Split the dataset by predictor variable and compute prevalence intervals: 

The full dataset is split according to the tested categorical variables (e.g. 

treatment and/or any other factor) defined by the user in the metadata file. Each 

variable will be used to define data subsets. Those per variable subsets are filtered 

using different prevalence levels from 5% to 95% with increments of 5% for each level 
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(see Figure 1 for a simplified schema illustrating this filtering step). Prevalence levels 

(usually high prevalence levels – e.g. 90%) where samples have zero sequences are 

not calculated. After removal of taxa that do not match the prevalence criteria, the 

subsets are merged to compose a new filtered dataset (one per prevalence interval) 

for subsequent downstream analysis. This step is implemented in these two functions: 

pime.split.by.variable and pime.prevalence. The pime.split.by.variable function uses 

the original dataset as input and its output is used as input for pime.prevalence. The 

function pime.prevalence keeps, for each treatment group, every OTU/ASV according 

to the following equation: 

 

N0/Ns > Pi == True 

 

Where: N0 is the number of OTUs/ASVs counts with Sum > 0, Ns is the number 

of samples and Pi is the prevalence interval Pi = 0.05, …, Pmax = 0.95.  

 

III) Computation of OOB error on each prevalence interval and importance of 

each taxa in the differentiation of microbial communities  

Next, Random Forest analyses (Breiman, 2001) are used to determine the level 

of prevalence that provides the best model to predict differences in the communities, 

while still including as many taxa as possible in the analysis. After prevalence filtering, 

performed according to the equation above, the OOB error rate and the number of 

remaining taxa and sequences are calculated for each prevalence level. The results 

are provided in a table that allows the user to determine the optimal prevalence interval 

with high accuracy. This step is implemented in a function called: 

pime.best.prevalence. Within the same function, the contribution of each taxa to the 

mean decrease in classification accuracy is calculated using the same Random 

Forests algorithm. High values of mean decrease accuracy indicate the importance of 

taxa to differentiate two or more microbial communities. The user can access the 

importance of taxa in each of the prevalence intervals. 

 

IV) Validation 

To obtain the likelihood of producing a type I error where PIME predicts the 

presence of distinct groups where no groups exist, an error detection step is included.  
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Consider the scenario in which the null hypothesis of “no difference between groups” 

is false. If we randomly shuffle the labels that identify the sample groups and run the 

test again, the expected outcome is that the randomized dataset will have a small 

chance to present distinct groups. Running the test multiple times with the random 

dataset is expected to produce a high OOB error rate in most cases. This error 

detection test is implemented in these two functions: pime.error.prediction and 

pime.oob.replicate. The first function randomizes the samples labels into arbitrary 

groupings using 100 random permutations. For each randomized prevalence filtered 

dataset, the OOB error rate is calculated to determine whether differences in the 

original groups occur by chance. The second function performs the Random Forest 

analyses and computes the OOB error for 100 replications in each prevalence interval 

without randomizing the sample labels. The biological difference among samples is 

expected to be greater than the differences generated randomly. Thus, the greatest 

fraction of randomizations should generate high error rates. On the other hand, no 

improvement in accuracy is expected within the randomized dataset. 

 

 

Empirical Validation 

 

The PIME workflow was compared against other existing filtering methods and 

by using empirical tests with 16S rRNA datasets. The performance of PIME was 

compared against filtering methods based on overall prevalence, low abundance, and 

low variance. Also, four 16S rRNA datasets were analyzed using PIME to illustrate its 

usefulness. These include an assessment of: a) the association between diet and 

saliva microbiome composition (unpublished original research); b) the gut microbiome 

in subjects at high genetic risk for type 1 diabetes (Davis-Richardson et al., 2014); c) 

the vaginal microbiome in pregnant women randomized to receive milk with or without 

probiotic bacterial strains (Avershina et al., 2017); and d) the saliva microbiome 

compared to the microbiome of the left antecubital fossa of healthy individuals (Human 

Microbiome Consortium, 2012).  

 

 

Comparison with other existing filtering methods 
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Comparisons were performed using a dataset composed by 16S rRNA 

sequences from microbes extracted from saliva of 125 undergraduate and graduate 

students from the University of Florida (accessible through BioProject ID 

PRJNA504439). The following filtering tests were performed: a) filtering the dataset 

such that the taxa kept in the dataset must be present in at least 20% of the subjects; 

b) filtering the dataset by abundance to include only those taxa with at least 5 

sequences; and c) filtering by low variance such that all taxa in the dataset have 

variance higher than 20%. Filtered datasets were compared against the prevalence 

interval of 65% as calculated by PIME as the best prevalence interval where the OOB 

error was zero. A record of this analysis containing a step-by-step R-code and results 

is provided in the Supplementary File S1. 

 

 

Performance evaluation with 16S rRNA datasets 

 

A novel and four published datasets were analyzed with PIME. These datasets 

covered a broad range of habitats including human and environmental samples.  

These are used to show that PIME does give predicted results in those cases where 

we expect to see no differences in the treatment [such as the studies of Avershina et 

al., (2017) and Davis-Richardson et al., (2014)] and in those cases where we expect 

large differences between the treatments [such as the saliva microbiome described in 

this paper and the comparison between saliva and the left antecubital fossa from the 

human microbiome project (Human Microbiome Consortium, 2012)]. The novel dataset 

used in this work comprised of 16S rRNA gene sequences from saliva samples 

obtained from 125 undergraduate and graduate students from the University of Florida. 

The study assessed the subject’s diet as a factor influencing the saliva microbiome. 

This study was approved by the University of Florida’s Institutional Review Board and 

assigned number IRB201602134.  Approximately 224 undergraduate and graduate 

students taking three courses were invited to anonymously participate in this study as 

volunteers. A study coordinator was chosen to collect samples and code the samples 

so that those who did the analysis were unaware of the identity of the volunteers. To 

assess the diet, the subjects also completed the KIDMED survey (Serra-Majem et al., 
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2004). The sampling collection, DNA extraction and library preparation are described 

below. 

 

Sampling collection, DNA extraction and library preparation 

Of the 224 students invited, 125 volunteers obtained the saliva sample 

collection and provided 2 ml of saliva. The samples were taken from each subject using 

the GeneFiX™ Saliva DNA Collection device. The collection kit allows immediate 

stabilization of the DNA. Total DNA was extracted using the GeneFixTM Saliva-prep-2 

kit (Cell Projects Ltd, Harrietsham, UK) following the manufacturer’s protocol. DNA 

samples were stored at -20 ºC until use.  

To assess the diet, the subjects also completed the KIDMED survey (Lluís 

Serra-Majem et al., 2004). The KIDMED Index is based on a series of 16 questions, 

which measures the degree to which a subject adheres to the Mediterranean diet. The 

KIDMED index has been validated with nutritional data (Ll Serra-Majem, Ribas, García, 

Pérez-Rodrigo, & Aranceta, 2003) and was much simpler to implement than a diet 

diary or a serum-based nutrition analysis. Participant’s age and gender were also 

obtained. 

The 16S rRNA library preparation as well as the PCR reactions, primers and 

thermocycling conditions were performed as described previously (Davis-Richardson 

et al., 2014) and sequenced with Illumina MiSeq: 2x300 cycles run. The raw fastq files 

were used to build a table of exact amplicon sequence variants (ASVs) with DADA2 

version 1.8 (Callahan et al., 2016). Taxonomy was assigned to each ASV using the 

SILVA ribosomal RNA gene database version v132 (Quast et al., 2012). A detailed R 

script containing the code used to generate the ASV table is provided in the 

Supplementary File S2. Downstream analyses were carried out after the normalization 

of the number of sequences in all samples as recommended by Lemos et al., (2011). 

The rarefied dataset comprised of 24,900 sequences per sample.  

 

Description of the previously published datasets  

The first previously published dataset used here was described by Davis-

Richardson et al. (Davis-Richardson et al., 2014) and comprised of partial 16S rDNA 

sequences from fecal samples of 76 subjects born between 1996 and 2007 at the 

Turku University Hospital in southwestern Finland. All subjects were at high genetic 

risk for type 1 diabetes. The cohort was retroactively selected to create an age-
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matched genotype-controlled set of subjects for the investigation of the microbiome as 

an environmental factor influencing the development of Type-1 diabetes. The raw 

Fastq files were obtained and sequences were processed using DADA2 version 1.8 

(Callahan et al., 2016), as described above. Cases were defined as subjects who 

developed at least two persistent islet cell autoantibody (ICA), IAA, GADA, or IA-2A.  

Controls were defined as subjects with no detectable islet autoantibodies. Samples 

from subjects older than one year and post seroconversion were removed. 

The second published dataset used here was previously described by 

Avershina et al. (Avershina et al., 2017). This dataset is comprised of amplified and 

sequenced 16S rRNA genes from vaginal swab samples collected from a cohort of 256 

pregnant women. These subjects were randomized to receive a daily dose of 

fermented milk containing probiotic bacterial strains, or milk without probiotics. The 

corresponding author kindly provided an OTU table with 3,000 sequences per sample 

and the accompanying metadata. This table was used in all downstream bioinformatics 

and statistical analysis. Only those samples collected at the 36th week of gestation were 

used in these analyses.  

The third previously published dataset comprised of 16S rRNA gene sequences 

from the V1-V3 hypervariable region downloaded from the NIH Human Microbiome 

Project (https://www.hmpdacc.org/HMQCP/#data). The final OTU table processed by 

Qiime (Caporaso et al., 2010) using an OTU-clustering strategy and accompanying 

metadata were obtained and loaded into the R environment. After removing singletons, 

only saliva and left antecubital fossa samples were kept. The filtered dataset comprised 

of 113 saliva samples and 59 left antecubital fossa samples.  All were rarefied to 2,000 

sequences per sample.  

The fourth published dataset comprised of 16S rRNA sequences from soils in a 

well-controlled microcosm system designed to investigate the individual and interactive 

effects of moisture and temperature (Lupatini et al., 2019). Specifically, we compare 

three moisture regimes at 10 ºC using only DNA samples rarefied at 7,100 sequences. 

A record of all statistical analyses comparing the datasets with and without using PIME 

including the R-code are included as Supplementary File S3. 

 

3 RESULTS 

3.1 Performance of PIME compared against other filtering methods  
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The performance of PIME was compared with other filtering methods (Figure 2 

and 3). After quality filtering the saliva dataset, a total of 4,981,638 high-quality 

sequences, 400 bp long, were obtained from all subjects. An average 44,258 (sd = 

27,743) sequences per sample were obtained. The dataset was rarefied to 24,900 

sequences per sample in all analyses commensurate with the lowest number of 

sequences found in any one sample. Good’s coverage (Good, 1953) ranged from 0.97 

to 1.00 indicating this number of sequences was sufficient to accurately reflect the 

microbial diversity in these samples given the low complexity of saliva samples. The 

optimal prevalence interval calculated by PIME was 65%. This prevalence interval was 

used to compare the performance of PIME against the other filtering methods. The 

original dataset, without any filtering, presented 4,555 ASVs and a total of 3,112,500 

sequences after rarefaction. Both filtering methods, prevalence overall and PIME, 

excluded the highest proportion of ASVs and sequences while filtering by abundance 

or variance excluded only 22% of ASVs and kept 99.9% of the sequences. 

Nevertheless, the overall prevalence kept 84% of the sequences while PIME kept 68% 

of the total number of sequences. Without using the PIME filtering the OOB error 

obtained while attempting to classify the salivary microbiome according to the three 

diet categories was 44%.  This shows that the overall prevalence without using PIME 

model had low accuracy in predicting diet according to the microbiota. However, the 

PIME model had an OOB error of 0% (accuracy of 100%). The analysis of the 

taxonomic composition at phylum level after filtering the saliva dataset with PIME and 

other filtering methods are presented in Figure 3. PIME did not skew the phylum 

distribution but, as expected, removed low prevalent ASVs from particular phyla (e.g. 

Actinobacteria and Proteobacteria). 

 

 

3.2 PIME application and effectiveness 

 

Different datasets were used to validate the PIME workflow. PIME computed 

the OOB error rate from random forests, the number of taxa, and the number of 

remaining sequences for each prevalence interval from the diet-saliva dataset (Figure 

4). Stringent criteria for definition of prevalence lead to greater improvement in 

accuracy for predicting diet based on the salivary microbiota. The prevalence interval 
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of 65% provided the best separation of microbial communities (OOB error = zero) while 

still including the majority of the sequences in the analysis. This prevalence interval 

was chosen for further analysis, but other intervals of prevalence can also be tested. 

For instance, the prevalence interval of 25% had OOB error of 7.2%. This indicates 

that the model is 92.8% accurate, which is a reasonably good model and keeps 88% 

of the sequences. Those ASVs that contributed to separating the core microbiomes 

among the diet categories (high, medium, or low diet categories) at 65% prevalence 

are provided by PIME (Table 1). The table indicates the ability of each variable to 

classify the microbes according to the three diet categories. The ASVs are ordered as 

most- to least-important. The more the accuracy of the random forest decreases due 

to the exclusion of a single ASV, the more important that ASV is, and therefore 

variables with a large mean decrease in accuracy are more important for classification 

of the ASVs according to diet. The mean decreased accuracy of the unfiltered dataset 

presented extremely low values. Negative values or close to zero indicate that the 

variable does not have a role in the prediction. In other words, the variable is not 

important to differentiate groups (Table 1). On the other hand, after PIME filtering, the 

mean decrease accuracy values increased indicating a true contribution of each ASV 

to classify diet differences among the core microbiomes. Altogether, the results 

indicated that after PIME filtering differences in the saliva microbiome was partially 

explained by diet rather than by random distribution patterns. The traditional approach, 

not accounting for microbial prevalence, was unable to distinguish these differences. 

Following this first test, 16S rRNA data from stool of 76 children at high genetic 

risk for type 1 diabetes (Davis-Richardson et al., 2014) were tested for prevalence 

differences in those samples from children who remained healthy versus those that 

became autoimmune. PIME computed the OOB error rate from random forests, the 

number of taxa, and the number of remaining sequences for each prevalence interval 

from this dataset described (Figure 4). PIME also calculated prevalence intervals up to 

70%. None of the sequences had a prevalence level higher than 70%.  As expected, 

the OOB error rate decreased with higher prevalence intervals. At 60% prevalence the 

OOB error was zero and the number of remaining sequences was 1,165,304. The 

importance of each ASV in finding core microbiome differences between cases and 

controls subjects at 60% prevalence was also determined by PIME (Table 2). Accuracy 

was improved by applying PIME filtering to the dataset compared to the unfiltered 



66 

dataset. Previously, Davis-Richardson et al. (2014) discovered that the relative 

abundance of Bacteroides was significantly higher in autoimmune vs. control subjects. 

The presence of Bacteroides as an important taxa associated with autoimmune 

subjects was confirmed by PIME and other Amplicon Sequence Variants (ASVs) 

belonging to Veillonella genus were also found associated with autoimmune subjects. 

In the third dataset tested, taxa were equally likely to be detected in the probiotic 

and placebo groups (Avershina et al., 2017).  PIME prevalence filtering did not capture 

any difference between treatments (Figure 4). As the vaginal environment is dominated 

by Lactobacillus, a severe drop in the number of sequences at 5% prevalence interval 

was observed, The OOB error rate of the overall model obtained by Random Forest 

analyses suggests that irrespective of the prevalence interval no distinction between 

probiotic consumption and placebo exists (Supplementary File 3). Those results 

confirm the author’s previous findings and demonstrate that our approach is not prone 

to type I errors (finding false positive results).  

PIME tested the association between saliva microbiome and the left antecubital 

fossa, using a dataset from the Human Microbiome Project (Consortium, 2012). These 

two distinctive human microbial habitats were selected as they are expected to harbor 

very different communities.  As predicted, PIME showed that the microbial habitats 

tested were very distinct. The OOB error rate was 0.005 within the original dataset and 

zero at all prevalence intervals applied (Figure 4 and Supplementary File 3) indicating 

the prevalence filtering does not increase the differentiation between these very 

different microbial habitats. 

Finally, to show PIME can also be applied to any environmental survey and not 

only to human datasets, a database comprised of 16S rRNA sequences from soils was 

tested (Lupatini et al., 2019).  The soil 16S rRNA sequencing was designed to 

investigate the effects of moisture and temperature under the microbial community 

(Figure 4 and Table 3). As expected, the OOB error rate decreased with higher 

prevalence intervals. After PIME filtering, the OOB error rate was about 88%. The best 

prevalence interval for this dataset was 70% where the OOB error rate was zero. Also, 

after PIME filtering, the mean decrease accuracy values (a measure of importance of 

a particular OTU/ASV to explain the model) increased indicating a true contribution of 

each ASV to detect moisture regime differences among the core microbiomes (Table 

3).   The mean decrease accuracy values were obtained from the calculations of OTU 

contribution to prevalence. 
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Once the best prevalence-filtered dataset is determined, the logical next step is 

to use the same algorithm (Random Forests) to find the most important OTUs/ASVs 

responsible for the differences related to a given condition. PIME performs this analysis 

as described above. However, PIME users might also take advantage of third-party 

software to further analyze the filtered dataset. To demonstrate this capability, the 

saliva’s microbiome from High and Low KIDMED diet scores were compared using the 

DESeq2 algorithm (Love, Huber, & Anders, 2014). This example is provided in the 

Supplementary File 3.  

 

 

3.4 Likelihood of introducing type I error while building prevalence-filtered 

datasets 

 

PIME includes an error detection step and the results are presented here 

(Figure 5). The biological difference among samples is expected to be greater than the 

differences generated randomly. Thus, as the prevalence interval increases, the OOB 

error should decrease. As expected, the OOB error rate of samples with true 

biologically relevant differences (Figures 5A, 5B, 5D and 5E) decreased (or remained 

constant in low noise datasets – Figure 5C) with the increase in the prevalence interval. 

On the other hand, random sampling produced OOB error rate always higher than 

those obtained based on the original dataset. In datasets with no expected biologically 

relevant differences (Figure 5C), the OOB error did not decrease with higher 

prevalence intervals.  In those cases, the randomized datasets produced higher OOB 

error rates. Thus, the signal to noise ratio increases with the prevalence intervals 

generating low OOB error rate values while no improvements in accuracy are observed 

within the randomized datasets. This error detection analysis showed that no bias was 

introduced while building prevalence-filtered datasets confirming this workflow is not 

prone to type I errors. 

 

 

4 DISCUSSION 
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Prevalence is a key epidemiological concept where the number of people 

affected by a disease are counted with respect to the entire population (Noordzij, 

Dekker, Zoccali, & Jager, 2010; Ward, 2013). PIME was designed based on this 

concept. Here, the importance of a microbial community found in a single sample is 

less than if the same community is present in the majority of samples. Under that 

rationale, a workflow was designed to compare the prevalent populations between 

treatments.  Prevalence has been used in the last as a filter of an entire dataset but 

never as a means to distinguish treatments. Prevalence differences between 

treatments are masked when only relative abundance is considered.  

Challenges in microbiome data include the presence of many taxa represented 

sparsely in the dataset.  This often results in large variation in distribution patters (also 

known as over-dispersion).  Hence, microbes that are prominent in some 

subjects/samples and nearly absent in others (Kraal et al., 2014; Li, 2015). The current 

major challenge for using this information is how to convert it into rational biological 

conclusions providing control for error rates of false discoveries. Many tools are 

available to contrast experimental factors but they usually only take into account the 

microbial abundance and/or presence/absence. Thus, PIME overcomes those 

challenges by determining per treatment microbial prevalence in the analysis. This 

approach greatly improves the results by removing a substantial amount between-

sample variation within groups that are represented by organisms that are rare in the 

population. PIME keeps only microbes found in many of the subjects of a population.  

The prevalence frequency can be chosen by the user after considering the OOB error 

rate.  Thus, PIME can lead to a greater understanding of pathogenesis and the 

identification of potential probiotic treatments and prevention strategies that are 

masked by traditional analyses. 

The definition of the best prevalence cutoff and the importance of taxa to 

discriminate treatments are performed by the Random Forests algorithm through the 

PIME workflow. This machine-learning algorithm has no formal distributional 

assumptions and can manage skewed and multi-modal data as well as categorical 

data.  It can also manage situations in which the number of predictor variables 

(OTUs/ASVs) greatly exceeds the number of observations (Cutler et al., 2007). PIME 

is simple and accurate compared to other machine learning methods (Statnikov et al., 

2013) and is applicable for classification of binary and multicategory experiments.  

Classification by these means is very accurate even with the default parameters, 
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(Statnikov et al., 2013; Zhou & Gallins, 2019). This ensures a more broad and practical 

use of PIME. Other methods that are not based on machine learning are able to identify 

taxa that are indicative of a given condition.  This is often called differential abundance 

analysis. They usually compute p-values, adjusted p-values, False Discovery Rates 

and Effect Sizes and are based on microbial abundances. Random Forest analysis 

does not perform this traditional statistical inference. The importance of OTU/ASVs to 

differentiate treatments or ecological conditions may be used for the purpose of 

prediction. This machine-learning algorithm also provides an indication of the 

performance (OOB error rate) for comparisons of two or more microbial communities 

without OTU/ASV selection. This information is key into PIME’s workflow as the 

estimate of error is used to define the best prevalence cutoff for filtering low prevalent 

OTUs/ASVs. Taking these considerations into account, PIME is not comparable to 

other methods designed to perform microbial differential abundance analysis. Still, any 

other tool can be applied after obtaining the prevalence-filtered dataset by PIME. For 

example, the  filtered dataset can be analyzed using the DESeq2 algorithm (Love et 

al., 2014) to identify taxa that differ between the saliva microbiome from High and Low 

KIDMED index (Supplementary File 3).  

Several tools designed to support microbiome statistical data analysis include 

data filtering as one of the first steps. The most commonly used filtering includes the 

exclusion of low count features (low abundance) using a minimum, yet arbitrary, 

relative abundance. Such features are very unlikely to be significant in the comparative 

analysis and likely have low overall prevalence. Arguably filtering those low abundance 

taxa can reduce the data sparsity issue, improving statistical power. However, when 

PIME performance is compared with other filtering methods, PIME outperformed all of 

those other approaches reducing the error rate and detecting microbial community 

differences where none were seen by other methods. This was illustrated by 

implementing PIME and other methods to a variety of 16S rRNA datasets. Within all of 

our tests, PIME confirmed previous findings and improved the results. 

PIME does have some limitations. As PIME relies strongly on group prevalence, 

it is sensitive to the quality of sample groups. Poorly categorized groups comprised of 

subjects/samples with very different microbial composition may affect the prevalence 

calculations. Therefore, PIME might not be as effective in suggesting a good 

prevalence interval for filtering where groups are simply not different (Figure 5C). For 
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datasets with a very large number of samples, PIME might not find a clear prevalence 

interval for data filtering as prevalence of a given taxon will likely decline as the number 

of samples increases. With an increasing number of samples, the chance of sampling 

different “cores” or subpopulations is also increased. In addition, when there is large 

heterogeneity within sample groups, coupled with high data sparsity, prevalence 

computation might not be successful. Also, although this doesn't affect prediction erros, 

Random Forest models are sensitive to multicollinear variables when informing 

variable importance. Colinear variables might have inaccurate importance values. For 

example, if the first chosen variable provides little information, the model may be less 

accurate. Nevertheless, we have shown using a variety of datasets that PIME can be 

useful in many circumstances to unveil differences in community structure that are not 

detected by other methods and it not subject to type 1 errors.  
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FIGURES

Figure 1. Empirical representation of steps used in PIME. Top panel. Bipartite network illustrating PIME 

method with a subset of 12 saliva’s microbiome samples. Each sample (red, yellow and blue circles) is 

connected to an ASV (white circles) through edges (green). ASVs observed in more than one sample 

are connected by at least two edges and are displayed at the center of the network. ASVs present in 

only one sample are connected by a single edge and are displayed at the border of the network. The 

first step applied by PIME is to split the full dataset according to the treatments defined by the user. 
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Within this example red, yellow and blue circles depict three different treatments. At each of the three 

new groups the low prevalent ASVs are removed. Finally, the subsets are merged to compose a new 

filtered dataset used in the downstream analysis. Bottom panel. Step-by-step representation of PIME’s 

workflow and validation. 

 

 

 
Figure 2. Performance of PIME compared to other filtering methods. A) Out of Bag error rate (OOB 
error rate); B) total number of sequences; C) Total number of ASVs. Prevalence = filter by overall taxa 
prevalence in at least 20% of the subjects; Abundance = filter by abundance of at least 5 sequences; 
Variance = filter by variance higher than 20%. PIME = filter by prevalence interval of 65%. Data was 
generated by using the saliva dataset and the step-by-step analysis can be found into the 
Supplementary File 1. 
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Figure 3. Changes in taxonomic composition at phylum level after filtering the saliva dataset with PIME 
and other commonly used filtering methods. 
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Figure 4. Computations of the out-of-bag error rate from random forests (A), percentage of remaining 
taxa (B) and percentage of remaining sequences (C) for each prevalence interval from five different 16S 
rDNA datasets. 
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Figure 5. Boxplot depicting the PIME error detection step. Red boxes represent the OOB error rate 
obtained by randomly shuffling the labels into arbitrary groupings using 100 random permutations and 
running pime.error.prediction function at each randomization for each prevalence interval. Black boxes 
represent the OOB error rate against the 100 replications in each prevalence interval against the original 
sampling labels obtained by running pime.oob.replicate function. (A) Original dataset from salivary 
microbiome samples. (B) Data from the gut microbial of 76 children at high genetic risk for type 1 
diabetes. (C) Data from the vaginal microbiome of pregnant women randomized to receive milk with or 
without probiotic bacterial strains. (D) Data from the microbiome of saliva and left antecubital fossa of 
healthy individuals. (E) Data from the soil microcosm system designed to investigate the individual and 
interactive effects of moisture and temperature. Boxes span the first to third quartiles; the horizontal line 
inside the boxes represents the median. Whiskers extending vertically from the boxes indicate variability 
outside the upper and lower quartiles, and the circles indicate outliers. 
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TABLES 
 
Table 1. Importance of ASVs measured by mean decrease accuracy and the confusion matrix prior and 

after PIME to differentiate the three diet categories (High, Low and Medium) from the diet-saliva dataset. 

 

Showing only the first 10 hits. A complete table with the 30 most important ASVs is provided in the 

Supplementary File 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Mean Decrease Accuracy  

High Low Medium Over all classes Closest microbial relative at genus level 

Unfiltered Dataset  

0.0088 0.0002 0.0041 0.0037 Neisseria 
0.0013 0.0046 0.0003 0.0017 Parvimonas 
-0.0002 0.0019 0.0022 0.0016 Veillonella 
0.0009 0.0025 0.0013 0.0015 Prevotella 
0.0003 0.0041 0.0006 0.0015 Parvimonas 
0.0004 0.0022 0.0014 0.0015 Porphyromonas 
0.0021 0.0014 0.0009 0.0013 Actinobacillus 
0.0014 0.0021 0.0007 0.0012 Haemophilus 
0.0024 0.0005 0.0010 0.0011 Alloprevotella 
0.0007 0.0004 0.0016 0.0011 Alloprevotella 

Dataset filtered by PIME 

0.0200 0.0287 0.0883 0.0573 Haemophilus 
0.0490 0.0060 0.0776 0.0504 Haemophilus 
0.0167 0.0153 0.0567 0.0364 Prevotella_7 
0.0317 0.0455 0.0318 0.0349 Gemella 
0.0279 0.0345 0.0260 0.0287 Prevotella 
0.0236 0.0312 0.0278 0.0276 Haemophilus 
0.0087 0.0046 0.0483 0.0273 Capnocytophaga 
0.0200 0.0653 0.0027 0.0239 Selenomonas_3 
0.0145 0.0250 0.0250 0.0228 Granulicatella 
0.0188 0.0206 0.0233 0.0216 Rothia 

Confusion matrix prior PIME 

 High Low Medium Classification error 
High 0 1 23 1.0000 
Low 0 4 33 0.8918 

Medium 0 2 62 0.0312 

Confusion Matrix after PIME 

 High Low Medium Classification error 
High 24 0 0 0.0000 
Low 0 37 0 0.0000 

Medium 0 0 64 0.0000 

 1 
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Table 2. Importance of the ASVs measured by mean decrease accuracy and the confusion matrix prior 

and after PIME from the dataset described by Davis-Richardson et al., (2014). 

 

Showing only the first 10 hits. A complete table with the 30 most important ASVs is provided in the 
Supplementary File 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean Decrease Accuracy  

Controls Cases Over all classes Closest microbial relative at genus level 

Unfiltered Dataset  

0.0043 0.0043 0.0043 Bacteroides 
0.0028 0.0061 0.0040 Bacteroides 
0.0036 0.0039 0.0038 Bacteroides 
0.0032 0.0045 0.0037 Bacteroides 
0.0033 0.0041 0.0035 Bacteroides 
0.0036 0.0033 0.0035 Bacteroides 
0.0028 0.0047 0.0035 Bacteroides 
0.0031 0.0035 0.0032 Bacteroides 
0.0025 0.0041 0.0031 Bacteroides 
0.0031 0.0033 0.0031 Bacteroides 

Dataset filtered by PIME 

0.0588 0.0148 0.0422 Bacteroides 
0.0470 0.0119 0.0339 Veillonella 
0.0386 0.0118 0.0284 Bacteroides 
0.0372 0.0073 0.0260 Veillonella 
0.0375 0.0063 0.0257 Bacteroides 
0.0366 0.0070 0.0255 Bacteroides 
0.0356 0.0074 0.0251 Bacteroides 
0.0372 0.0045 0.0251 Veillonella 
0.0366 0.0058 0.0250 Veillonella 
0.0346 0.0076 0.0245 Bacteroides 

Confusion Matrix prior PIME 

 Controls Cases Classification error 
Controls 210 14 0.0625 
Cases 54 79 0.4060 

Confusion Matrix after PIME 

 Controls Cases Classification error 
Controls 224 0 0.0000 
Cases 0 133 0.0000 

 1 
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Table 3. Importance of the OTUs measured by mean decrease accuracy and the confusion matrix 

prior and after PIME from the dataset described by Lupatini et al., (2019). 

 

Showing only the first 10 hits. A complete table with the 30 most important ASVs is provided in the 
Supplementary File 3. 

Mean Decrease Accuracy  

Moisture regimes (%) 
Over all classes Closest microbial relative at genus level 

8 16 23 

Unfiltered Dataset  

0.002 0.0000 0.0040 0.0020 Reyranella 
0.002 0.0000 0.0020 0.0020 Streptomyces 
0.002 0.0020 0.0000 0.0020 Unclassified Genus of Class OPB35 
0.002 0.0020 0.0000 0.0020 Candidatus Nostocoida 
0.000 0.0040 0.0020 0.0020 Unclassified Genus of Order Armatimonadales 
0.000 0.0020 0.0040 0.0020 Unclassified Genus of Class BD7-11 
0.000 0.0020 0.0040 0.0018 Acidothermus 
0.002 0.0040 0.0000 0.0018 Unclassified Genus of Order Rickettsiales 
0.004 0.0020 0.0000 0.0017 Bacillus 
0.002 0.0000 0.0020 0.0017 Jatrophihabitans 

Dataset filtered by PIME 

0.004 0.006 0.002 0.0053 Unclassified Genus of Phylum Armatimonadetes 
0.004 0.000 0.006 0.0037 Unclassified Genus of Family Nitrosomonadaceae 
0.000 0.006 0.004 0.0035 Unclassified Genus of Family GR-WP33-30 
0.002 0.001 0.004 0.0033 Pirellula 
0.002 0.003 0.002 0.0033 Chthonomonas 
0.003 0.000 0.004 0.0033 Pir4_lineage 
0.004 0.004 0.000 0.0032 Unclassified Genus of Family TX1A-55 
0.002 0.006 0.001 0.0030 Gemmatimonas 
0.004 0.000 0.006 0.0030 Sphingomonas 
0.000 0.003 0.004 0.0030 Unclassified Genus of Family Anaerolineaceae 

Confusion matrix prior PIME 

 8% 16% 23% Classification error 
8% 2 0 1 1.0000 

16% 1 2 0 1.0000 

23% 2 0 1 0.6667 

Confusion Matrix after PIME 

 8% 16% 23% Classification error 
8% 3 0 0 0.0000 

16% 0 3 0 0.0000 
23% 0 0 3 0.0000 

 1 
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4. CONCLUSÃO 

 

Na primeira parte desta tese, buscou-se analisar a microbiota vaginal de 

gestantes brasileiras, ao final do terceiro trimestre de gestação, e como está associada 

a microbiota do recém-nascido no momento do parto.  

Dessa forma, foi identificado e caracterizado três tipos de microbiotas vaginais 

nas gestantes brasileiras, no momento do parto. Dois tipos foram dominados por 

Lactobacillus spp. enquanto outra não apresentou dominância de nenhum micro-

organismo. A ausência de outros tipos de microbiotas pode ser devido ao número 

amostral limitado. Também foi demonstrado associação entre a microbiota vaginal 

materna e a intestinal do recém-nascido.  

 Na segunda parte desta tese foi proposto e validado, uma ferramenta capaz 

de determinar os níveis de prevalências adequados para redução da variabilidade 

intragrupo. A utilização de níveis de prevalência para filtragem intragrupo, 

implementado em PIME, permitiu a redução da variabilidade e permitiu identificar 

associações não identificadas anteriormente.  

Por fim, o presente trabalho contribuiu para o melhor entendimento da 

microbiota materna no momento do parto, bem como forneceu uma nova ferramenta 

para busca de novas associações para o estudo de microbiomas. 
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Abstract 

 

Introduction 

The gut microbiome has been related to several features present in Glycogen Storage 
Diseases (GSD) patients including obesity, inflammatory bowel disease (IBD) and liver 
disease. 

Objectives 

The primary objective of this study was to investigate associations between GSD and 
the gut microbiota. 

Methods 

Twenty-four GSD patients on treatment with uncooked cornstarch (UCCS), and 16 
healthy controls had their faecal microbiota evaluated through 16S rRNA gene 
sequencing. Patients and controls were 3 years of age and not on antibiotics. Faecal 
pH, calprotectin, mean daily nutrient intake and current medications were recorded and 
correlated with gut microbiome. 

Results 

Patients’ group presented higher intake of UCCS, higher prevalence of IBD (n = 04/24) 
and obesity/overweight (n = 18/24) compared to controls (n = 0 and 06/16, 
respectively). Both groups differed regarding diet (in patients, the calories’ source was 
mainly the UCSS, and the intake of fat, calcium, sodium, and vitamins was lower than 
in controls), use of angiotensin converting enzyme inhibitors (patients = 11, controls = 
0; p-value = 0.001) multivitamins (patients = 22, controls = 01; p-value = 0.001), and 
mean faecal pH (patients = 6.23; controls = 7.41; p = 0.001). The GSD microbiome 
was characterized by low diversity and distinct microbial structure. The operational 
taxonomic unit (OTU) abundance was significantly influenced by faecal pH (r = 0.77; p 
= 6.8e-09), total carbohydrate (r = -0.6; p = 4.8e-05) and sugar (r = 0.057; p = 0.00013) 
intakes. 

Conclusions 

GSD patients presented intestinal dysbiosis, showing low faecal microbial diversity in 
comparison with healthy controls. Those findings might be due to the disease perse, 
and/or to the different diets, use of UCSS and of medicines, and obesity rate found in 
patients. Although the main driver of these differences is unknown, this study might 
help to understand how the nutritional management affects GSD patients. 

 

Introduction 

Hepatic Glycogen Storage Diseases (GSD) are genetic disorders caused by 
deficient activity of one of the enzymes involved in the glycogenolysis pathway. The 
global incidence is estimated at 1 case per 20,000–43,000 live births. The most 
common types of GSD are GSD I, GSD III and GSD Ixα [1]. 

In GSD I, glucose-6-phosphate cannot be dephosphorylated to free glucose. 
There are two major subtypes of GSDI: Ia (~80%), caused by mutations in the G6PC 
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gene, and GSD Ib (~20%), caused by mutations in the SLC37A4 gene. The proteins 
produced from G6PC (catalytic activity) and SLC37A4 (transporter) work together [2]. 
GSD Ia involves glycogenolysis and gluconeogenesis, and the clinical manifestations 
are increased weight, hepatomegaly, failure to thrive, fasting hypoglycaemia, high 
lactate, hyperuricemia, nephromegaly and hyperlipidaemia [3]. In addition to the 
features presented in GSD Ia, GSD Ib also presents with susceptibility to recurrent 
infections, impaired neutrophil and monocyte function, and inflammatory bowel 
disease (Crohn’s-like IBD) [1]. 

Mutations in the AGL gene cause GSD type III, in which the defective glycogen 
debranching enzyme blocks glycogenolysis, stopping the conversion of glycogen to 
glucose-1-phosphate [4]. At the same time, gluconeogenesis is enhanced to help 
maintain endogenous glucose production. Hepatomegaly in type III GSD generally 
improves with age, but affected individuals may develop chronic liver disease 
(cirrhosis) and liver failure later in life [5]. 

GSD IX is caused by the inability of phosphorylase b kinase (PHKA) to break 
down the glycogen in liver and/or muscle cells. Type IXα glycogenosis is an X-linked 
disease caused by mutations in the alpha subunit of PHKA. The signs and symptoms 
typically begin in early childhood, but GSD IX is usually milder than the other types [6]. 

The treatment for the aforementioned types of GSD involves nutritional 
adjustments primarily, with the periodic and frequent administration of large amounts 
of uncooked cornstarch (UCCS) and restriction of simple carbohydrates [7] to maintain 
normoglycaemia and avoid glycogen storage. Usually, higher and frequent doses of 
UCCS are prescribed for type Ia patients and lower doses for type IX patients. The 
dose is adjusted according to weight and metabolic demand [8]. GSD III and IX patients 
may require a hyperproteic diet with fewer restrictions for simple sugars. Sometimes 
additional medications may be necessary. 

During the last decades, our understanding of the human being has changed. 
We know now that the eukaryote cells encoded by our genome are not the only 
component of our body. Symbiont prokaryotic cells inhabiting many cavities of our body 
provide metabolic functions far beyond the scope of our own physiological capabilities 
[9]. These cells play an important role in health and disease states [10]. The gut 
microbes are the most studied human associated microbial communities and consists 
of trillions of microbes and millions of functional genes [11]. Healthy humans present a 
remarkable microbial diversity but with similar functions indicating that different 
microbial communities are associated with a healthy microbiome [12]. The gut 
microbiome can be influenced by diet, lifestyle, drugs and genetics of the host [13], 
and has been related to several features present in GSD patients including obesity, 
IBD and liver disease [14]. This work aimed to investigate possible associations 
between GSD and the gut microbiota. 

 

Methods 

This study was a cross-sectional, observational convenience sampling study, 
which included 24 GSD patients (Ia = 15, Ib = 5, III = 1, IXα = 3) and 16 healthy controls. 
All patients were recruited from the outpatient clinics of the Medical Genetics Service 
at Hospital de Clínicas de Porto Alegre (MGS-HCPA), Brazil from Jan/2016 to 
May/2017. As inclusion criteria, the subjects (patients and controls) were 3 years old 
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and not on antibiotics. The GSD patients also were required to: a) have a genetic 
diagnosis of GSD and b) be on treatment with UCCS. The healthy controls were 
recruited by invitation as they came to routine appointments at Santa Cecília Basic 
Health Unit, Porto Alegre, Brazil. All subjects received a kit and printed instructions for 
stool collection, storage, and transport. They were also provided with printed 
instructions to record three days of dietary information. Each participant collected their 
own frozen fecal sample and three-day dietary record and submitted them to an 
outpatient clinic during their next routine check-up. Upon returning to the clinic, each 
participant answered a brief questionnaire about personal features including weight 
and height, eating habits, intestinal habits, medicines of recent and/or continuous 
usage and lifestyle. The study protocol was approved by the Ethics Committee of 
Hospital de Clínicas de Porto Alegre (HCPA). All participants and/or legal guardians 
signed an informed consent. 

As a routine, GSD patients seen at the MGS-HCPA who are on UCCS therapy 
also receive a multivitamin prescription. Despite optimum dietary treatment other drugs 
could also be prescribed, mainly for type I patients, such as allopurinol, to prevent gout 
and urate nephropathy; angiotensin converting enzyme inhibitors, to slow-down or 
prevent further deterioration of renal function; citrate, to preventing or ameliorating 
urolithiasis and nephrocalcinosis, in addition to correcting lactacidaemia; statins to 
treat hypercholesterolaemia [15]; and mainly for Ib patients, G-CSF to treat 
neutropenia, neutrophil dysfunction and IBD; and the intestinal anti-inflammatory 
mesalazine (5-amino-salicylic acid), also to treat IBD [16]. 

 

Nutritional assessment, clinical data and statistical analysis 

Macro and micronutrients intake by the subjects were estimated from the three-
day food records through the Nutribase software (NB16Cloud, CyberSoft, Inc., 
Phoenix, AZ, USA). The daily nutrient intake of each participant was the sum of the 
nutrients of each food item. The average of the three-day intake was used for further 
analysis. Multivitamin consumption and other medications were not included in the 
nutritional assessment but were considered as variables that potentially were 
modifying the gut microbial composition, so they were tested by Permutational 
Multivariate Analysis of Variance. Clinical data, such as IBD and other relevant 
conditions, were accessed from medical records. BMI-for-age and Z-scores were 
calculated within the World Health Organization (WHO) AnthroPlus software suite. A 
qualitative classification for this data followed the WHO criteria [17]. 

Statistical analysis among the groups was performed using PASW Statistics for 
Windows software (Vs18.0, 2009, SPSS Inc., Chicago, USA). Numerical variables 
were compared using the Mann-Whitney U test. Categorical variables were compared 
using X2, Fisher’s exact test or Continuity Correction, when necessary (with statistical 
significant determined by the threshold p ≤0.05). Statistical analyses with the 
microbiome feature are described below. 

 

Bacterial DNA extraction, 16SrRNA gene amplifications and sequencing 

The bacterial DNA was isolated from 0.3 mg of frozen faecal sample with 
QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA, USA) (Qiagen) according to 
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manufacturer instructions and stored at -20˚C until use. The NanoVue system (GE 
Healthcare, Chicago, IL, USAGE Healthcare) was used to assess the quality of 
extractions for downstream applications. For the sequencing step, the library was 
prepared following the procedures described by Barboza et al. [18]. Briefly, region V4 
of 16S rRNA gene was amplified with the barcoded bacterial/archaeal primers 515F 
and 806R [19] in a reaction containing 2U of Platinum Taq DNA High Fidelity 
Polymerase (Invitrogen, Carlsbad, CA, USA), 4 μL 10X High Fidelity PCR Buffer, 2 mM 
MgSO4, 0.2 mM dNTPs, 0.1 μM of both the 806R barcoded primer and the 515F 
primer, 25μg of Ultrapure BSA (Invitrogen, Carlsbad, CA, USA) and approximately 50 
ng of DNA template in a final volume of 25 μL. After an initial denaturation step of 5 
min at 95˚C, 30 cycles of 94˚C for 45 s, 56˚C for 45 s and 72˚C for 1 minute were 
performed, followed by a final extension step of 10 min at 72˚C. After visualization on 
agarose gel 1.5%, the PCR products were purified with the Agencourt AMPure XP 
Reagent (Beckman Coulter, Brea, CA, USA) and the final concentration of the PCR 
product was quantified with the Qubit Fluorometer kit (Invitrogen, Carlsbad, CA, USA) 
following the manufacturer’s recommendations. Finally, the reactions were combined 
in equimolar concentrations to create a mixture composed of 16S gene amplified 
fragments of each sample. This composite sample was used for library preparation 
with the Ion OneTouch 2 System using the Ion PGM Template OT2 400 Kit (Thermo 
Fisher Scientific, Waltham, MA, USA). Sequencing was performed with Ion PGM 
Sequencing 400 on the Ion PGM System using Ion 318 Chip v2. 

 

16S profiling data analysis 

The Fastq files exported from the Ion PGM System were analysed with the BMP 
Operating System (BMPOS) [20] according to the recommendations of the Brazilian 
Microbiome Project [21]. Briefly, an Operational Taxonomic Unit (OTU) table was built 
using reads truncated at 200 bp and quality filtered with a maximum expected error of 
0.5. After removing singletons, the sequences were clustered into OTUs at cutoff of 
97% similarity, and chimeras were checked and removed to obtain representative 
sequences for each microbial phylotype. Taxonomic classification was carried out in 
QIIME version 1.9.1 [22] based on the UCLUST method against the SILVA ribosomal 
RNA gene database version v132 [23] with a confidence threshold of 80%. 
Downstream analyses were carried out with dataset rarefied to the minimum library 
size [24,25] in the R environment [26] using the phyloseq package [27] and vegan 
package [28]. The online software Microbiome Analyst [29] was used to further detect 
microbial biomarkers associated with GSD patients. After Cumulative Sum Scaling 
(CSS) normalization [30], the dataset was analysed by the non-parametric factorial 
Kruskal-Wallis (KW) sum-rank test followed by Linear Discriminant Analysis [31]. To 
make sure the biomarkers observed were not only driven by IBDlike patients, we 
performed one analysis using the full dataset and another analysis excluding all four 
IBD-like patients and matched controls. 

 

Faecal calprotectin assay and pH measurement 

Frozen faecal samples of patients and controls were thawed and aliquoted at 
room temperature (20˚C) to perform the pH measures and calprotectin assay. To 
determine the faecal pH, the samples were diluted 1:10 (w/v) in distilled water. After 
homogenization and incubation for 5 min at room temperature, the faecal pH was 
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measured by an electronic pH-meter (K39-1014B, KASVI, PR, Brazil) three minutes 
after complete electrode immersion. 

The faecal calprotectin was quantified from 100 mg of faecal sample with the 
RIDASCREEN Calprotectin test (R-Biopharm AG) according to the manufacturer’s 
instructions. Calprotectin is a calcium-/zinc-binding protein, highly stable and resistant 
to degradation by intestinal contents (pancreatic secretions, proteases, and bacterial 
degradation). It is mainly produced by neutrophils in inflammation and has been amply 
confirmed in intestinal inflammatory diseases [32]. Calprotectin was evaluated to verify 
gut inflammation across groups and its influence over the number of OTUs. Due to the 
small sample size of GSD III and IXα, just the subtypes Ia and Ib (groups containing 
>15% of total sample) were compared. Results for GSD Ia and GSD Ib patients were 
presented as median (Q1-Q3) and as min-max to GSD III and IXα. To test the 
correlation among calprotectin and OUT richness, patients who were on mesalazine 
were excluded from analysis. 

 

Results 

The characteristics of the patients and controls are summarized in Table 1. The 
nutrient intake varied significantly between groups (S1 Table); the largest variation 
observed was the higher total carbohydrate and calorie intakes in the GSD group due 
to UCCS usage. The amount of protein consumed (g) and the number of calories 
derived from proteins did not differ between patients and controls. However, the 
percentage of total caloric intake from proteins was lower in patients. Patients ingested 
less fat (g and Kcal/day) and had a lower percentage of fat in the diet. Regarding 
micronutrients, patients’ diet was poor in calcium and sodium, and in vitamins B3, H, 
D and E in comparison to the control group’s diet. 

The intakes of macro and micronutrients were similar among all the GSD types, 
with some kcal variation from carbohydrate intake due the difference in UCCS 
consumption among groups (S2 Table). 

 

Overall 16S rRNA sequencing results, sequence quality control and control for 
confounding variables 

After quality filtering of the 16S rRNA reads, a total of 1,786,582 high-quality 
sequences longer than 200 bp were obtained. To analyse whether the number of 
sequences from each sample was representative of the underlying bacterial 
community, sequence coverage was calculated (S3 Table). An average of 44,664 
sequences per sample was obtained with average sequence coverage of 0.99 at the 
3% dissimilarity level. This sequencing depth was sufficient to obtain excellent 
representation of the microbial community in these samples. 

Results for suspected confounding variables that potentially were modifying the 
gut microbial composition are presented at Table 1 and S1 Table. The gut microbial 
communities were not affected by sex, age, nor the nutritional status of the subjects 
tested. Faecal pH was lower in patients (6.23) than in controls (7.41), and this variable 
affected the presence/absence and abundance of the gut microbes, with a reduced 
OTU count in lower pH. Only 18% of controls (n = 3) and 41% of patients (n = 10) used 
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antibiotics within the 6 months prior to data collection. The use of antibiotics within the 
6 months prior to sampling did not affect the presence/ absence of microbes (p = 0.252) 
nor microbial relative abundance (p = 0.179) in these samples. 

 

Hepatic GSD is associated with an abnormal gut microbial community 

The analysis of overall microbial community structure revealed significant 
differences between patients and controls (Fig 1). According to the PERMANOVA, the 
microbial community structure between patients and controls differed by the presence 
and absence of taxa (r2 = 0.182; p = 0.003) and by their relative abundances (r2 = 
0.166; p = 0.001). The analysis indicated that the relative abundance of taxa 
contributed 16% of the variation in the microbial community between patients and 
controls while the presence/absence of specific taxa contributed 18% to that variation. 

Microbial diversity as measured by richness of OTUs and by the Shannon 
diversity index also differed significantly (p < 0.01) between patients and controls (Fig 
2). On average, control stool samples possessed 184 OTUs while the patients had 
only 100 OTUs. The average Shannon diversity index was 3.49 and 2.48 in controls 
and patients, respectively. Together, these beta and alpha diversity analyses indicated 
that the GSD gut microbiome is characterized by low diversity and distinct microbial 
structures. 

 

Defining the main taxa associated with the gut microbiota of patients and 
controls 

Specific microbial phylotypes present within the gut community might drive the 
main differences observed in GSD patients. To find those microbes, biomarker 
screening analysis was performed at different taxonomic levels. A total of 14 phyla 
were detected within these samples. However, more than half of the community was 
dominated by only three phyla: Bateroidetes (58% in controls; 47% in patients), 
Firmicutes (34% in controls; 39% in patients) and Proteobacteria (5.8% in controls; 
10% in patients) (Fig 3). All of the other phyla had very low relative abundances. LEfSe 
analysis identified three microbial phyla as biomarkers with Actinobacteria and 
Proteobacteria overrepresented in patients while Euryarchaeota was 
underrepresented. In particular, Proteobacteria presented a very high LDA score (more 
than 3.9 orders of magnitude), reflecting a marked increase in relative abundance in 
patients and consistently low abundance in controls. Firmitutes had a marginally-
significant difference between patients and controls (p = 0.043 and LDA score = 4.53 
but FDR = 0.07). 

At the genus level, nineteen microbial biomarkers were different, both in terms 
of statistics and biological consistency, between patients and controls (Table 2). Those 
genera were higher in controls. In patients, those genera were in low abundance and 
in some cases totally absent. The lack of those microbes might be reflected in the alpha 
and beta diversity results as mentioned previously (Figs 1 and 2). Besides, 
Lactobacillus and Escherichia/Shigella were found to be dominant in patients with a 
very high LDA score (4.36 and 3.89, respectively), highlighting the biological 
importance of those microbes in GSD. To remove any biases caused by patients with 
IBD-like symptoms (n = 4), all IBD-like patients and their respective controls were 
removed from the dataset and a new biomarker analysis was performed (Table 2). 
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Similar trends as observed within the full dataset were still present in this reduced 
dataset. However, the Lactobacillus genus, found previously in higher abundance in 
patients was not observed within the dataset without IBD-like patients. On the other 
hand, Escherichia/Shigella was still found to be more abundant in patients than in 
controls (LDA score = 3.85). 

 

Correlations between the gut microbiota, diet, faecal pH and gut inflammation 

Spearman correlations were calculated between the microbiome, diet, faecal 
pH and calprotectin (Fig 4). 

The faecal pH values varied between patients and controls (Table 1), and this 
was important for shaping their respective differences in gut microbiomes. Differences 
were determined with the Euclidian distance matrix (for presence/absence of taxa) and 
the Bray Curtis distance matrix (for relative microbial abundance). Faecal pH was 
correlated with the total number of microbial OTUs such that higher faecal pH seemed 
to support more OTUs. 

Microbial richness correlated negatively with total carbohydrate but positively 
with simple carbohydrates (sugar). Calprotectin seemed to have no influence over the 
microbiome in terms of the number of OTUs (Fig 4). In addition, there was no 
correlation between this inflammatory marker and gut microbial richness. 

 

Discussion 

This is the first study about the fecal microbiota of GSD patients. In hepatic GSD, 
high and periodic amounts of UCCS plus dietetic restriction of fast-digestion 
carbohydrates are the main way to treat the genetic impairment in the glycogenolytic 
pathway. Our data suggest that the overload of UCCS can lead to low fecal pH by 
favouring some bacterial genera capable of utilizing complex carbohydrates in 
detriment of others. The low fecal pH, in turn, also acts as an environmental selection 
factor to the bacteria in the lumen. Dysbiosis has been associated with IBD and 
obesity. IBD includes inflammatory bowel diseases of unknown aetiology and has two 
main forms: ulcerative colitis and Crohn’s disease (CD). CD is a chronic disease that 
can affect any region in the digestive tract but is more likely to involve the small and 
large intestines and the perianal region [33]. Enteropathy is related to type I patients, 
and despite GSD Ib patients are classically described as prone to IBD-Crohn’s-like due 
the impaired neutrophil activity, this does not explain why patients with GSD Ia also 
displayed serologic markers altered for IBD, even if asymptomatic [34]. It’s not clear if 
UCCS is the cause of obesity in GSD patients [35], but the microbiome might be 
associated with it. Here we discuss why the changes in microbiota could be considered 
as a factor of influence in the phenotype of these patients and why the UCCS usage, 
even though not exclusively, is an important factor that contribute to that. 

Since the introduction of UCCS treatment for GSD, the focus changed from 
mortality to morbidity and control of long-term complications [36], such as metabolic 
syndrome and related symptoms [37,38]. GSD type I patients are prone to obesity, and 
it is suspected that UCCS contributes to the aforementioned features [35,39]. GSD I 
patients also are subject of heavier doses of UCCS and more restrict diet in 
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comparison with types III and IX [35]. Regarding antibiotics, although its usage clearly 
drives changes in the gut microbial community, subjects who were treated with 
antibiotics within 6 months prior to data collection, but not during the study itself, were 
not affected by the previous antibiotic usage. 

We found that the phyla Actinobacteria and Proteobacteria were 
overrepresented in patients while the Euryarchaeota was underrepresented. The 
microbiome of GSD patients present low diversity and was highly dominated by 
Escherichia/Shigella. 

One possible driver of the differences in gut microbiomes between patients and 
controls is UCCS overload, which creates an acidic environment [34,40]. In the human 
body, acids are generated by regular metabolic activities and through the daily intake 
of food [41]. Fecal pH was lower in patients than controls and stool acidification might 
lead to an alteration in the relative abundances of fermenting bacteria, decreasing the 
conversion of unabsorbable starches to short chain fatty acids (SCFAs) [34]. 

SCFAs, including butyrate, are compounds made by bacteria in the gut that 
affect several physiologic functions and serve anti-inflammatory roles [42]. Fecal pH 
was associated with beta diversity and bacterial families belonging to the Clostridia 
class, an important producer of butyrate in the gut. Several genera of SCFA-producing 
bacteria—Coprococcus, Blautia, Anaerostipes, Odoribacter and Faecalibacterium—
were decreased in patients. Those genera were also identified in paediatric patients 
with Crohn’s Disease [43]. Besides, Coprococcus and Faecalibacterium were found to 
have significantly low abundance in patients with nonalcoholic fatty liver disease, 
independently of body mass index and insulin resistance [43]. 

The bacterial species residing within the mucous layer of the colon may 
influence whether host cellular homeostasis is maintained or inflammatory 
mechanisms are triggered. A mutualistic relationship between the colonic microbiota, 
their metabolic products and the host immune system is likely involved [44]. The 
phylum Proteobacteria was more abundant in patients than in controls while the 
phylum Euryarchaeota was less abundant. Proteobacteria is a gram-negative phylum 
with an outer membrane mainly composed of lipopolysaccharides (LPS), which are 
known to sustain systemic levels of low-grade inflammation [45]. Higher levels of 
Proteobacteria can be considered a strong marker of dysbiosis [46]. This phylum is 
prevalent in patients with liver cirrhosis [47]. Several serological markers for IBD were 
altered in GSD-Ia patients [34], and GSD Ib patients are prone to IBD CD-like. Despite 
the fact that calprotectin seemed not to influence the number of OTUs gut inflammation 
(calprotectin >50μg/g) was verified in several patients. GSD type Ib patients have 
shown a concentration of calprotectin 50μg/g, except for one patient, who had an active 
IBD diagnosed in the same week. This might be due to a remission state and the use 
of anti-inflammatory mesalazine by these patients. 

In general, dysbiosis can be categorized as a) loss of beneficial organisms, b) 
excessive growth of potentially harmful organisms and c) loss of overall microbial 
diversity. These three categories often occur at the same time [48]. Dysbiosis has been 
implicated in a wide range of diseases, including IBD, liver disease and obesity, that 
are secondary manifestations in GSD patients [49]. The reason for dysbiosis remains 
unclear, but the overload of UCCS contributes to those characteristics. The food intake 
records showed a difference in the intake of calories, mainly due to the administration 
of UCCS in patients, as well as a difference in microbial signature that is known to be 
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related to obesity. It is not known whether these microbiome changes are a cause or 
a consequence of the pathophysiologies. However, correcting the dysbiosis can 
improve health in some patients [50–52]. Dysbiosis can also provide biomarkers for 
disease detection and management [53]. 

 

Conclusion 

In this study, we reported significant alterations in the intestinal environments of 
GSD patients versus healthy controls. Microbiota can be affected by abiotic and biotic 
factors, namely pH and inflammation, and the differences in these factors between 
patients and controls might be linked to both genetic disease and UCCS consumption. 
Several bacterial taxa were different in GSD patients than in controls, and those groups 
are consistent with the secondary phenotypic manifestations of GSD. The microbiome 
patterns of these patients may reinforce immunemetabolic pathways that already are 
altered by genetic impairment, and may also be a factor in the differential individual 
response to treatment. Patients may gain health and quality of life from the restoration 
of gut microbial diversity that has been diminished by high UCCS intake. Future 
research therefore should investigate ways to manipulate the gut microbiome and 
clarify the possible effects of doing so. 
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Figures 

 

Fig 1. Principal coordinates analysis (PCoA) based on Bray Curtis distance matrix (A) and Euclidean 
distance matrix (B) show the separation of gut microbiomes between GSD patients and controls. Each 
point represents a microbial community from one subject; colours indicate the treatment. 
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Fig 2. Alpha diversity measurements of microbial communities in the GSD patients and control groups. 
Each panel represents one alpha diversity measure: Richness = total number of OTUs observed, 
Shannon = microbial index of diversity. Boxes span the first to third quartiles; the horizontal line within 
the boxes represents the median. Whiskers extending vertically from the boxes indicate variability 
outside the upper and lower quartiles.  indicates a statistical difference between treatments at cutoff p  
0.001. 
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Fig 3. The average relative abundance of phyla found in GSD patients and healthy controls. Phyla 
followed by an asterisk () are different, both in terms of statistics and biological consistency, between 
patients and controls at p and FDR  0.05: Euryarchaeota (LDA score = 1.75), Actinobacteria (LDA score 
= 3.06) and Proteobacteria (LDA score = 3.94). Firmicutes was marginally significantly different with p 
= 0.064, LDA score = 4.52 and FDR = 0.112. 
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Fig 4. Correlations between the microbiota and diet, faecal pH, and gut inflammation. 
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Tables 

Table 1. Sample characterization, analysis of potential confounding variables and their effect on 
microbial communities. 

Variable1 Patients (n = 24) Controls (n = 16) p-value Microbial community difference 
between patients and controls 

Euclidian Metric Bray-Curtis Metric 

R2 p-value R2 p-value 

Sex (M/F) 14/10 07/09 0.561 0.02942 0.287 0.02964 0.267 

Age (yr) 12 (10–19.75) 12.5 (10–23.25) 0.579 0.02895 0.302 0.02775 0.340 

Faecal pH 6.23 (5.42–7.16) 7.41 (7.10–7.98) 0.001 0.05938 0.005 0.08507 0.001 

Inflammatory Bowel 
Disease (yes/no) 

04/20 00/16 0.136 0.06746 0.009 0.05152 0.003 

Abdominal pain 
complaint (yes/no) 

09/15 01/15 0.032 0.05590 0.010 0.04845 0.009 

Nutritional status 
(Obese or 
Overweight/Normal) 

18/06 06/09† 0.044 0.05199 0.004 0.03423 0.121 

UCCS intake (g/day) 309.50 (373.7–
245.3) 

00 0.001 0.03698 0.114 0.05594 0.001 

Drugs (yes/no):        

-Allopurinol 4/20 0/16 0.136 0.02477 0.436 0.02426 0.517 

-Antibiotic usage (last 6 
months) 

10/14 3/13 0.241 0.03047 0.252 0.03200 0.179 

-ACE inhibitor 11/13 0/16 0.001 0.03351 0.203 0.03919 0.054 

-Filgrastim (G-CSF) 5/19 0/16 0.071 0.06654 0.002 0.05377 0.008 

-Mesalazine 3/21 0/16 0.262 0.03089 0.290 0.03389 0.109 

-Multivitamin 22/2 1/15 0.001 0.04034 0.070 0.05545 0.003 

-Potassium Citrate 3/21 0/16 0.262 0.02248 0.516 0.02407 0.551 

-Proton Pump Inhibitors 2/22 0/16 0.508 0.03068 0.318 0.03087 0.173 

-Statins 1/23 0/16 1.000 0.03312 0.286 0.02542 0.486 

UCCS: uncooked cornstarch; ACE: Angiotensin-converting-enzyme inhibitor (enalapril maleate); G-
CSF: G-colony stimulating factor. Significant (p<0.05) events are highlighted in bold. 

1 Numeric variables were reported as medians (Q1-Q3). Due to the not-normal distribution, numeric 
variables were subjected to the Mann-Whitney test. Qualitative variables were reported as absolute 
frequency and tested by X2, Fisher’s test or Continuity Correction, as appropriate. 

† Data for one control was missing. Weight and height were measured when subjects delivered the 
sample. In this case, a relative drove the sample to the hospital, thus we were unable to do so. 
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Table 2. Microbial biomarkers differentiating patients with hepatic glycogenosis diseases and healthy 
controls. 

Microbial genus Patients Controls p-values FDR LDA score 

Relative abundance (%)  (log 10) 

Full dataset n = 24 n = 16    

Lactobacillus 11.31 0.04 0.009 0.025 4.36 

Escherichia/Shigella 6.70 0.96 0.003 0.013 3.89 

Alistipes 2.77 9.12 0.005 0.018 -3.22 

Subdoligranulum 1.59 1.00 0.012 0.029 2.42 

Lachnospiraceae NK4A136 group 1.44 0.89 0.003 0.013 2.48 

Faecalibacterium 1.00 3.52 0.016 0.036 -2.98 

Ruminococcaceae UCG 002 0.98 3.09 0.001 0.007 -2.79 

Bifidobacterium 0.78 0.19 0.004 0.018 3.1 

Ruminococcus gnavus group 0.70 0.14 0.007 0.022 3.03 

Phascolarctobacterium 0.53 1.31 0.015 0.035 -2.56 

Blautia 0.26 0.53 0.002 0.012 -1.55 

Odoribacter 0.25 0.53 0.011 0.028 -1.87 

Barnesiella 0.22 0.98 0.009 0.025 -2.46 

Roseburia 0.18 1.19 0.002 0.011 -2.78 

Christensenellaceae R 7 group 0.14 0.80 0.000 0.002 -2.22 

Ruminococcaceae UCG 003 0.10 0.60 0.000 0.003 -2.27 

Lachnospiraceae UCG 008 0.04 0.26 0.004 0.018 -1.78 

Ruminococcaceae UCG 005 0.03 0.25 0.000 0.002 -1.9 

Eubacterium hallii group 0.02 0.08 0.000 0.002 -1.39 

Anaerostipes 0.01 0.11 0.001 0.009 -1.55 

Coprococcus 1 0.01 0.03 0.000 0.005 -0.95 

Family XIII AD3011 group 0.01 0.05 0.000 0.002 -1.21 

Family XIII UCG 001 0.00 0.03 0.001 0.007 -1.13 

Methanobrevibacter 0.00 0.17 0.001 0.007 -1.78 

Ruminococcaceae NK4A214 
group 

0.00 0.08 0.001 0.007 -1.5 

Dataset without IBD-like patients n = 20 n = 14    

Escherichia/Shigella 6.47 0.92 0.003 0.027 3.85 

Alistipes 2.97 9.76 0.008 0.039 -3.28 

Ruminococcaceae UCG 002 1.12 3.07 0.004 0.028 -1.38 

Bifidobacterium 0.81 0.08 0.003 0.027 3.2 

Phascolarctobacterium 0.22 1.38 0.004 0.028 -2.74 

Christensenellaceae R 7 group 0.17 0.76 0.001 0.016 -2.16 

Blautia 0.14 0.39 0.001 0.017 -2.08 

Ruminococcaceae UCG 003 0.11 0.61 0.001 0.016 -2.3 

Roseburia 0.10 1.15 0.004 0.028 -2.83 
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Lachnospiraceae UCG 008 0.04 0.19 0.011 0.047 -1.57 

Ruminococcaceae UCG 005 0.03 0.20 0.001 0.016 -1.76 

Eubacterium hallii group 0.02 0.07 0.000 0.016 -1.32 

Anaerostipes 0.01 0.07 0.010 0.047 -1.28 

Coprococcus 1 0.01 0.02 0.008 0.039 -0.77 

Family XIII AD3011 group 0.01 0.04 0.001 0.017 -1.14 

Family XIII UCG 001 0.00 0.03 0.001 0.016 -1.15 

Methanobrevibacter 0.00 0.17 0.003 0.027 -1.81 

Ruminococcaceae NK4A214 
group 

0.00 0.08 0.003 0.027 -1.53 

*Four IBD-like (Inflammatory Bowel Disease) patients and matched controls were excluded from the 
dataset to make sure the biomarkers observed were not only driven by these patients. 
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APÊNDICE B - Influência do leite materno e diferentes proporções da 

fórmula na microbiota intestinal de recém-nascidos muito prematuros 
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Abstract 

Objective 
To determine the differences in preterm infants’ stool microbiota considering the use 
of exclusive own mother’s milk and formula in different proportions in the first 28 days 
of life. 

Methods 

The study included newborns with GA  32 weeks divided in 5 group according the 

feeding regimen: 7 exclusive own mother’s milk, 8 exclusive preterm formula, 16 

mixed feeding with >70% own mother’s milk, 16 mixed feeding with >70% preterm 

formula, and 15 mixed 50% own mother’s milk and preterm formula. Exclusion 

criteria: congenital infections, congenital malformations and newborns of drug 

addicted mothers. Stools were collected weekly during the first 28 days. Microbial 

DNA extraction, 16S rRNA amplification and sequencing were performed. 

Results 
All groups were similar in perinatal and neonatal data. There were significant 
differences in microbial community among treatments. Approximately 37% of the 
variation in distance between microbial communities was explained by use of exclusive 
own mother´s milk only compared to other diets. The diet composed by exclusive own 
mother´s milk allowed for greater microbial richness (average of 85 OTUs) while diets 
based on preferably formula, exclusive formula, preferably maternal milk, and mixed 
of formula and maternal milk presented an average of 9, 29, 23, and 25 OTUs 
respectively. The mean proportion of the genus Escherichia and Clostridium was 
always greater in those containing formula than in the those with maternal milk only. 

Conclusions 
Fecal microbiota in the neonatal period of preterm infants fed with exclusive own 
mother’s milk presented increased richness and differences in microbial composition 
from those fed with different proportions of formula. 

 

Introduction 

The intestinal microbiota is very important for human metabolism, development 
and behavior [1,2]. Despite several studies on the subject and its connection with high 
complexity diseases [1,3,4], the studies were based on culture, genetic profile and/or 
the use of small sample sizes, which makes it clear that the variables responsible for 
shaping the intestinal microbiota have not been satisfactorily examined [1,5,6]. It is 
known that the development of infant microbiota depends on medical and dietary 
factors [1,7], but it is not yet known how such factors influence the microbial overall 
composition and their associations with the human body [1]. The human body has 
millions of microorganisms that work in partnership with our own cells to influence the 
quality of our lifelong health [8,9]. The composition of the childhood intestinal 
microbiome is influenced by factors such as the type of birth, gestational and postnatal 
age, ingestion of antibiotics, environment, nutritional exposures, and breastfeeding, 
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which should be emphasized as an important variable for the assembly of the intestinal 
microbiota [5,8,10,11,12]. La Rosa et al have shown that the gut microbioma of 
premature infants admitted to Neonatal Intensive Care Units progresses and bacterial 
population changes in composition along the time [6]. Despite the influence of breast 
milk versus formula in the assembly of the gut microbiota, the true impact of own 
mother’s breast milk on the composition of the intestinal microbiome of premature 
infants is not fully understood [8]. 

The immature intestinal microbiota of premature newborns is influenced by 
factors such as postnatal age, gestational age, birth weight and nutritional exposures 
[8,13,14,15]. In the specific case of breastfeeding, this seems to disguise the influence 
of birth weight, which suggests a protective function against the intestinal immaturity 
of the premature newborn at the onset of life [8]. These findings suggest not only the 
existence of a microbial mechanism underlying the body of evidence that elucidates 
that breast milk promotes the intestinal health of the premature newborn [16], but also 
the dynamic interaction of host and dietary factors that help in the colonization and 
enrichment of specific microbes during the establishment of its intestinal microbiota 
[8]. 

Therefore, the aim of this study is to describe the intestinal microbiota of very 
low birth weight infants in the first 28 days depending on use of mother’s own milk or 
use of formula in different proportions. 

 

Material and methods 

This study used a convenience sampling strategy with patients recruited from 
the Neonatology Section of Hospital de Clínicas de Porto Alegre (HCPA), Brazil from 
May 2014 to January 2017. Pregnant women with gestation age 32 weeks that 
provided written informed consent were enrolled at hospital admission for their 
delivery. The study protocol was approved by the Ethics Committee of Hospital de 
Clínicas de Porto Alegre (HCPA), and the guardians signed an informed consent form. 
Exclusion criteria were: 1) HIV or congenital infections, 2) mothers with substance 
abuse and 3) neonatal congenital malformations. Infants´ weekly stool samples were 
collected from diapers beginning with the first stool until the 4th week of life. All samples 
were immediately stored in liquid nitrogen until DNA extraction. 

Newborns were divided in five groups according to the feeding: exclusive own 
mother’s milk (LME), exclusive formula (PFL), mixed 50% own mother’s milk and 50% 
formula (MFLM), mixed with formula and 70% or more of own mother’s milk (PLM), 
and mixed with own mother´s milk and 70% or more of formula (PFL). The newborns 
received daily the same diet for up to 28 days. The different amounts of formula and 
own mother´s milk was offered separately, at different times of the day, so that at the 
end of the day the ratio was maintained. The ratio of breast milk to formula was the 
limitation of the amount of breast milk available. The preterm formula used was Pre 
Nan. This formula does not contain neither probiotics nor prebiotics. 

Obstetrical data and neonatal data were collected prospectively. 
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DNA extraction and the 16S rRNA library preparation 

The laboratory technique as described in detail previously [16]. 

Microbial DNA was isolated from samples using the QIAmp Fast DNA Stool Mini 
Kit (Qiagen, Valencia, CA, USA) following manufacturer’s instructions with 
modifications. All DNA samples were kept at -80˚C until use. The V4 region of the 16S 
rRNA gene was amplified and sequenced using the PGM Ion Torrent platform (Thermo 
Fisher Scientific, Waltham, MA, USA) with the barcoded bacterial/archaeal primers 
515F and 806R [17]. PCR amplification was carried out using barcoded primers linked 
with the Ion adapter “A” sequence (5’-CCAT CTCATCCCTGCGTGTCTCCGACTCAG-
3’) and Ion adapter P1 sequence (5’-CCTCTCTATGGGCAGTCGGTGAT-3’) to obtain 
a sequence of primer composed for A-barcode-806R and P1-515F adapter and 
primers. Each of the 25μL of PCR mixture consisted of 2U of Platinum Taq DNA High 
Fidelity Polymerase (Invitrogen, Carlsbad, CA, USA), 4μL 10X High Fidelity PCR 
Buffer, 2 mM MgSO4, 0.2 mM dNTP’s, 0.1 μM both the 806R barcoded primer and the 
515F primer, 25μg of Ultrapure BSA (Invitrogen, Carlsbad, CA, USA) and 
approximately 50 ng of DNA template. PCR conditions used were: 95˚C for 5 min, 35 
cycles of denaturation at 94˚C for 45s; annealing at 56˚C for 45s and extension at 72˚C 
for 1 min; followed by a final extension step at 72˚C for 10 min. 

The resulting PCR products were purified with the Agencourt AMPure XP 
Reagent (Beckman Coulter, Brea, CA, USA) and the final concentration of the PCR 
product was quantified by using the Qubit Fluorometer kit (Invitrogen, Carlsbad, CA, 
USA) following manufacturer’s recommendations. Finally, the reactions were 
combined in equimolar concentrations to create a mixture composed by 16S gene 
amplified fragments of each sample. This composite sample was used for library 
preparation with Ion OneTouch 2 System with the Ion PGM Template OT2 400 Kit 
Template (Thermo Fisher Scientific, Waltham, MA, USA). The sequencing was 
performed using Ion PGM Sequencing 400 on Ion PGM System using Ion 318 Chip v2 
with a maximum of 40 samples per microchip. 

 

Sequence processing 

The 16S rRNA raw sequences were analyzed following the recommendations 
of the Brazilian Microbiome Project [18]. Briefly, the OTU (Operational Taxonomic Unit) 
table was built using the UPARSE pipeline [19], in which the reads were truncated at 
200 bp and quality filtered using a maximum expected error of 0.5. Filtered reads were 
dereplicated and singletons were removed. After clustering sequences into OTUs, with 
a similarity cutoff of 97%, chimeras were checked to obtain representative sequences 
for each microbial phylotype. Taxonomic classification was carried out using SINTAX 
[20] against the Ribosomal Database Project (RDP) database [21] with a confidence 
threshold of 80%. Sampling effort was estimated using Good’s coverage [22]. 

Statistical analysis. All clinical data was analyzed using the software 
SPSS 21.0 at the significance level of 5%. Quantitative variables with normal 
distribution were described through means/SD and compared by ANOVA with Tukey 
test. Quantitative variables with asymmetric distribution were described through 
median/interquartile range and compared by the Kruskall-Wallis test with Dunn Test. 
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For comparison among proportions Pearson’s chi-square test was used in conjunction 
with residue analysis adjusted. 

For all 16S rRNA downstream analysis, the data set was filtered, keeping only 
OTUs that were present in at least 30% of the samples in each treatment and rarefied 
to the same number of sequences [23]. The biom file was imported into R environment 
[24] and estimations of alpha and beta diversity were calculated using the “phyloseq” 
packge [25], and further plotted using the “ggpltot2” package. 

To accesses the main differences among treatments in this study, a 
Permutational Multivariate Analysis of Variance (PERMANOVA) [26] as performed 
using a binomial dissimilarity matrix among samples and the adonis function 
implemented in the vegan package [27]. 

Differences between treatments were accessed through the STAMP software 
[28]. P-values were obtained by the two sided White’s non-parametric t-test followed 
by the BenjaminiHochberg FDR correction. A p-value < 0.05 together with effect size 
filter (difference between proportions effect size <1.00) was applied to determine the 
most important taxa that differed between treatments. 

Analysis along the 28-day period was performed using meta-analysis of effect 
sizes reported at multiple points using general linear mixed mode [29]. 

 

Results 

A total of 175 samples from 62 preterm newborns divided in five groups (7 in 
LME, 8 in FLE, 16 in PLM, 16 in PFL, and 15 in MFLM) were collected and analyzed. 
The five groups were similar in respect to maternal and obstetrical data (Table 1). 

Neonatal data are shown in Table 2. 

 

Overall microbial community differences among diets 

The microbial community differences at OTU level (97% similarity cutoff for 
grouping definition) found among fecal samples from preterm newborns’ fed with five 
different diets during a period of 28 days are presented in Fig 1. The ordination analysis 
revealed significant differences in microbial community structure among treatments 
suggesting the feeding of different diets was responsible for the assembly of preterm 
gut community. Those differences were further confirmed by the permutational 
multivariate analysis of variance (Table 3). 

The overall analyses (all samples) indicate that approximately 31% of the 
variation in distances among treatments was explained by the different diets provided 
in each treatment. Pairwise comparisons revealed that diets based on maternal milk 
assembled microbial communities with large variation within group (e.g. greater 
differences among microbial communities from subjects feed with maternal milk) while 
diets based on formula created more similar microbial communities (Fig 1A and 1B) 
(Table 3). The use of maternal milk was responsible for the greatest variation observed 
between diets. The highest variation between treatments was observed among the 
samples under exclusive own mother’s milk and samples under exclusive formula. 
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Approximately 37% of the variation in distance between microbial communities could 
be explained by the treatment with maternal milk only (LME) compared to the diet 
based preferentially in formula (PFL). 

Besides, the greatest variations in distances between treatments were observed 
in those comparisons involving the use maternal milk only. Approximately 37% of the 
variation in distance between microbial communities could be explained by the 
treatment with maternal milk only compared to the diet based preferentially in formula 
(Table 3). 

In agreement with the ordination analysis, alpha diversity measurements 
indicated significant differences (p-value < 0.001 according to the Kruskal-Wallis test) 
among the richness of OTUs within treatments (Fig 2). The diet composed by maternal 
milk only (LME) allowed for greater microbial richness (average of 85 OTUs). On the 
other hand, the diet preferably based in formula (PFL) presented the smallest richness 
(average of 9 OTUs) (Fig 2). The average number of OTUs found within the other diets 
was similar. The diets based in formula only (FLE) and preferably maternal milk (PLM) 
presented an average of 29 and 23 OTUs respectively and the diet based in a mixture 
of formula and maternal milk presented an average of 25 OTUs. 

 

Identification of the main taxonomic differences among diets 

Once overall differences among microbial communities found in fecal samples 
from preterm newborns fed with different diets during 28 days were detected, the next 
step was to identify the microbial taxa responsible for that difference. To detect 
differences among treatments at genus level, a pairwise differential abundance based 
on a two-sided White’s non-parametric t-test followed by the Benjamini-Hochberg FDR 
correction was performed. As LME treatment presented the greatest difference in 
microbial community among diets, the pairwise comparisons were performed between 
LME and the other diets (Fig 3). 

The mean proportion of the genus Escherichia was always greater in treatments 
containing formula (FLE, PLM, MFLM and PFL) than in the treatment with maternal 
milk only. Particularly, the diet based on maternal milk presented an increased 
abundance of Acinetobacter, 

Bradyrhizobium, Caulobacter, Corynebacterium and Paenibacillus, 
Burkholderia, Faecalibacterium, Sphingomonas and the unknown genus from the 
Microbacteriaceae family as compared with the other treatments. Compared to the diet 
based on maternal milk, the diet preferably based on maternal milk (PLM) and the diet 
composed by a mixture of formula and maternal milk increased the abundance of 
Clostridium and Escherichia. The fecal samples from newborns fed with a diet 
preferable based on formula (PFL) presented greater abundance of Escherichia, 
Salmonella, Enterococcus and the unknown genus from the Enterobacteriaceae family 
when compared to the LME treatment (Fig 3). 

 

Discussion 
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The variables influencing the composition of the intestinal microbiota are topic 
of multiple studies. The assumption is that, once they are known and understood, new 
strategies can be developed to maintain a state of health [30,31,32]. In this study, we 
found global differences in the microbial community among the types of milk 
administered to preterm infants, showing that the greatest microbial richness was 
found in those who were exclusively fed with own mother´s milk. Approximately 37% 
of the variation in the distance between microbial communities was explained by 
treatment with breast milk exclusively, in comparison with diets based preferably on 
formula. 

Knowing the total number of bacteria according to type of feeding allow us an 
understanding of certain situations which facilitate the development of diseases 
[8,31,32,33]. In our study, fecal samples of premature infants fed different diets were 
decisive in the diversity of the microbial community during the 28-day period. All infants 
were premature and were separated according to the type of diet fed. Feeding them 
own mother´s milk exclusively allowed for greater microbial richness (mean of 85 
OTUs). The formula-based group had the lowest richness (mean of 9 OTUs). These 
diets based on the exclusive offer of formula and, preferably, breast milk, showed an 
average of 29 and 23 OTUs respectively; and the diet based on a mixture of formula 
and breast milk presented an average of 25 OTUs. 

Gregory et al studied 30 preterm infants (10 in each group) during the first 60 
days of life fed with maternal breast milk, pasteurized donor human milk and preterm 
infant formula. It was found that those fed with maternal breast milk presented higher 
diversity [8]. Cacho et al showed that, in vitro, incubation of own mother´s milk with 
donor breast milk in a certain percentage and for 4 hours, may restore the maternal 
milk microbiome [31]. We did not mix human milk with formula. We offered them 
individually in different proportions throughout the day. Our data showed that this 
unmixed administration of breast milk and formula does not determine the restoration 
of human milk microbioma. 

In our study the average proportion of the Escherichia and Clostridium genus 
were always higher in treatments containing formula than in treatment which provided 
breast milk exclusively. This finding has been reported previously [6]. A possible 
explanation for the results is found in the transmission carried out from the mother to 
the child and the external environment after the birth, as has already been indicated in 
other studies [33,34]. Besides that, there are factors like lactoferrin and glycoproteins 
in human milk that are protective against pathogen bacteria [35, 36]. 

In spite of several studies on the topic and the subject’s relation with diseases 
of high complexity [1,3,4], such studies were restricted to the enumeration of such 
diseases based on culture, genetic profile (16S) and the use of small samples, which 
makes it clear that the variables that shape the intestinal microbiota have not been 
satisfactorily examined [1,5,6]. It is a known fact that the development of the microbiota 
in infants depends on medical and dietary factors (1,7), but it is not yet known how 
such factors influence the general composition of the microbiota, and how those factors 
cooperate with each other [1]. Studies based on fecal samples of infants and their 
mothers contribute for monitoring of each chronological and functional stage during 
the first year of life [1,34]. 

Besides contributing to the microbial richness, breast milk also favors the 
prevention of sepsis, necrotizing enterocolitis (NEC) and other diseases [29,31,33,37]. 
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NEC is one of the main causes of morbidity and mortality in neonatal intensive care 
units, with most cases occurring among premature infants [32,37]. In another study of 
our group, we provide evidence of an association between NEC and distortions in the 
normal development of the microbiota and low diversity in NEC cases [32]. Within this 
study we found that increased diversity and breast feeding correlate with reduced 
incidence of NEC [32]. Mai et al reported a microbiota that predisposed to late onset 
sepsis in preterm infants that was closer to that we found in preterm newborns that 
were not fed exclusively with own mother´s breast milk [38]. 

Other studies emphasize the influence of diet according to the ethnic and/or 
geographic characteristics as variables that influence the development of newborn 
intestinal microbiota [39,40,41]. In our study, these issues were not addressed 
because they were not the focus of the study, leaving open perspectives for innovative 
studies. 

The microbiome found in breast milk contributes in the short and long term to 
the prevention of colonization by pathogens, as it stimulates the production of reactive 
antibodies and establishes a healthy intestinal microbiome capable of preventing long-
term morbidities such as obesity, type 2 diabetes, chronic intestinal inflammation, 
autoimmune disorders, allergies, irritable bowel syndrome and allergic gastroenteritis 
[31,42,43,44]. Our study confirms that the intestinal microbiota of preterm infants 
presents differences according to their diet— whether breast milk or formula—and 
emphasizes the importance of breast milk in the maintenance of microbial richness of 
the newborn’s microbiota. Escherichia and Clostridium have been associated to NEC 
as well as a high proportion of Proteobacteria with few numbers with Firmicutes [45]. 

Some situations, however, crossed this research, such as the loss of fecal 
samples; the difficulty of mothers in breastfeeding preterm infants with breast milk 
exclusively due to socioeconomic difficulties, for example; and the low fecal volume 
produced by premature infants. Another important point to consider when analyzing 
the intestinal microbiota of the newborn, we analyze only the stools and we do not 
know the microbiota of the proximal colon neither of the small bowel. We could not 
adjust microbial analysis for birth weight and gestational age because the number of 
subjects in exclusive breast milk group was not big enough. It is very difficult to have 
extreme premature newborns fed exclusively with breast milk during the whole period 
in NICU hence we were not allowed to study different variables. Our objective was to 
compare exclusive own mother´s milk feeding with different proportion of formula 
feeding. We studied just extreme premature newborns, all of them included in the same 
category of prematurity, and those small differences in birth weight and gestational age 
probably do not have major repercussion on microbioma. 

Many studies have focused on the issue of breastfeeding, particularly regarding 
the newborns’ microbiota, to identify its benefits for the development and prevention of 
diseases throughout their lives. Considering the importance of the topic, this study 
aimed to describe the intestinal microbiota of preterm newborns according to their 
nutritional habits establishing modifications of the intestinal microbiota according to the 
type of enteral diet administered. 

Based on our data, it is noticed that global differences of the microbial 
community are found among the types of diets administered to preterm infants, 
showing that the greatest microbial richness was found in those who received 
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exclusive own mother’s milk in comparison with those that received different proportion 
of formula. 
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Figures 

 

 

Fig 1. Beta diversity comparisons among microbial communities. A and B. Graph A represents 
clusters of microbial communities. Each point represents an individual sample, with colors indicating 
feeding treatments. Graph B represents measurement of multivariate dispersion for each treatment. FLE 
= exclusive formula; LME = exclusive own mother´s milk; MFLM = 50% formula and 50% own mother’s 
milk; PFL = 70% formula; PLM = 70% own mother’s milk. 
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Fig 2. Number of Operational Taxonomic Units measured in fecal samples from preterm babies 
fed with different diets during 28 days. Boxes span the first to third quartiles; the horizontal line inside 
the boxes represents the median. Whiskers extending vertically from the boxes indicate variability 
outside the upper and lower quartiles. Treatments were significant different according to the Kruskal-
Wallis test (p-value < 0.001), with greatest diversity in human milk exclusive group. 
FLE = exclusive formula; LME = exclusive own mother’s milk; MFLM = 50%formula and 50% own 
mother’s milk; PFL = 70% formula; PLM = 70% own mother’s milk. All libraries were rarefied at the same 
number of sequences prior to OTUs analysis. 
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Fig 3. Differential microbial abundance among microbial communities detected in samples from 
preterm babies fed with different diets during 28 days. p-values were obtained by the two-sided 
White’s non-parametric t-test followed by the Benjamini-Hochberg FDR correction. A p-value of < 0.05 
together with effect size filter (difference between proportions effect size <1.00) was applied to 
determine the most important taxa that differed between treatments. Only statistically significant 
differences are shown. 
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Tables 

 

Table 1. Characteristics of the subjects. 

Variables Exclusive 
breast milk 

(n = 7) 

Exclusive 
Formula 
(n = 8) 

Predominance of 
breast milk 

(n = 16) 

Predominance 
of formula (n 

= 16) 

Mixed 
(n = 15) 

p-value 

Maternal age 
(years)—mean ± SD 

24.0 ± 9.1 26.1 ± 6.4 31.6 ± 5.5 24.6 ± 7.4 28.0 ± 7.5 0.052 

C-section–n(%) 7 (100) 6 (75) 13 (81.3) 11 (68.8) 12 (80) 0.556 

Rupture of 
membranes (hours)–
median 
(P25-P75) 

0 (0–3) 0 (0–0.4) 0.04 (0–37) 6.1 (0–96.5) 0 (0–3) 0.246 

Rupture of 
membranes 18 
hours–n(%) 

0 (0.0) 1 (12.5) 4 (25) 7 (43.8) 2 (13.3) 0.062 

Maternal antibiotic–
n(%) 

3 (42.9) 5 (62.5) 11 (68.8) 14 (87.5) 8 (53.3) 0.188 

Preeclampsia–n(%)      0.119 

Yes 5 (71.4) 1 (12.5) 7 (43.8) 6 (37.5) 4 (26.7)  

No 2 (28.6) 6 (75) 9 (56.3) 10 (62.5) 11 (73.0)  

Eclampsia 0 (0.0) 1 (12.5) 0 (0.0) 0 (0.0) 0 (0.0)  

Streptococcus–n(%) 1 (14.3) 2 (25) 4 (25) 5 (31.3) 6 (40) 0.944 

Statistically significant association by the test of the residuals adjusted to 5% of significance 

The mean, the median standard deviation and the interquartile range were used, using Analysis of 
Variance (ANOVA) in conjunction with the Tukey test was applied. In case of asymmetry, the Kruskall-
Wallis test in set with Dunn were used. Categorical variables were described by absolute and relative 
frequencies. In the comparison of proportions, Pearson’s chi-square test was used in conjunction with 
residue analysis adjusted 

 

 

 

Table 2. Neonatal data according to study group. 

Variables Exclusive breast 
milk (n = 7) 

Exclusive 
Formula 
(n = 8) 

Predominance of 
breast milk 

(n = 16) 

Predominance of 
formula (n = 16) 

Mixed 
(n = 15) 

p-value 

Birth Weight (g)—
mean ± SD 

912.1 ± 291.5a 1684 ± 
430.1b 

1460 ± 575.4ab 1459 ± 413.3ab 1332 ± 
372ab 

0.021 

Gestational age 
(weeks)—mean ± 
SD 

27.7 ± 2.7a 30.6 ± 1.7b 29.9 ± 2.4ab 30.5 ± 1.6b 29.4 ± 
1.7ab 

0.031 

NEC-n (%) 1 (14.3) 0 (0.0) 1 (6.3) 1 (6.3) 2 (13.3) 0.778 

Use of antenatal 
corticosteroid—n (%) 

6 (85.7) 7 (87.5) 16 (100) 15 (93.8) 15 (100) 0.185 
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Early onset sepsis—
n (%) 

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.7) 0.527 

Use of Antibiotics on 
the first week—n 
(%) 

6 (85.7) 3 (37.5) 12 (75) 13 (81.3) 8 (53.3) 0.110 

Late onset sepsis—n 
(%) 

2 (28.6) 3 (37.5) 7 (43.8) 5 (31.3) 6 (40.0) 0.937 

Use of Antibiotics on 
the 2nd week—n 
(%) 

7 (100) 5 (62.5) 10 (62.5) 10 (62.5) 41 (66.1) 0.396 

Statistically significant association by the test of the residuals adjusted to 5% of significance 

For the Weight at birth and Gestational age the mean and standard deviation were used. We compare 
the averages through Analysis of Variance (ANOVA) in conjunction with the Tukey test. In case of 
asymmetry the Kruskall-Wallis test in conjunction with Dunn were used. 
Categorical variables were described by absolute and relative frequencies. In the comparison of 
proportions, Pearson’s chi-square test was used in conjunction with residue analysis adjusted. 

 
 
 
Table 3. Permutational multivariate analysis of variance comparing microbial communities found 
in fecal samples from preterm newborns fed with different diets during 28 days. 

 F R2 Adjusted p-value 

All samples    

Diets 19.24 0.311 0.001 

Residuals  0.688  

Total  1.000  

Pairwise comparisons    

PLM vs FLE 14.17 0.168 0.01 

PLM vs LME 21.89 0.274 0.01 

PLM vs MFLM 7.28 0.080 0.01 

PLM vs PFL 16.14 0.146 0.01 

FLE vs LME 18.85 0.331 0.01 

FLE vs MFLM 10.82 0.146 0.01 

FLE vs PFL 12.92 0.148 0.01 

LME vs MFLM 18.88 0.270 0.01 

LME vs PFL 36.76 0.372 0.01 

MFLM vs PFL 14.78 0.145 0.01 

F = F value by permutation. R2 = shows the percentage of variation explained by diets; p-values were 
based on 999 permutations and were adjusted by Bonferroni correction. 
FLE = exclusive formula; LME = exclusive own mother´s milk; MFLM = 50% formula and 50% own 
mother´s milk; PFL = 70% formula; PLM = 70% own mother´s milk. 
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Background: Early-onset neonatal sepsis (EONS) remains one of the leading causes 
of morbidity and mortality related to premature birth, and its diagnosis remains difficult. 
Our goal was to evaluate the intestinal microbiota of the first meconium of preterm 
newborns and ascertain whether it is associated with clinical EONS. 
Methods: In a controlled, prospective cohort study, samples of the first meconium of 
premature infants with a gestational age (GA) ≤ 32 weeks was obtained at Hospital de 
Clínicas de Porto Alegre and DNA was isolated from the samples. 16S rDNA based 
microbiota composition of preterm infants with a clinical diagnosis of EONS was 
compared to that of a control group. 
Results: 40 (48%) premature infants with clinical diagnosis of EONS and 44 (52%) 
without EONS were included in the analysis. The most abundant phylum detected in 
both groups, Proteobacteria, was more prevalent in the sepsis group (p = .034). 14% 
of variance among bacterial communities (p = .001) correlated with EONS. The genera 
most strongly associated with EONS were Paenibacillus, Caulobacter, Dialister, 
Akkermansia, Phenylobacterium, Propionibacterium, Ruminococcus, Bradyrhizobium, 
and Alloprevotella. A single genus, Flavobacterium, was most strongly associated with 
the control group. 
Conclusion: These findings suggest that the first-meconium microbiota is different in 
preterm neonates with and without clinical EONS.
 

Introduction 

Early-onset neonatal sepsis (EONS) remains one of the leading causes of 
morbidity and mortality related to premature birth, and its timely diagnosis remains 
difficult [1,2]. Currently available laboratory tests (complete blood count, C-reactive 
protein, procalcitonin, cytokines) have a low positive predictive value (PPV), making it 
difficult to identify which neonates are infected and leading to excessive use of 
antibiotics (ABx) in the first week of life. Blood cultures remain the gold standard for 
diagnosis of early- and late onset neonatal sepsis, but its sensitivity is low – 80% at 
best [2–4]. Due largely to these challenges, the presumptive or clinical symptom based 
diagnosis of sepsis (i.e. in patients with risk factors and clinical signs of sepsis, but 
without blood-culture confirmation) is still very common in neonatal
 intensive care units (NICUs) [5]. 

The meconium is not sterile [6,7]. Evidence suggests that the meconial 
microbiota reflects the intrauterine microbial community [8]. Previous studies have 
shown that the meconial microbiota is less diverse in neonates that will develop 
infection [7], suggesting that lack of colonization by several nonpathogenic bacteria 
facilitates colonization by pathogenic bacteria and may thus increase the risk of 
infection and bacterial translocation [9,10]. 

Some studies have shown that an increase in Proteobacteria precedes the 
diagnosis of late-onset sepsis [9] and necrotizing enterocolitis (NEC) [11]. Citrobacter 
koseri and Klebsiella pneumoniae, both belonging to the phylum Proteobacteria, have 
been shown to be dominant in the microbiota of newborns that developed NEC [12]. 
These microbial signatures might have potential as biomarkers for early diagnosis of 
this disease. In the same study, NEC cases had a less diverse microbiota, with a lower 
abundance of Lactobacillus, and more interconnected and clustered species compared 
to controls, which suggests a more closely related community [12]. 

Mai et al. showed that the fecal microbiota diversity of preterm infants increases 
with time, and that the intestinal bacterial community in NEC cases is different from 
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that of controls [11]. Establishing causality of dysbiosis in NEC and EONS may provide 
novel approaches for manipulating the microbiome of ill preterm infants to resemble 
that of healthy, full-term neonates and reduce disease risk [13]. 

Several studies have demonstrated the difficulty of reliably diagnosing EONS, 
especially in preterm infants. Therefore, a better understanding of the microbial 
colonization of the gastrointestinal tract of newborns in the immediate postnatal period 
and its possible association with EONS is essential. Within this context, the present 
study was designed to evaluate the intestinal microbiota of the first meconium of 
preterm newborns with gestational age (GA) ≤ 32 weeks and ascertain whether it is 
associated with clinical early-onset neonatal sepsis. A better understanding of 
microbiome variation may allow for early detection in patients who are at greater 
disease risk. 

 

Methods 

This cohort study was conducted in a convenience sample of preterm neonates 
with a gestational age less than or equal to 32 weeks born at Hospital de Clínicas de 
Porto Alegre (HCPA), Brazil. The exclusion criteria were: congenital malformations or 
infections; genetic syndromes; HIV-positive mothers; and refusal by parents or legal 
guardians. After the mother or legal guardian provided written informed consent, the 
first meconium passed by the infant was collected, stored at 80 C in a cryogenic 
storage Dewar, and transported to a laboratory at Universidade Federal do Pampa 
(UNIPAMPA), where DNA extraction and microbial community composition analysis 
was performed. 

The maternal variables of interest were: Mode of delivery (vaginal or cesarean 
section), time of prolonged rupture of membranes (PROM), urinary tract infection 
(confirmed by urine cultures), chorioamnionitis (pathological diagnosis), pre-eclampsia 
(systolic blood pressure 140 mmHg and/or diastolic blood pressure 90 mmHg after GA 
20 weeks, with proteinuria >300 mg in a 24-h urine sample, in the absence of 
preexisting hypertension or renal disease) [14], and antibiotic use. The neonatal 
variables of interest were: GA (based on obstetric ultrasound performed during the first 
12 weeks of pregnancy or, in the absence of such information, on neonatal 
examination) [15], birth weight, sex, 5-min Apgar score, adequacy for gestational age 
[16], presence of the respiratory distress syndrome (RDS), bronchopulmonary 
dysplasia (BPD) (need of supplemental oxygen at 28 days of life) [17], late-onset 
neonatal sepsis (positive blood cultures after the 72nd hour of life in the presence of 
clinical signs of infection), NEC (presence of pneumatosis intestinalis and/or 
pneumoperitoneum and clinical signs), grades 2, 3 or 4 periventricular–intraventricular 
hemorrhage (PIVH) [18], periventricular leukomalacia (PVL), persistent ductus 
arteriosus (PDA), discharge, or death. 

The preterm infants included were divided into two groups according to the 
presence or absence of clinical early-onset neonatal sepsis (sepsis group and control 
group, respectively). We defined clinical EONS when three or more of the following 
categories were present: 1-maternal risk factors: fever, prolonged rupture of 
membranes (PROM > 18 h), preterm labor and chorioamnionitis. 2-Clinical signs: 
apnea, tachypnea, nasal flaring, chest retractions, cyanosis, respiratory effort distress; 
tachycardia or bradycardia, and poor perfusion or shock; irritability, lethargy, hypotonia, 
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seizures; abdominal distension, vomiting, diarrhea, feeding intolerance, hepatomegaly; 
unexplained jaundice, petechiae or purpura, as well as infant “not looking well.” 3-
Laboratorial findings: WBC > 25,000 and C-Reactive Protein (CRP > 10 mg/L). This 
study was approved by the HCPA Research Ethics Committee. 

Microbial DNA extraction, amplification, and sequencing 

Microbial DNA was isolated from meconium samples using the QIAamp Fast 
DNA Stool Mini Kit (Qiagen, Valencia, CA, USA), in accordance with manufacturer 
instructions. DNA quality was quantified by spectrophotometry in a NanoVueTM system 
(GE Healthcare, Chicago, IL, USA). All DNA samples were stored at 80 C until use. 
The V4 region of the 16S rRNA gene was amplified and sequenced using the ION 
PGMTM Ion Torrent (Thermo Fisher Scientific, Waltham, MA, USA), with primers 515 F 
and 806 R [19]. Multiple samples were amplified by polymerase chain reaction (PCR) 
using barcoded primers linked with the adapter “A” sequence (50-
CCATCTCATCCCTGCGTGTCTCCGACTCAG-30) and “P1” sequence (50-
CCTCTCTATGG GCAGTCGGTGAT-30) to obtain a primer sequence composed for 
the A-barcode-806R and P1-515F adapter and primers. The PCR reaction volume was 
25 lL. Each mix consisted of 2 U PlatinumVR Taq DNA High Fidelity Polymerase 
(Invitrogen, Carlsbad, CA, USA), 4 lL 10X High Fidelity PCR Buffer, 2 mM MgSO4, 0.2 
mM dNTPs, 0.1 lM of both primers described above, 25 lg UltraPure BSA (Invitrogen, 
Carlsbad, CA, USA), and approximately 50 ng of template DNA. 

The PCR conditions used were: 95 C for 5 min, 35 cycles at 94 C for 45 s; 56 C 
for 45 s and 72 C for 1 min, followed by 72 C for 10 min. The resulting PCR products 
were purified with the AgencourtVR AMPureVR XP Reagent (Beckman Coulter, La 
Brea, CA, USA) and the final concentration of the PCR product was quantified using 
the Qubit Fluorometer kit (Invitrogen, Carlsbad, CA, USA), following manufacturer 
recommendations. 

Finally, the reactions were combined in equimolar concentrations to create a 
mixture composed of amplified fragments of the 16S gene from each sample. This 
composite sample was used for library preparation with the OneTouchTM 2 Ion system 
using the IONTM PGM Template 400 OT2 kit (Thermo Fisher Scientific, Waltham, MA, 
USA). Sequencing was performed using the commercially available ION PGMTM 

Sequencing 400 kit on an ION PGMTM System, using an Ion 318TM Chip v2, with a 
maximum of 40 samples per microchip. 

Sequence processing for analysis 

Fastq files exported from the ION PGMTM system were analyzed following the 
recommendations of the Brazilian Microbiome Project (BMP) [20], using the BMP 
Operating System [21]. Briefly, an Operational Taxonomic Unit (OTU) table was 
compiled using the UPARSE pipeline [22], wherein sequences were truncated at 200 
base pairs and quality-filtered using a maximum expected error cutoff of 0.5. 
Sequences were clustered into OTUs using a 97% similarity cutoff, and chimeric 
sequences were removed [22]. 

Taxonomic classification was performed in the QIIME software environment 
[23], based on the UCLUST method, against the Greengenes 13.5 database [24], with 
a confidence limit of 80%. The sampling effort was estimated using Good’s coverage 
formula [25]. 
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Statistical analysis 

The data obtained in the study were stored in a Microsoft Excel database 
compiled for this specific purpose. Data were then processed and analyzed in PASW 
Statistics for Windows, Version 18.0 (SPSS Inc., Chicago, IL, USA). The results were 
described as mean and standard deviation (SD) for symmetrically distributed data or 
as median and interquartile range (IQR) otherwise. Qualitative variables were 
expressed as absolute and relative frequencies. To compare quantitative variables in 
relation to the presence or absence of sepsis, Student’s t-test (for symmetrically 
distributed data) or the Mann–Whitney U test (for asymmetric data) were applied. For 
qualitative variables, the chisquare test was applied. Nonparametric Permutational 
Multivariate Analysis of Variance (PERMANOVA) was used to adjust to Prolonged 
Rupture of Membranes (PROM) > 18 h. The significance level for all analyses was 
established as alpha = 0.05. 

All 16S rRNA gene libraries (samples) were normalized by random resampling 
of sequence data, as recommended by Lemos et al. [26]. The BIOM file containing 
OTUs clustered at a similarity level of 97% was imported into the R environment (R 
Development Core Team, 2008), and a compositional dissimilarity matrix was 
generated based on binomial distances between samples, using the “phyloseq” 
package [27]. 

To assess structural differences in microbial community, a dissimilarity matrix 
between samples using the binomial distance was calculated using principal 
coordinate analysis (PCoA). The matrix was then used in a nonparametric 
permutational multivariate analysis of variance (PERMANOVA), with the Adonis 
function available in the “vegan” package [28], to detect confounding variables. To 
estimate alpha diversity, the number of OTUs and the Shannon diversity index were 
calculated and plotted using the “phyloseq” package [27]. These were described as 
medians and interquartile ranges, and the Mann–Whitney test was used for statistical 
analysis. 

The STAMP v2 statistical package was used to determine differences in relative 
abundance of microbial phyla between groups. Between-group differences were 
assessed using the nonparametric White t-test, and confidence intervals were 
calculated using the bootstrap method. Taxonomic units with a difference between 
proportions of <1% were excluded from analysis. The linear discriminant analysis 
(LDA) score was calculated to demonstrate and explain the differences in microbial 
community between the sepsis and control groups. 

 

Results 

One hundred and sixty-eight patients were eligible, provided written informed 
consent, and were included in the study. Of these, 84 met all of the inclusion and none 
of the exclusion criteria and provided meconium samples of sufficient quantity and 
quality to allow the proposed analyses. One meconium sample was obtained from each 
preterm infant. These 84 patients were divided into two groups: 40 (48%) with a clinical 
diagnosis of sepsis made up the sepsis group, while 44 (52%) without a diagnosis of 
sepsis made up the control group. 
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The characteristics of the studied patients are presented in Table 1, divided into 
maternal (1 A) and neonatal (1B) variables. The mean birth weight was 1395 g (± 496) 
in the sepsis group and 1428 g (± 497) in the control group. The mean gestational age 
was 30 (± 2.4) weeks in the sepsis group and 30.5 (± 2.2) weeks in the control group. 
There was no difference between the two groups when comparing these 
characteristics (p = .69 and p = .29, respectively). 

There was no significant difference between groups regarding the maternal and 
neonatal characteristics, except for time of PROM and RDS. Overall, 15 patients from 
the sepsis group (37.5%) and five patients from the control group (11.4%) had PROM 
> 18 h (p = .03, Table 1(A)). Twenty-one patients from the sepsis group (52.5%) and 
11 from the control group (25%) developed RDS (p = .03, Table 1(B)). 

After filtering 16S rRNA, a total of 1,920,679 high quality sequences longer than 
200 base pairs were obtained. The sampling effort ranged from 87% to 99% [25], 
indicating that the dataset was representative of the analyzed microbial communities. 

Ordination and clustering of microbial communities found in meconium samples 
of preterm infants with and without sepsis (Figure 1) showed a clear difference in the 
structure of these communities between the sepsis and no-sepsis groups irrespective 
of PROM > 18 h. The PERMANOVA statistics controlling for PROM > 18 h, indicated 
that 14% of the variation among the communities was explained by the presence of 
clinically diagnosed neonatal sepsis (p = .001). To detect possible confounding 
variables, PERMANOVA was carried out. The results show that none of the variables 
tested, whether alone or in combination, influenced the meconium microbiota, for 
example, ABx use by the mother during labor and ABx therapy in the neonate at the 
time of meconium collection (p = .06 and p = .06, respectively). The birth weight 
variable had a statistically significant p-value on this analysis (p = .022), but the R2 

value was too low (0.024) for this variable to be considered influential on the meconium 
microbiota. 

Figure 2 shows differences in alpha diversity between the groups with and 
without a clinical diagnosis of sepsis. The number of OTUs in the control group ranged 
from 9 to 110. The median was 63.4. The number of OTUs in the sepsis group ranged 
from 7 to 127. The median was 80.4. The nonparametric Mann–Whitney test revealed 
a significant difference between the two groups (p = .005); however, the variation in 
number of OTUs observed per patient was large. The mean Shannon diversity index 
was 2.22 for 

the control group and 2.62 for the sepsis group (Figure 2). The nonparametric 
Mann–Whitney test did not indicate a significant difference between the two groups (p 
= .07). 

As there was a statistically significant difference in microbial community 
structure between the two groups, we used LDA scores to demonstrate and explain 
this difference between the sepsis and control groups, based on the different microbial 
genera present in the samples. The results are shown in Table 2. A total of nine genera 
were more associated with future development of sepsis (p ≤ .05; FDR ≤ 0.05). In 
descending order of LDA score, these genera were: Paenibacillus, Caulobacter, 
Dialister, Akkermansia, Phenylobacterium, Propionibacterium, Ruminococcus, 
Bradyrhizobium, and Alloprevotella. On the other hand, a single genus was more 
associated with absence of a clinical diagnosis of sepsis: Flavobacterium. 
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The most abundant phylum in the meconium of preterm neonates was 
Proteobacteria. On comparison of the two groups, we found that this phylum was more 
prevalent in the sepsis group (p = .034) (Figure 3). 

 

 

Discussion 

Our study shows that the intestinal microbiota of preterm infants with a clinical 
diagnosis of early-onset sepsis is different from that of preterm infants without infection. 
Overall, 14% of this difference is explained by the presence of clinical EONS. ABx use 
by the mother during labor and ABx therapy in the neonate at the time of meconium 
collection did not interfere with the difference in microbiome observed between the two 
groups. The ABx use by the mother may have prevented sepsis in some cases, and 
therefore this data was not significant in the difference of the microbiota between the 
two groups. 

Birth weight explained about 2% of the difference in bacterial community 
between the two groups, which can be considered a negligible contribution in clinical 
practice. When comparing alpha diversity, we found a significant difference between 
the two groups, but the variation in the number of OTUs observed per patient in each 
group was large, allowing us to infer that this measure of diversity may not be a robust 
indicator of microbial differences between the tested groups. 

It is now known that a synergistic interaction exists between the human body 
and the intestinal microbiota, wherein a balance must be maintained for the proper 
functioning of several roles, including establishment of the immune response. This 
immune response may be hematological or local, to strengthen the intestinal mucosal 
barrier [9,13,29]. In healthy and full term neonates, the gut and immune system 
regulate the microbial community to ensure proper functioning [30]. However, this 
balance can be quickly disrupted, especially in situations common in prematurity, such 
as preterm rupture of membranes, chorioamnionitis, ABx use by the mother, delayed 
initiation of enteral feeding, infection, and hemodynamic instability [13]. This disruption 
is known as dysbiosis. Until the present study, the role of dysbiosis in early-onset 
neonatal sepsis had been poorly described. 

Establishing a definitive diagnosis of early-onset neonatal sepsis in preterm 
infants is challenging. Blood cultures, the gold standard for diagnosis of neonatal 
sepsis, require that 1–2 ml of blood be drawn to detect microorganisms, as colony 
counts in the neonatal period are low [31]. In a patient weighing 1000 g, this volume 
may represent 2–3% of the total blood volume. This reinforces the need to understand 
whether other indicators, such as a pattern of dysbiosis in the meconial flora, can 
predict sepsis. Within this context, we found that nine microbial genera were more 
associated with development of clinical EONS in preterm infants. 

Studies show that the microbiome present in the first meconium most likely 
originates from the amniotic fluid (AF) [8]. Puri et al. compared stool samples from 
newborns with and without chorioamnionitis/funisitis at weeks 1, 2, and 3 of life and 
observed a change in the microbiota in those with chorioamnionitis and funisitis only 
at week 1, allowing a causal association to be established [32]. This is consistent with 
our study, in which we found a clear difference in meconial microbiota between preterm 
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infants with and without sepsis, noting that chorioamnionitis is one of the major risk 
factors for early-onset neonatal sepsis. 

Comparison of alpha diversity between different published studies remains a 
great challenge, as the methods used for collection of the analyzed material are 
heterogeneous. Both a difference in the microbiota and a reduction in bacterial diversity 
have been observed in infants who will go on to develop late onset neonatal sepsis as 
compared to a control group [7,33]. Madan et al. assessed 6 preterm infants and found 
that those who developed late-onset sepsis had a lower biodiversity in the fecal 
microbiota since birth [7]. However, none of these studies was able to describe a 
characteristic microbiome alteration that preceded development of sepsis. In this line, 
Dobbler et al. reported a reduction in bacterial diversity prior to the diagnosis of NEC 
[12]. Conversely, two studies found differences in the composition and characteristics 
of the intestinal microbiota between cases and controls, but no differences in alpha 
diversity between the two groups. Mai et al. compared the microbiota of preterm infants 
with and without a diagnosis of late onset sepsis, while Puri et al. compared the 
microbiota of preterm infants born to mothers with vs. without chorioamnionitis [9,32]. 

In our study, we found higher alpha diversity in those who developed sepsis, but 
the two groups showed great variation in the number of OTUs observed per patient, 
which allows us to infer that this microbiological criterion may not be useful to 
differentiate patients with a presumptive diagnosis of early-onset sepsis from those 
without clinical sepsis. In addition, the fecal samples analyzed in the aforementioned 
studies [9,32] were collected several days after NICU admission, unlike in our study, 
in which the first meconium passed by each patient was collected. The timing and 
setting of fecal collection influence the composition of the bacterial community and its 
colonization pattern, as described by Taft et al. in two different studies [33,34]. Even 
feces collected at the same hospital in different years showed differences in microbiota, 
in a previous study of preterm infants who did not develop NEC or late-onset sepsis 
[34]. 

We found that the phylum Proteobacteria was more abundant in cases of early-
onset sepsis in our sample. This was also the most prevalent phylum in stool samples 
obtained before a diagnosis of late onset sepsis [9] and NEC [11], and can thus be 
considered a probable biomarker for diagnosis of these conditions. 

Despite the technical difficulties in meconium collection, chief among them the 
delay in meconium passage and its reduced volume, we were able to collect a 
substantial number of samples in conditions that permitted reliable analysis. In 
addition, this was the first study to compare the microbial community present in the 
meconium of preterm neonates with and without a clinical diagnosis of early-onset 
sepsis in which the microbiota was analyzed by DNA amplification and 16S rRNA 
sequencing. 

The main limitation of our study is the definition of early-onset neonatal sepsis, 
which was exclusively clinical, due to the absence of positive blood cultures in the first 
72 h of life. It is worth noting that carrying out the same study on a sample limited to 
neonates with positive blood cultures – only 3% of the general neonatal population [2] 
– with a significant and representative sample would have required a multicenter 
design, which is associated with countless biases in microbiome analysis. These 
biases are related to differences in climate and environment, clinical practice, care 
patterns, diagnostic and treatment protocols in the population under study, and even 
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purchasing power and access to health care [33,34]. We need to take in account that 
a “convenience sampling” can represent a potential bias; however, studies of gut 
microbiome suffer numerous sources of bias that can impact any step of the pipeline 
and, in this study we followed strictly adequate methodology [35]. 

In conclusion, our findings confirm the hypothesis that the first-meconium 
microbiota of preterm infants with a clinical diagnosis of early-onset neonatal sepsis is 
different from that of preterm infants without sepsis, and that 14% of this difference is 
explained by the clinical diagnosis of sepsis. In addition, we observed a predominance 
of the phylum Proteobacteria in both groups, although it was more significant in cases 
of early-onset sepsis. These findings are consistent with previous international studies 
on the intestinal microbiota of preterm infants. As in these studies, we were unable to 
identify any single specific abnormality associated with diagnosis of sepsis. 

The intestinal microbiota is a set of connected individuals and represents a large 
complex organism [36]. Therefore, one must seek an understanding of the microbiome 
as a whole and attempt to detect the moment at which an imbalance or change in its 
composition occurs [12]. Further studies are needed to better elucidate the intestinal 
microbiota and its function before we can routinely interfere with this complex 
community. 
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Figures 

 

Figure 1. Principal coordinates analysis: principal coordinates analysis (PCoA). Cluster of microbial 
communities found in meconium samples from preterm neonates with and without sepsis. Each point 
represents an individual sample; colors indicate the presence or absence of sepsis. 

 

 

Figure 2. Alpha diversity and Shannon index: diversity of microbial communities found in meconium 
samples from preterm neonates with and without sepsis. Boxes denote the interquartile range; the 
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horizontal line inside the boxes represents the median. Whiskers denote variability outside the upper 
and lower quartiles. Observed, number of Operational Taxonomic Units (OTUs); Shannon, Shannon 
Diversity Index. 

 

 

 
Figure 3. Abundance of microbial phyla: average abundance of phyla present in meconium samples 
from preterm neonates with and without sepsis. The error bars show the calculated standard deviation. 
The colored circles represent 95% confidence intervals, calculated using Welch’s inverted method. 
Corrected p-values were calculated using Bonferroni’s multiple test correction. 
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Tables 

Table 2. Linear discriminant analysis. 

Genus p-Value FDR LDA Score 

A. Genera most associated with the sepsis group 
  Paenibacillus  <.0001 <0.001 -1.55 
  Caulobacter  <.0001 <0.001 -1.13 
  Dialister <.0001 <0.001 -0.322 
  Akkermansia <.0001 <0.001 -0.382 
  Phenylobacterium .000172 0.0017544 -1.95 
  Propionibacterium  .0020472 0.015447 -0.782 
  Ruminococcus .0021201 0.015447 -0.528 
  Bradyrhizobium .0025037 0.015961 -1.92 
  Alloprevotella .0076397 0.043292 -0.319 
B. Genera most associated with the no-sepsis group 
  Flavobacterium .009649 0.04921 0.937 

Linear discriminant analysis (LDA) score denotes those genera most likely to explain the difference in 
microbial community between the sepsis and control groups. FDR: false discovery rate. 

 

 

  

Table 1. Patient characteristics. 

 Sepsis (n = 40) No sepsis (n = 44) p-Value 

A. Maternal characteristics 
PROM > 18 h 15 (37.5%) 5 (11.4%) .03 c 

Urinary tract infection 9 (22.5%) 5 (11.4%) .33 c 

Chorioamnionitis 17 (42.5%) 11 (26.2%) .25 c 

Pre-eclampsia 11 (27.5%) 13 (29.5%) .91 c 

Antibiotic use 33 (82.5%) 28 (63.6%) .20 c 

Vaginal delivery 15 (37.5%) 12 (27.3%) .54 c 

B. Neonatal 
characteristics Male 
sex 24 (60%) 19 (43.2%) .28 c 

Gestational age 30 (±2.4) 30.5 (±2.2) .29 a 

Birth weight (g) 1395 (±496) 1428 (±497) .69 a 

SGA 10 (25%) 18 (40.9%) .14 c 

5-Min Apgar score 8 (7–9) 9 (8–9) .06 b 

RDS 21 (52.5%) 11 (25%) .03 c 

BPD 12 (30%) 11 (25%) .90 c 

Apnea 35 (87.5%) 29 (65.9%) .11 c 

Late-onset sepsis 12 (30%) 12 (27.3%) .84 c 

PIVH 10 (25%) 9 (20.5%) .91 c 

PVL 5 (12.5%) 3 (6.8%) .66 c 

PDA 4 (10%) 10 (22.7%) .17 c 

NEC 3 (7.5%) 7 (15.9%) .35 c 

Death 5 (12.5%) 4 (9.1%) .94 c 

PROM: premature rupture of membranes; BPD: bronchopulmonary dysplasia; RDS: respiratory distress 
syndrome; NEC: necrotizing enterocolitis; PDA: patent ductus arteriosus; PIVH: periventricular-interventricular 
hemorrhage; PVL: periventricular leukomalacia; SGA: small for gestational age. 

Variables expressed as mean (SD), median (interquartile range), and absolute and relative frequencies. a: T-
test; b: Mann–Whitney test; c: chi-square test. 
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Abstract 
Preterm birth remains the main contributor to early childhood mortality. The vaginal 
environment, including microbiota composition, might contribute to the risk of preterm 
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delivery. Alterations in the vaginal microbial community structure might represent a risk 
factor for preterm birth. Here, we aimed to (a) investigate the association between 
preterm birth and the vaginal microbial community and (b) identify microbial biomarkers 
for risk of preterm birth. Microbial DNA was isolated from vaginal swabs in a 
cohortof69women enrolled at hospital admission for their delivery. Microbiota was 
analyzed by high-throughput 16S rRNA sequencing. While no differences in microbial 
diversity measures appeared associated with the spontaneous preterm and full-term 
outcomes, the microbial composition was distinct for these groups. Differential 
abundance analysis showed Lactobacillus species to be associated with full-term birth 
whereas an unknown Prevotella species was more abundant in the spontaneous 
preterm group. Although we studied a very miscegenated population from Brazil, our 
findings were similar to evidence pointed by other studies in different countries. The 
role of Lactobacillus species as a protector in the vaginal microbiome is demonstrated 
to be also a protector of spontaneous preterm outcome whereas the presence of 
pathogenic species, such as Prevotella spp., is endorsed as a factor of risk for 
spontaneous preterm delivery. 

 

Introduction 

According to the World Health Organization, every birth before 37 weeks of pregnancy 
is considered preterm. Each year, about 15 million babies are born prematurely in the 
world [1]. Prematurity is the leading cause of mortality before 4 weeks of life and the 
second until 5 years of age [1, 2]. Preterm birth also leads to disorders related to brain 
development, the deficit of attention, hyperactivity [3–5], autism [6], and respiratory 
problems [7]. In the USA, the preterm delivery rate is around 9.6% [8] while in Europe 
and other developed countries it is between 5 and 9% [9]. In developing countries, 
especially South Asia and sub-Saharan Africa, the preterm birth rates are above 15% 
[1]. 

The epidemiological and clinical natures of preterm birth are not yet fully understood 
[2, 10, 11]. Nevertheless, preterm delivery is associated with type 2 diabetes [12], 
weight gain, chronic postpartum hypertension [13], air pollution [14], psychological and 
social conditions, physical exertion during pregnancy [15], diet, hygiene, and access to 
health care [2, 11]. Several studies attempted to map the endemicity of this disease 
and their results indicate a higher incidence in black women, in women under low 
socioeconomic levels, in smokers, in pregnancies of twins, and/or more advanced age 
[1, 2, 11, 16–20]. 

Different microbes also have been correlated with preterm delivery [21, 22], but 
microbial community-level studies represent a suitable and fast alternative to better 
understand the relationship between the microbial community and the preterm birth. 
As women from different ethnic backgrounds have different vaginal microbial 
communities [23–25], local attempts to detect and associate microbial communities 
with preterm birth are required [26]. Such regional attempts might sum up with other 
worldwide initiatives to elaborate a prediction risk assessment plan based on the 
vaginal microbial community. Within this work we aimed to (a) investigate the 
association between preterm birth and the vaginal microbial community and (b) identify 
microbial biomarkers for risk of preterm birth. 
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Material and methods 

 

Experimental design 

This study was carried out with samples collected from women attending the Hospital 
de Clínicas de Porto Alegre (HCPA). Experimentation used a convenience sampling 
strategy. Expecting mothers were enrolled at hospital admission for their delivery 
between May 2014and March 2016. All women provided written informed consent to 
allow their samples to be used in the study. The ethics committee of HCPA approved 
the study protocol. Exclusion criteria were: (1) HIV or congenital infections, (2) drug 
user or alcoholic, (3) urinary tract infections or (4) antibiotic usage in the third trimester 
of gestation, (5) urogenital infection in the last 3 months, and (6) gestational diabetes. 

Sixty-nine pregnant women were analyzed in this study. Twenty-three of them had 
spontaneous preterm labor (before 33 weeks of gestation), whereas 29 had 
spontaneous term labor. Another 17 women had non-spontaneous labor but, due to 
medical reasons affecting pregnancy, had cesarean delivery before 33 gestational 
weeks. Those subjects called hereinafter “non-spontaneous preterm” group, were used 
as a second control because they present a microbial community that might not be 
associated with spontaneous preterm delivery but have a better match in terms of 
gestational age with the spontaneous preterm group. All pregnant women sampled on 
this work had vaginal swab (Sterile Specimen Collection Swabs to collect specimens 
from soft tissue surfaces-Labor swab®) collected up to 4 hours before labor begins, as 
described by Roesch and colleagues [27]. Collected swab samples were stored at − 
80 °C until DNA extraction. The characteristics from the mothers enrolled in this 
experiment include maternal age, previous pregnancies, gestational age, incidence of 
chorioamnionitis, preeclampsia, infection by Group B Streptococcus, intrapartum 
penicillin administration, and delivery mode. 

 

Microbial DNA extraction, 16S rRNA amplification and sequencing, and data 
processing 

Microbial DNA was extracted from frozen swab samples as previously described by 
Roesch et al. [27]. All DNA samples were kept at − 20 °C until use in PCR reactions. 
Vaginal microbiota was determined by amplification of the V4 region of the 16S rRNA 
gene and downstream sequencing on the Ion PGM Platform (Thermo Fisher Scientific, 
Waltham, MA, USA) with the bacterial/archaeal primers 515F and 806R [28]. All 
samples were PCR-amplified using barcoded primers linked with the Ion adapter “A” 
sequence (5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3′) and Ion adapter “P1” 
sequence (5′-CCTCTCTATGGGCAGTCGGT GAT-3′) to obtain a sequence of primer 
composed by Abarcode-806R and P1-515F adapter and primers. PCRs were carried 
out in25μL reactions contained 2 U of Platinum® Taq DNA High Fidelity Polymerase 
(Invitrogen, Carlsbad, CA, USA), 4 μL 10X High Fidelity PCR Buffer, 2 mM MgSO4, 0.2 
mM dNTP’s, 0.1 μM of both the 806R barcoded primer and the 515F primer, 25 μg of 
Ultrapure BSA (Invitrogen, Carlsbad, CA, United States) and approximately 50 ng of 
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DNA template. PCR conditions used were: 95 °C for 5 min; 30 cycles of 94 °C per 45 
s denaturation, 56 °C per 45 s annealing, and 72 °C per 1 min extension; followed by 
72 °C per 10 min for final extension. Fragments presenting around 400 base pairs from 
resulting PCR products were purified with the Agencourt® AMPure® XP Reagent 
(Beckman Coulter, Brea, CA, USA), and final concentration of the PCR products was 
quantified by using the Qubit Fluorometer kit (Invitrogen, Carlsbad, CA, United States) 
following manufacturer’s instructions. Finally, reactions were combined in equimolar 
concentrations to create a mixture composed of amplicon fragments of each sample. 
This composite sample was used for library preparation with Ion OneTouch™ 2 System 
with the Ion PGM™ Template OT2 400 Kit Template (Thermo Fisher Scientific, 
Waltham, MA, USA). The sequencing was performed using Ion PGM™ Sequencing 
400 on Ion PGM™ System using Ion 318™ Chip v2 with a maximum of 40 samples 
per microchip. 

Raw reads were analyzed according to the pipeline proposed by the Brazilian 
Microbiome Project [29]. A table of operational taxonomic units (OTUs) was 
constructed by using the UPARSE pipeline [30], with a minimum similarity cutoff value 
of 97% for clustering and a maximum expected error of 0.5%. Taxonomic 
classifications were made on QIIME 1.9.0 [31], based on UCLUST method against the 
SILVA ribosomal RNA gene database version 128[32] with a confidence interval of 
95%. Sampling effort was measured by the Good’s coverage [33]. 

 

Data analyses 

Maternal variables were analyzed into the R environment [34]. Numeric variables were 
summarized as average ± SEM and compared using the Kruskal-Wallis followed by a 
post hoc Dunn test. Categorical variables were compared using chi square post hoc 
test. 

The 16S rRNA database was analyzed through the phyloseq [35] and the 
Microbiome [36] packages after removing singletons and rarefying the dataset to the 
minimum library size. Possible confounding variables were tested by permutational 
multivariate analysis of variance (PERMANOVA) into the vegan package [37]. 

Initial insights about general microbial structure were provided by analyses of relative 
abundance (measured by Kruskall-Wallis post hoc Dunn test) of the most frequent 
genera and alpha diversity tests. 

The differential abundance analysis, applied to find microbial biomarkers of preterm 
birth, was performed by using the DESeq2 [38] with the raw (non-rarefied) dataset. 
Briefly, after removing the samples from mothers treated with intrapartum penicillin 
from the dataset, the OTU table was conglomerated at species level. Taxa not seen 
more than 3 times in at least 20% of the samples were removed and the number of 
sequences per OTU was transformed by calculating the geometric mean. Two different 
contrasts were applied: (a) term birth versus preterm birth and (b) false-preterm birth 
versus preterm birth. The FDR method was used to control for false discovery rate. 
Additional correlation analysis between OTUs was tested by using SparCC approach 
[39]. 
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Results 

 

Maternal variables used for comparison between groups 

The characteristics of the three groups are shown in Table 1. Maternal age ranged 
from 23 to 30 years but was not significantly different between women with subsequent 
term or preterm labor. Nonetheless, women significantly older composed the non-
spontaneous preterm group. The number of previous pregnancies was also similar in 
all, spontaneous term labor and spontaneous preterm labor groups as well as in 
nonspontaneous preterm group. Moreover, as expected, gestational age was 
significantly different between term and preterm groups, but not different between 
spontaneous preterm and non-spontaneous preterm groups. Women who had preterm 
labor presented a higher incidence of chorioamnionitis than the term group. This 
condition did not differ between term and non-spontaneous preterm groups. Only the 
preterm and the non-spontaneous preterm groups presented cases of infection by 
Group B Streptococcus (GBS). Although the GBS infection rate was higher in the non-
spontaneous preterm group, the incidence of GBS infection was not statistically 
different between spontaneous preterm and non-spontaneous preterm groups. Most 
cases of non-spontaneous preterm labor presented preeclampsia, whereas there were 
no cases in the term group and only three cases in the spontaneous preterm labor 
group. The intrapartum penicillin was used in 15 preterm cases. The term and non-
spontaneous preterm groups did not receive prophylactic antibiotics. Intravenous 
penicillin was administered approximately 4 h before labor in many preterm samples 
due to a positive test for GBS or due a suspicion of infection in absence of a test. 
Finally, the three groups differed in terms of vaginal or cesarean delivery. The preterm 
condition was the major driver of cesarean, especially in the nonspontaneous preterm 
labor group. 

Controlling for confounding variables 

Permutational analysis of variance was applied to test the effect of confounding 
variables on the microbiota analyses (Table 2). 

As significant reduction in taxonomic diversity of vaginal microbial community was 
already observed as pregnancy advances [40], we first attempted to verify the influence 
of gestational age on the vaginal microbiota. A pairwise analysis among the 
spontaneous term labor, spontaneous preterm labor, and nonspontaneous preterm 
labor groups revealed undetectable microbial community differences among those 
groups in our dataset (Table 2). In all comparisons, R2 was smaller than 1% and the p 
value was greater than 0.05. Fifteen out of 23 women from the spontaneous preterm 
labor group received prophylactic antibiotics during labor, whereas no women from the 
term group received antibiotics. The R2 for antibiotic usage was 0.034 and the p value 
was 0.043 indicating that about 3.4% of the variation in the microbial community 
between groups was explained by the prophylactic use of antibiotics during labor. 
Intrapartum antibiotics were administrated only in cases with preterm labor. For this 
reason, this factor could not be used in a multi-factor design with interactions. All OTUs 



156 

 

under intrapartum antibiotics influence were removed from the dataset prior to diversity 
and differential abundance analysis. 

Different microbial community structure but similar vaginal microbial diversity within 

treatments 

The mean of organisms’ abundance was particularly similar between term and non-
spontaneous preterm groups as indicated by the Kruskal-Wallis post hoc Dunn test. 
On the other hand, preterm group presented a low mean of OTUs closest related to 
the genus Lactobacillus among its samples jointly with a tendency to a high mean of 
OTUs with best hit to Prevotella and Pseudomonas when compared with terms and 
non-spontaneous preterm (Fig. 1). Overall, the alpha diversity was low among all 
samples. The non-parametric Wilcox test indicated no differences in microbial diversity 
among the three groups tested using either Shannon or inverse of Simpson diversity 
indexes (Fig. 2). 

 

Defining the main biomarkers associated with term and preterm delivery 

To outline the main microbes associated with the term and preterm labor we performed 
a differential abundance analysis. Pairwise comparisons among spontaneous term and 
spontaneous preterm groups revealed the abundance of OTUs closest related to two 
species of Lactobacillus associated with the term birth (Table 3). They were 
Lactobacillus iners and Lactobacillus jensenii. An unknown species related to the 
Prevotella genus was more abundant in the spontaneous preterm group. Similar 
tendency was also observed when comparing non-spontaneous preterm labor and 
spontaneous preterm labor groups. An OTU with the best hit to Lactobacillus jensenii 
was associated with subjects with non-spontaneous preterm labor while two taxa 
related to the Prevotella genus were associated with the spontaneous preterm labor. 
In an attempt to verify whether Prevotella was associated with Lactobacillus, we 
perform a correlation analysis at the genus level by using the SparCC approach [39]. 
No significant strong correlation (correlation coefficient = − 0.17 and p = 0.09) was 
found involving either Lactobacillus or Prevotella. 

The results indicated that the absence of high numbers of OTUs classified as 
Lactobacillus, particularly as Lactobacillus iners and Lactobacillus jensenii, might be 
the main difference between the vaginal microbial community of pregnant women 
following term or spontaneous preterm labor. 

Discussion 

In this work, we attempted to detect biomarkers for preterm labor on the vaginal 
microbiota of pregnant women. Several studies have described the vaginal microbiota 
of pregnant women; however, most of them were based in the USA, Canada, Europe, 
or Mexico [23–25, 41–43] and came to very incongruent results. A North American 
NGS-based study performed by Romero and colleagues, for example, concluded that 
there was no difference between abundance and structure of the vaginal microbiome, 
independent of the type of birth [23]. On the other hand, the efforts by Hyman and 
collaborators, whom worked with chain-termination sequencing, conclude that mothers 
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whom deliver prematurely present a high diverse vaginal microbiota [42]. In addition, 
a Canadian study by Freitas et al. not only correlates high diversity on vaginal 
microbiota to preterm delivery but also the presence of Mollicutes [43]. 

Here, we used next-generation sequencing to analyze a Brazilian cohort composed 
of 69 pregnant women. The unique feature of this work is the high miscegenation rates 
of the Brazilian population. The aforementioned studies suggest that women from 
different ethnic backgrounds have 

different vaginal microbial communities. Therefore, investigations using cohorts with 
different ethnic backgrounds are important to better understand the etiology of preterm 
labor and its relationship with microbes. 

Vaginal microorganisms possess a known key role in states of health and disease 
acting as both generators/stimulators and protectors from diseases [24, 44, 45]. 
Interactions between the microbiota and human diseases occur in a two-way process. 
Bacteria can cause diseases as much as states of diseases can cause changes in the 
normal microbiota. An example is the increase in bacterial pathogen abundance in 
cases of depression. Gut microbes can produce identical hormones and 
neurotransmitters produced by humans. In turn, the bacterial receptors for these 
hormones influence microbial growth [46]. 

In this context, we presented multiple lines that lead to the presence of different 
vaginal microbial communities associated with the full-term and spontaneous preterm 
labor. The first evidence was provided by overall abundance analysis (Fig. 1). Preterm 
group represented differences when compared with other ones, mainly related to the 
decrease of general abundance of Lactobacillus. The second and most strong 
evidence was obtained by a differential abundance analysis (Table 3). Lower numbers 
of OTUs with best hit to species from the genus Lactobacillus were associated with the 
spontaneous preterm labor while vaginal bacterial communities rich in these microbial 
species (e.g., spontaneous term and non-spontaneous preterm groups) were 
associated with the full-term outcome. Non-spontaneous preterm labor presented 
similar microbial communities composition to those subjects with spontaneous term 
labor. Indeed, the healthy vaginal microbiota in the Brazilian pregnant woman has low 
microbial diversity and is dominated by Lactobacillus species [27]. Besides, 
Lactobacillus species are very often correlated to states of health in the vaginal 
environment [24, 47–50]. Bacteria from this genus present a fermentative metabolism 
with lactate and usually acetate, ethanol, CO2, formate, or succinate as products [51]. 
These compounds acts lowering the vaginal pH to levels around 4,5 and creating an 
inhospitable environment for most of pathogenic species [49, 52, 53]. 

On the other hand, we were able to detect the presence of OTUs closest related to 
the genus Prevotella in association with the spontaneous preterm labor. In fact, many 
microorganisms, just like Prevotella species, can produce proinflammatory substances 
that can also lead to a preterm birth [54]. Studies point to adaptation of specific 
Prevotella strains at different niches. The report by Gupta and colleagues, for example, 
showed 83% of the Prevotella genome may contribute to singletons and flexible 
sequences and this condition performs a key role in the adaptation to many body sites 
[55]. Indeed, several works indicate Prevotella strains related dysbiosis in states of 
disease in highly different body parts, i.e., asthma and bacterial vaginosis [56, 57]. 
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Prevotella is still correlated with inflammatory processes by the activation of Toll-like 
receptor 2, which leads to production of T helper type 17 cells (Th17) and increase of 
interleukin 8 (IL-8), interleukin 6 (IL-6), and chemokine (C-C motif) ligand 20 (CCL20) 
[58]. In addition, the intrauterine infection, which may have originated in the vaginal 
cavity, might account for 25–40% of preterm births [59]. The most commonly 
associated bacteria are bacteria from the class Mollicutes (Ureaplasma species, 
Mycoplasma genitalium, and M. hominis, for example) [60, 61], but many other 
microbial species have been identified in cases of bacterial vaginosis, including 
Prevotella [62–64]. Those microbes might invade the uterus by migrating from the 
passage through the cervix from the vagina and infect the amniotic fluid [59]. The 
metabolism of some of these bacteria may also produce urease, an enzyme that 
catalyzes the hydrolysis of urea into carbon dioxide and ammonia. Its activity increases 
the vaginal pH, a stress environmental condition for the mother and the fetus that may 
influence in a spontaneous premature outcome [65, 66]. 

Callahan et al. [67] recently presented similar results. The authors studied two 
cohorts from different locations of the USA. A lower abundance of L. crispatus was 
significantly associated with the preterm birth in both cohorts. In line with our results, 
the cohort from Birmingham, AL, presented decreased abundance of L. jensenii 
associated with the preterm birth. But contrary to our results, no significant association 
was detected for L. iners. Moreover, among the women with lower levels of 
Lactobacillus, a higher abundance of Gardnerella and Ureaplasma was associated 
with the increased risk of preterm labor. According to Baldwin et al. [68], Lactobacillus 
spp. were markedly decreased when compared with vaginal swabs collected from 
uncomplicated pregnancy subjects with a matched gestational time. As observed in 
our dataset, the authors also observed deficiency of Lactobacillus and persistence of 
known pathogenic species, such as Prevotella sp., as a risk factor for preterm birth. 

In short, reports from the aforementioned studies as well as from this one converge 
to a pattern of bacteria either pathogenic or related to stress conditions as increased 
in preterm cases. Considering this fact and the niche adaptation performed by 
Prevotella spp. [55], we are able to suggest Prevotella as a microbial biomarker for 
preterm labor in the vaginal microbiota. 

Conclusion 

The relationship between the vaginal microbes and the spontaneous preterm labor was 
already described in racially distinct cohorts. In spite of this, to the best of our 
knowledge, this is the first study to describe and correlate the vaginal microbiota with 
the spontaneous preterm labor in a Brazilian cohort. This is especially important 
because: (i) preterm-microbiota associations are population dependent [67] and (ii) the 
Brazilian population presents high rates of miscegenation. As so, this population 
cannot be classified using standard stratifications of Caucasian/white and black/African 
American. Our results add to the ecological theory of the protective effect of 
Lactobacillus and the occurrence of other pathogenic taxa (e.g., Prevotella) as a 
possible risk factor for preterm labor. 
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Figures 

 
Fig. 1 Percentage of the five most abundant microbial genera found in the three tested groups. The 
genus Lactobacillus appeared with a low mean in preterm group when compared with term (Kruskal-
Wallis post hoc Dunn test, p = 0.003) and with marginally low mean compared with non-spontaneous 
preterm (p = 0.080). Although Prevotella tended to be in high abundance in preterm samples, the test 
only found such difference when comparing preterm with non-spontaneous preterm group (p = 0.016). 
Pseudomonas, Ureaplasma, and Gardnerella did not present significant difference neither sample-to-
sample or among samples (p > 0.05) 

 

Fig. 2 Alpha diversity measurements of microbial communities in the spontaneous preterm labor and 
control groups. a Shannon diversity index. b Inverse of Simpson index. Boxes span the first to third 
quartiles; the horizontal line inside the boxes represents the median. Whiskers extending vertically 
from the boxes indicate variability outside the upper and lower quartiles, and the single circles indicate 
outliers. No significant difference was found among the three groups (p > 0.05) according to the non-
parametric Wilcoxon test 
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Tables 

Table 1 Maternal variables used for comparison between groups 

Variables Spontaneous 
term labor (n = 

29) 

Spontaneous 
preterm labor 

(n = 23) 

Non-spontaneous preterm 
labor (n = 17) 

Maternal age (years) 
25.03 (± 1.13)a 23.60 (± 1.28)a 30.24 (± 1.75)b 

Previous pregnancies 2.00 (± 0.17)a 1.87 (± 0.34)a 2.12 (± 0.28)a 

Gestational age (weeks) 39.60 (± 0.20)a 30.70 (± 0.39)b 29.42 (± 0.59)b 

Chorioamnionitis 0a 8b 2b 

Preeclampsia 0a 3a 14b 

GBS* infection 0a 5b 4b 

Intrapartum penicillin 0a 15b 0a 

Delivery mode (cesarean) 1a 10b 17c 

*GBS, Group B Streptococcus. Numeric variables were summarized as average ± SEM and compared 

using the Kruskal-Wallis followed by a post hoc Dunn test. Categorical variables were compared using 

chi square post hoc test. Data followed by the same letter in the line represent groups without 

significant statistical difference (p > 0.05) whereas data followed by different letters in the line 

represent statistically different groups at the significance level of 95% (p ≤ 0.05) 

  

 

 

Table 2 Permutational analysis of variance (PERMANOVA) of the Bray-Curtis dissimilarities for 
bacterial OTU community structure used for detection of possible confounding variables associated 
with preterm labor 

Confounding variables R2 
p 
value 

Mother’s age 0.029 0.482 

Preview pregnancies 0.014 0.748 

Gestational age 0.017 0.540 

Corioamniotitis 0.011 0.895 

Preeclampsia 0.030 0.106 

GBS infection 0.013 0.734 

Intrapartum penicillin 0.034 0.043 

Delivery mode (cesarean/vaginal) 0.014 0.711 

Significant value is set in italics. p values are based on 999 permutations 
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Table 3 Differential abundance analysis depicting vaginal microbial biomarkers associated with term or 

preterm labor 

 

Base mean Log2-fold 

change 

lfcSE Stat p-
value 

p adj Closest 
microbial 
relative 

Increased in 

Spontaneous term versus spontaneous preterm 
22769 3.48 1.37 2.54 0.011 0.016 Lactobacillus 

iners 
Spontaneous term 
labor 

229 7.84 2.32 3.39 0.001 0.030 Lactobacillus 
jensenii 

Spontaneous term 
labor 

106 4.25 1.30 -3.27 0.001 0.031 Prevotella sp. Spontaneous preterm 
labor 

Spontaneous preterm versus non-spontaneous preterm 
 229 7.40 2.46 3.00 0.003 0.045 Lactobacillus 

jensenii 
Non-spontaneous 
preterm labor 

218 2.90 2.90 -1.96 0.050 0.353 Prevotella bivia Spontaneous preterm 
labor 

106 5.03 5.03 -3.61 0.000 0.026 Prevotella sp. Spontaneous preterm 
labor 

Base mean, the average of the normalized counts taken over all samples; log2-fold change, log2 fold 

change between the groups; lfcSE, standard error of the log2-fold change; Stat, Wald statistic; p value; 

Wald test p value; p adj, FDR-adjusted p value 
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Abstract 
 
Single nucleotide exact amplicon sequence variants (ASV) of the human gut 

microbiome were used to evaluate if individuals with a depression phenotype (DEPR) 
could be identified from healthy reference subjects (NODEP). Microbial DNA in stool 
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samples obtained from 40 subjects were characterized using high throughput 
microbiome sequence data processed via DADA2 error correction combined with 
PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the 
single nucleotide level of resolution. Application of ALDEx2 differential abundance 
analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic 
pathways. This multivariate machine-learning approach significantly differentiated 
DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome 
taxa clustering and neurocircuit-relevant metabolic pathway network analysis for 
GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and 
inflammasome components. Gut microbiome dysbiosis using ASV prevalence data 
may offer the diagnostic potential of using human metaorganism biomarkers to identify 
individuals with a depression phenotype. 

 
 
Introduction 
 
Depression is the leading cause of medical disability worldwide [1]. Reliably 

diagnosing individuals with depression, and understanding the biomedical and 
neurophysiological mechanisms underlying depression with its attending medical 
comorbidities, has the potential to radically transform diagnosis and treatment, 
substantially reduce disability-adjusted-life-year impacts on the economy and quality 
of life, and mitigate stigma. 

Depression is associated with gut dysbiosis that disrupts a microbiome/systemic 
pathophysiology/brain bidirectional axis, based on preclinical rodent models and 
human studies [2–16]. Notwithstanding this basic dogma, recent Pubmed meta-
analyses of human depression-specific gut microbiome studies [6, 12] have assessed 
that there is no consensus identifying the particular net gut microbial ecology of taxa 
and attending metabolomic interactions of microbiota with their hosts’ physiology. This 
extends to lack of accord regarding differences in taxa relative abundances and 
diversity in depression, as compared with healthy reference subjects, although there 
is universal agreement that taxon significant differences do indeed exist. The literature 
is inconclusive regarding possible interplay between particular species and 
antidepressants use, experimentally limited to rodent models [16–20], although 
ketamine animal studies implicate a gut microbiome-associated anti-inflammatory 
aspect to the antidepressant mechanism of this drug [15]. Thus, understanding specific 
biological mechanisms, identification of microbiome taxa and functional pathway 
patterns as biomarkers, and development of microbiota-centric medical interventions 
have been confounded by the literature’s wide variation in microbial compositional and 
abundance dataset analyses. These translational lapses hold for all the mental 
disorders, and particularly for depression [6]. 

Next generation sequencing has launched an expansion of microbiome studies, 
but often at the cost of data relevancy due to sequencing and pipeline shortcomings. 
The recent bioinformatics literature has challenged status quo microbiome analyses 
[21–24], establishing—yet it is not yet widely appreciated—that the commonly used 
high throughput sequencing methods and popular software yield compositional 
datasets of relative operational taxonomic unit (OTU) abundances are inherently 
flawed due to differences in 16S rRNA gene sequencing platforms and bioinformatics 
methodologies, many of which do not account for covariate effects. 
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Metagenomic shotgun sequencing approaches using composition-based, 
abundance-based, or combined hybrid binning analyses, can, in many respects, 
improve on the 16S OTU approach to differentiating cohorts, due to of feature 
specificity assigned to microbial metabolic pathways and genes [25–28]. Nevertheless, 
the specificity of closed-database metagenomics in general is not ideal for definitive 
biomarker identification nor microbiota/host interactive mechanisms, due to limitations 
incurred by the potential of sequencing errors and to confining microbial compositions 
within a defined catalog, often altering orthologous groups to conform to artificial 
enterotypes determined by Dirichlet analysis [29]. 

Inappropriate use of such compositional data has subsequently resulted in 
conflicting conclusions in the literature due to pipeline errors and OTU clustering 
methods. Publications are often widely quoted as authoritative major advances leading 
the field regarding the role of gut microbiome in mental disorders and comorbid health 
issues, yet their unchallenged compositional data analyses can be flawed thereby 
leading to deep propagation of misinformation in the literature [30, 31]. 

In the present study we avoid the dangers of closed database OTU clustering, 
and of the downside of shotgun sequencing metagenomics, by instead demonstrating 
a novel machine-learning pipeline that involves taxa binning and prevalences of exact 
amplicon sequence variants (ASV) [21]. Prevalence is defined as the proportion of 
individuals within a specific cohort who share an OTU or taxon at least once, regardless 
of abundance; it is a frequency of occurrence, in contrast to abundance which is the 
average fractional representation of a single OTU or taxon only when present. For 
example, using our (Prevalence Interval for Microbiome Evaluation (PIME) R package 
[32] a prevalence cutoff of 55% means that the taxa selected at this prevalence interval 
are found in 55% of the subjects. 

We hypothesized that the prevalences of exact ASV within noisy gut microbiome 
data can readily identify pathophysiology-associated differences in gut signatures of 
microbial taxa and their metabolic pathway in people living with depression as 
compared with healthy reference subjects, at high resolution without resorting to OTU 
relative abundance clustering nor shotgun sequencing. 

 
 
Materials and methods 
 
Stool samples were obtained from 40 volunteer subjects, median age 34 y.o. 

distributed as groups of n = 20 subjects (ten females and ten males) meeting DSM-IV 
criteria for depression (DEPR) as outpatients seeking help at the University of Florida 
Department of Psychiatry, plus n = 20 healthy reference control subjects (14 females 
and 6 males) without a diagnosed mental illness (NODEP). Subjects refrained from 
probiotics and antibiotics during 30 days prior to providing stool samples, and they 
reported no gastrointestinal disorders. Fifteen of the 20 DEPR subjects had clinically 
charted antidepressants that included fluoxetine, venlafaxine, duloxetine, lamotrigine, 
mirtazapine, gabapentin, citalopram, sertraline, or bupropion, while five DEPR subjects 
had charts that did not specify a particular antidepressant medication by name. The 
possible effect of antidepressant medication use on metadata clustering was 
examined, but this resulted in no outliers of any significant differences that influenced 
data interpretation, as shown with statistical details in “Results” below; therefore, data 
from all 20 DEPR patients were pooled and included in all subsequent analyses 



171 

 

 

regardless of specific antidepressant or whether or not their chart specified an 
antidepressant. The University of Florida Institutional Review Board approved the 
study (clinicaltrials.govNCT02693327) for which participating subjects provided written 
informed consent and were remunerated. 

Stool samples were collected with OMNIgeneGUT fecal collection kits 
(DNAGenotek, Ottawa, Ontario, Canada) and stored at −80 °C until DNA extraction. 
DNA from each sample was extracted from ~200 mg of stool using the E.Z. N.A Stool 
Extraction Kit following the manufacturer’s protocol (Omega Bio-tek, Doraville, CA). 
Samples were randomized during extraction to avoid processing order bias, with the 
absence of processing and kit contamination verified by parallel blank negative 
controls. High DNA quality was determined by spectrophotometry. The region V3–V4 
of 16S rRNA gene amplicons was amplified and sequenced with Illumina MiSeq (2 × 
300 cycles run) as described previously [33]. 

The Illumina demultiplexed paired-end sequenced dataset was processed by 
the R package DADA2 [34] to correct for amplicon errors, to identify chimeras, and to 
merge paired-ends reads. The end product of DADA2 yielded a total of 2724 unique 
ASV each trimmed to 400 nucleotides in length, cataloged, and tallied as the number 
of times each exact ASV was observed for each sample. A phyloseq R object was 
generated comprised of all 2724 ASVs, a lookup table of taxonomy assignments to 
each ASVs obtained by using the naive Bayesian classifier method, and the SILVA 
ribosomal RNA gene database [35] version v132, plus subject sample metadata. 

The DADA2-derived ASV dataset was initially analyzed by permutational 
analysis of variance (PERMANOVA) (Adonis R package), then the ALDEx2 R package 
[36, 37], as described below. This dataset was then treated using our PIME R package 
[32], which generated ASV prevalences by machine-learning, as validated by 
comparison with control Monte Carlo simulations with randomized variations of 
sequences. This prevalence-filtered dataset was then processed by ALDEx2, and 
output from the DADA2/PIME/ ALDEx2 workflow resulted in a denoised, filtered 
dataset comprised of 86 unique ASV sequences each 400 nucleotides in length 
(Supplementary Information Table 1-SI). PICRUSt2 [38] was employed for stringent 
predictions of functional metabolic pathways. As advantages over PICRUSt 1.0, the 
new PICRUSt2 pipeline inputs sequences as single nucleotide resolution ASVs, 
references ten times more genomes than PICRUSt1, and yields output as MetaCyc 
[39] pathway abundances referenced to shotgun metagenomics. ASV analyses 
included ALDEx2 differential abundances with Mann–Whitney and Bland–Altman plots, 
effects sizes distances, principal component analyses (PCA), and principal coordinates 
analyses (PCoA), network analysis, and pathway differences’ odds ratios. Software 
included Python and R packages, run either standalone on Mac OS X or Calypso online 
[40]. 

 
 
Results 
 
Initial comparison of microbial communities from DEPR vs. NODEPR using the 

entire unfiltered dataset of 2724 unique ASVs was assessed by multivariate 
PERMANOVA and Bray–Curtis distances, which yielded no significant difference (p = 
0.654, R2= 0.0289). A multivariate PERMANOVA-like differential abundance analysis 
of the 2724 ASV DADA2 dataset was then assessed by employing the ALDEx2 R 

http://clinicaltrials.govnct02693327/
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package, resulting in the Mann–Whitney plot and Bland–Altman-type plot shown in Fig. 
1a, b. According to the pattern and color of ASV points in Fig. 1a, b, no red prevalent 
data points and no significant differences between the groups were obtained using the 
full unfiltered 2724 ASV DADA2 dataset; the high number of black points indicates high 
relative abundance of taxa with low prevalence. 

Subsequently, the noisy full dataset of 2724 ASVs was filtered using our PIME 
R package [32]. PIME removed the within-group variations and captured only 
biologically significant differences which have high sample prevalence levels. PIME 
employs a supervised machine-learning algorithm to predict random forests and 
estimates out-of-bag (OOB) errors, resulting in the Fig. 1c sets of ASV prevalence bins 
at 5% intervals. Here, high OOB errors indicate a given prevalence dataset bin is noisy 
representing a high relative abundance of taxa with low prevalence. Therefore in Fig. 
1c the minimal OOB error = zero with the highest signal to noise ratio occurring within 
the 55% prevalence interval based on 292,798 sequence comparisons. This 55% 
prevalence dataset was comprised of 86 ASVs (Supplementary Information Table 1-
SI) that were used for all subsequent downstream analyses. 

Using the 55% prevalence 86 ASV dataset, OOB errors were predicted by a 
Monte Carlo simulation of random forest classifications by running 100 bootstrap 
aggregations on each prevalence interval. The simulation results shown in Fig. 1d 
matches Fig. 1c, thus reinforcing the appropriate choice of utilizing the 55% prevalence 
empirical dataset (Fig. 1c). In order to evaluate the likelihood of introducing bias while 
building the prevalence filtered datasets, the data were also randomly scrambled from 
the two subject groups and then run through the PIME error prediction algorithm again 
using 100 bootstraps. The resulting control randomization OBB errors were not 
significantly different from predicted value of 0.55 at all prevalence bins, as shown in 
Fig. 1e, confirming lack of false-positive type I errors. Thus, taken together the 
prediction simulation (Fig. 1d) and randomization control (Fig. 1e) simulation 
collectively validate our PIME algorithm [32] outcome of the 86 ASVs (Fig. 1c). 

The 55% prevalence dataset of 86 ASVs was then reintroduced into ALDEx2 
analysis, as shown in the Mann–Whitney (Fig. 1f) and Bland–Altman-type (Fig. 1g) 
outcome plots. Unlike Fig. 1a, b, the data in Fig. 1f, g appear as red points representing 
taxa assigned as differentially abundant at q < 0.1, along with non-differentially 
abundant gray points, but no black points that represent noise of high relative 
abundance taxa with low prevalence. 

PCA [41] was executed using the unfiltered pre-PIME DADA2 dataset of 2724 
ASVs and post-PIME-treated 86 ASVs. The pre-PIME 2724 sequence dataset could 
not be resolved into sample group clusters (p = 0.238, R2= 0.02893) as shown in Fig. 
1h. In contrast, in Fig. 1i the post-PIME-treated 86 ASV 55% prevalence dataset 
yielded PERMANOVA (Adonis) Bray–Curtis P < 0.001, R2= 0.531, with PCA ordination 
readily resolved cluster differentiation of DEPR vs. NODEP, as shown with all points 
within the 95% confidence interval (CI) ellipses. These PCA results are consistent with 
the ADLEx2 Mann–Whitney and Bland–Altman results (Fig. 1f, g) and PERMANOVA 
described above. 

The possible influence of antidepressant medication usage on taxa clustering of 
the 86 ASV dataset by the DEPR metadata phenotype was examined. This resulted in 
no outliers from the DEPR metadata by PCA analysis (PERMANOVA P = 0.355) (Fig. 
1j), nor influence on clustering distances by Bray–Curtis dissimilarity network analyses 
(P > 0.05) (Fig. 1k). Therefore, data from all 20 DEPR patients were pooled and 
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included as a single cohort in subsequent analyses regardless of specific 
antidepressant or whether or not their chart specified an antidepressant. Potential 
influences of subject sex were also assessed; however, data parsed by male/female 
were not significantly different from random scrambling of sex (P > 0.05, data not 
shown). 

Output from PIME/ALDEx2 yielded effect sizes for the 86 unique ASV 
sequences (Supplementary Information Table 2-SI), along with uncovering certain 
multiplicities of assigned taxa names assembled at the levels of Family, Genus, and 
species. The bar graph of Fig. 2a shows the taxa differential effect size values over the 
cutoff range of >0.5 for NODEP and <−0.5 for DEPR. ASV sequences of Supplemental 
Table 2-SI were assigned a unique code used for downstream assessment of the 55% 
prevalence dataset, regardless of whether multiple sequences could be assigned the 
same taxonomic name, and then parsed for redundant multiple copies (n > 1) or unique 
(n = 1) taxonomic names assigned to the ASVs as shown in Fig. 2b, c. Note the large 
ASV prevalence representation from the Firmicutes phylum that occurs in both DEPR 
and NODEP, particularly in Lachnospiraceae, Ruminococcaceae, and Bacteroidetes 
Families. And also note the diversity of taxa names assigned to the prevalent ASVs is 
greater for DEPR than for NODEP, as corroborated by Chao1 and Shannon alpha 
diversity analyses (data not shown). The data of Fig. 2 are further discussed below in 
the Discussion. 

PICRUSt2 treatment of the 86 ASVs from the 55% prevalence dataset predicted 
284 MetaCyc microbiome metabolic pathways. Fig. 3a shows the network analysis 
revealing clustering of gut microbiome pathways common to DEPR, as segregated 
from clustering common to healthy control NODEP. The possible influence of 
antidepressant medication use on metabolic pathway clustering by the DEPR 
metadata phenotype was examined in Fig. 3a, resulting in no outliers within the DEPR 
cluster by Bray–Curtis dissimilarity network analyses (P > 0.05). Therefore, pathway 
data from all 20 DEPR patients were pooled and considered as a single cohort (purple 
circles in Fig. 3a) regardless of specific antidepressant (assigned red in Fig. 3a) or 
whether or not their chart specified an antidepressant (assigned blue in Fig. 3a). Based 
on PICRUSt2 pathway data of Fig. 3a, odds ratios and AUC were generated, with the 
top most salient pathway differences shown in the forest plot of Fig. 3b. Notably, these 
data highlight untoward pathways in subjects living with depression as contrasted with 
healthy pathways in reference subjects without depression. 

 
 
Discussion 
 
The machine-learning pipeline of the present study unmasked a novel and 

useful pattern of gut microbiota taxa variants’ prevalences and functionally relevant 
metabolic pathways associated with depression, as compared with healthy reference 
subjects. This is the first implementation of advanced error suppression at the level of 
single nucleotide resolution in compositional gut microbiome assignment to a major 
mental disorder and attending functional pathways phenotype, via a unique pipeline 
that incorporates DADA2 error correction [34] combined with de-noising and taxa 
binning of exact ASV prevalences generated by the R package PIME [32], followed by 
differential abundance analysis with effect sizes via ALDEx2 [36, 37]. The precedent 
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for justifying exact sequences to differentiate microbial populations without OTU 
clustering has been established by large scale population diversity studies [21–24]. 

 
 
Functional metabolic pathways 
 
It is becoming recognized in the literature that the value of microbiome studies 

lies in the importance of the interactive ecology of microbial intermediary metabolism 
pathways over differences in taxonomy [42]. Patterns of metabolic pathways in gut 
microbiota taxa reflect their impact on distinguishing host physiology phenotypes, due 
to the interplay of microbial metabolism with host metabolome and physiology. The 
present ASV approach revealed the differentiation of untoward gut microbiota MetaCyc 
pathways in DEPR, in contrast to healthy pathways in NODEP reference subjects (Fig. 
3a, b). These results are consistent with the distinguishing hallmarks of unfavorable 
shifts in metabolism and host inflammasome dysregulation associated with disruption 
of gut barrier reported for depression vs. healthy individuals, as we and others [6, 8, 
11, 12, 43–47] have reported previously. 

In the present results (Fig. 3) DEPR-associated pathways of butyrate 
degradation and GABA degradation were prominent in the gut microbiome of DEPR. 
In contrast, NODEP was prominently represented by multiple Lachnospiraceae 
NK4A136 and Lachnospiraceae UCG-001 ASVs (Fig. 2, Table 2-SI), which represent 
butyrate producing species associated with the physiological and behavioral health 
benefits of this short chain fatty acid (SCFA) [10, 13, 48, 49]. In a mouse model of 
depression, Lachnospiraceae UCG-001 and Lachnospiraceae NK4A136 abundances 
were significantly enhanced by the antidepressant fluoxetine in a subgroup of mice that 
behaviorally responded to fluoxetine, but these species were not enhanced in the 
subgroup that did not respond to antidepressant treatment [19]. Our pipeline effect size 
results (Fig. 2, Table 2-SI) also indicated high prevalences of Roseburia spp, 
Bacteroides spp, Faecalibacterium spp—in particular, Faecalibacterium prausnitzii—
in both DEPR and NODEP, explainable by the notion that SCFA metabolism is highly 
strain-specific and diet-dependent [20, 50]. Faecalibacterium prausnitzii is the single 
most common human gut bacterium, with relative abundance dependent on prebiotic 
diet composition [50, 51]. 

Inflammation and dysregulation of glutamate, monoamines, and GABA 
neurotransmission have been associated with the pathophysiology of depression and 
comorbid neuropathic pain [6, 13, 52–54]. The results (Fig. 2, Table 2-SI) indicated a 
mixture of taxa representing species that have potential for GABA production 
(Parabaceroidetes merdre and certain strains of Alstipes spp, Bacteriodes spp, 
Eubacterium spp, and Escherichia spp) or GABA consumption (select strains of 
Flavonifractor plautii, Pseudomonas spp, and Acinetobacter spp) [9, 12], with 
somewhat greater prevalence of GABA producing taxa in DEPR compared to NODEP. 
Indeed, the odds ratio data of Fig. 3b favor subjects with depression possessing gut 
microbiota GABA degradation and reduced biosynthesis via: 
“L_arginine_putrescine_and_GABA_degradation_superpathway”, 
L_arginine_and_ornithine_degradation_superpathway”, and “L_argi 
nine_degradation_AST_superpathway”. Conversely, in healthy reference subjects 
without depression the Fig. 3b odds ratio favored 
“L_glutamine_and_glutamate_biosynthesis” which promotes GABA production. 
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The data of Fig. 3 reflect microbiota alterations in small molecules and other 
amino acid pathways associated with depression, such that threonine, tryptophan, and 
leucine that can activate mTOR-mediated intestinal inflammation, while arginine and 
ornithine suppress gut inflammation [55]. Under proinflammatory gut bacteria 
conditions, high levels of tryptophan are converted to kynurenine at the expense of 
reduced serotonin synthesis, whereupon kynurenine crosses blood–brain barrier and 
is converted to neurotoxic kynurenic and quinolinic acids which have been correlated 
with depressive symptoms [56]. Microbial degradation of allantoin in DEPR, and D-
galactuonate degradation NODEP in our subjects are consistent with animal models 
[57, 58]. 

Proinflammatory gut bacteria that generate Kdo2-lipid were favored in DEPR 
(Fig. 2). Kdo2-lipids are the primary component of LPS that activates host TLR4-MD2 
signaling and myeloid differentiation [59], enterobacterial common antigen that is linked 
to LPS via Kdo2 [60], and iron sequestering biofilm-enhancing enterobactin [61]. The 
large effect size for Enterobacteriaceae in DEPR (Fig. 2a ,Table 2-S1) is consistent 
with LPS-related morbidity of strains that disrupt intestinal barrier and invokes 
inflammation from proinflammatory cytokine responses [50] in humans with depression 
[62]. The high ASV prevalence of Roseburia intestinalis in our NODEP subjects (Fig. 
2) is consistent with prior studies showing that the flagellin of this species reduces 
intestinal inflammation by suppressing IL-17 in the host [63]. The pathway data (Fig. 3) 
favored enhancement of oleate and palmitoleate, which are inversely correlated with 
depression [64, 65]. Overall gut microbiota fatty acid beta oxidation was favored in 
DEPR (Fig. 3b). 

 
Taxa 
 
In addition to functional pathway differences, assigned taxa names and taxa 

linear discriminant analysis estimates of effect size differences between depressed 
human subjects vs. healthy control subjects have been used in previous gut 
microbiome compositional studies based on OTU relative abundances or shotgun 
sequencing metagenomics [6, 8–10, 44, 47, 48, 66–68]. Our ASV results (Figs. 1j, k 
and 2a–c, and Table 2-SI) are in accord with the reported general trend in increased 
OTU relative abundances of taxa associated with human depression and rodent 
models of depression with respect to Acidaminococcaceae, Enterobacteriaceae, 
Rikenellaceae, and Coriobacteriaceae Families, and in particular of Blautia sp, 
Alistipes sp, Parabacteroides spp, Phascolarctobacterium sp, Oscillibacter spp, 
Rosburia spp, Flavonifractor sp, and Holdemania sp [10, 11, 44, 45, 48]. Regarding 
trends for OTU relative abundances depleted in DEPR and increased in NODEP, 
select species of Faecalibacterium spp, Ruminococcus spp, Lachnospiraceae spp, 
and Bacteroides spp have been reported [9, 10, 44, 48], as also observed in our ASV 
prevalence results (Fig. 2, Table 2-SI). Previous reports have negatively correlated 
Faecalibacterium spp OTU abundances with magnitude of depression symptom 
severity [10, 69], while our results (Fig. 2, Table 2-SI) identified separate particular 
Faecalibacterium spp ASVs for DEPR and NODEP. Elevated Parabacteroidetes is 
associated with anhedonia in rat models [70], consistent with our results (Fig. 2a–c, 
Table 2-SI). 

Fig. 2 and Table 2-SI indicated that in NODEP nearly 75% of the prevalent taxa 
with effect sizes >0.5 are Lachnospiraceae spp, with the balance of prevalent taxa 
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represented by Bacteroides spp and Ruminococcaceae family. The top prevalence 
effect size for NODEP (Fig. 2a) was Faecalibacterium CM04-06 of the 
Ruminococcaceae family. Both DEPR and NODEP yielded large prevalences of ASVs 
tagged to Ruminococcaceae. This is not unexpected because beneficial vs untoward 
health effects of Ruminococcaceae are highly species- and strain-specific and diet-
induced, due to variations in their fiber hydrolyzing enzyme profiles [20, 50]. Strain-
dependence abundances in DEPR is reportedly associated with elevated R. 
flavefaciens which abrogates effects of antidepressants [18], and elevated select 
members of Bacteroidetes phylum, but with net decreases in Firmicutes in both human 
studies and in rat depression models employing relative OTU abundances alone [45] 
or in conjunction with LC/MS metabolomics [11]. Getachew et al. [15] reported that 
antidepressant ketamine reduced levels of Ruminococcus spp in rats. These OTU 
reports are in contrast to the high degree of representation of ASV assigned to 
Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae in both DEPR and NODEP 
(Fig. 2, Table 2-SI). 

Our ASV prevalence data (Fig. 2, Table 2-SI) indicated an overall greater 
diversity of taxa prevalences in DEPR, in concordance with a 16S closed-OTU 
approach of Jiang et al. [10], but in contrast to other reports of alpha diversity or 
richness with no difference in humans [44] or reduction with a rat depression model 
[45]. It has been posited that the many dimensions of “diversity” of a given ecosystem 
composition are not per se an index of “better” vs. “worse” [71]. 

 
 
Physiological anthropology of depression 
 
Mood disorders exhibit familial transmission, but the exact genetics remain 

unresolved despite ongoing studies analyzing nearly 200 candidate human maker 
genes [43]. People are essentially metaorganisms comprised of ~1014 prokaryotic cells 
plus roughly the same number of eukaryotic cells—host physiology is the co-
evolutionary consequence of the interplay among human plus bacterial genomes and 
metabolomics. The present study emphasizes the importance of gut microbiome 
prevalences on host depression phenotype behavior and metabolic pathways; it is the 
prevalence—in contrast to relative abundance—of certain bacterial metabolic functions 
steered by microbiome genes that ultimately shapes host-microbiota relationships. 
Specific human genetic loci shape heritable patterns of gut microbiome taxa 
prevalences in the host [72]. The Christensenellaceae family is the single most 
heritable gut microbial taxon, typically correlated with various healthy phenotypes [72]. 
Notably, our results (Table 2-SI) indicated ASV prevalence of Christensenellaceae R-
7 group in the NODEP cohort (effect size 0.47), in contrast to DEPR. These data taken 
together with PCA discriminatory taxa clustering of NODEP subjects vs. DEPR (Fig. 
1i–k) collectively imply the heritability of resistance to depression. Thus, 
anthropological group cohesion cultural factors such as food and dietary habits, mating 
preferences that sustain closed groups, and environmental communal exposure to a 
common set of commensal bacteria may propagate bacterial species of depression. 
Or conversely, perhaps certain gut microbiota may have usurped human hosts as 
unwitting prokaryotic propagation vessels by shaping mood and sickness behavior as 
an evolutionary survival advantage by withdrawing their hosts from environmental 
harms or from competing infectious pathogenic bacteria. 
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Conclusion 
 
In conclusion, the present study describes a novel gut microbiome machine-

learning approach to potentially differentiate people with depression from healthy 
reference controls. The process employs DADA2, ALDEx2, PIME, and PICRUSt2 R 
packages to evaluate prevalent ASVs from human gut microbiome 16S rRNA amplicon 
sequences at the level of single nucleotide resolution. This machine-learning technique 
approach may reduce pitfalls of OTU relative abundance clustering and shotgun 
metagenomics. By employing prevalent ASVs, this study led to an ability to distinguish 
20 individuals with depression from 20 healthy reference subjects. Results are 
supported by multivariate analyses’ PERMANOVA P < 0.001, effect sizes >0.5, PCA 
ordination, network analyses, and odds ratios, which collectively conformed to current 
dysbiosis and pathophysiologic hypotheses of depression associated with neurocircuit-
relevant neurotransmitter pathways, inflammation, and gut–brain dysregulation. 
Furthermore, the differential patterns of unique ASVs assigned to taxonomy and 
metabolic pathways associated in individuals with depression and healthy controls 
were generally consistent with prior OTU relative abundance and metagenomics 
studies, with disparities attributable to the taxonomic MetaCyc assignment of species- 
and strain-specific microbiota metabolomics. This is the first published report using this 
gut microbiome machine-learning approach and its utility as a high throughput 
sequencing technique of the gut microbiome to identify individuals with depressive 
symptoms different from healthy reference subjects. Its application in the clinical setting 
may lend to personalizing treatments based on ASV in patients with depression by 
decreasing neurobiological heterogeneity, as based on the current DSM-5 diagnostic 
framework. Larger studies are needed to delineate the extent to which different 
symptoms of depression and influences of antidepressants may correspond with 
functional metaorganisms tethered to underlying neurobiological dysfunction. 

 
 
Code availability 
 
PIME is available at https://rdrr.io/github/microEcology/ pime/; DADA2 is 

available at https://www.bioconductor. org/packages/release/bioc/html/dada2.html; 
ALDEx2 is at https://bioconductor.org/packages/release/bioc/html/ ALDEx2.html; and 
picrust2 is at https://github.com/ picrust/picrust2. 
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Fig. 1 ASV prevalences and metadata analyses. a Mann–Whitney plot of ALDEx2 output using 
complete DADA2 dataset of 2724 Illumina demultiplexed paired-end unique DNA sequences 
(Supplementary Information Table 1-SI) without PIME treatment. b Bland–Altman MA-type plot of same 
dataset described for a. c PIME prevalence bins and out-of-bag (OOB) errors for intervals 5–95%. Based 
on the criterion of greatest number of random forest sequence combinations at the minimal OBB error 
= zero, the 55% interval with 86 AVSs (listed in Supplementary Information Table 2-SI) was ultimately 
employed for all subsequent downstream analyses. d PIME OOB error predictions at each prevalence 
interval, showing box plots of treatments randomly assigned to the 86 ASV dataset samples. These 
simulated predictions match the empirical data of c. e Scrambled control validation of the PIME 
simulations of d, assessed by running randomized variations of OOB errors for each prevalence bin, 
resulting in box plots with OOB errors at all bins hovering at the predicted value of 0.55. Each plot in d 
and e was generated by machine-learning using the 55% prevalence dataset of 86 ASVs run through 
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100 bootstrap iterations of Monte Carlo simulations of random forest classifications on each prevalence 
interval in 5% increments. f Mann–Whitney plot of pipeline output from DADA2 that derived from the 
PIME 55% prevalence dataset of 86 ASV seqs, then subsequently processed with ALDEx2. g Bland–
Altman MA-type plot of same dataset described for d. a, b, f, and g each point represents a unique 
microbial taxon exact amplicon sequence variant (ASV). Red points represent taxa assigned as 
differentially abundant at q < 0.1; gray points are abundant, but not nondifferentially abundant; black 
points are rare and not differentially abundant. Based on f and g, the 55% interval with 86 AVSs was 
ultimately employed for all subsequent downstream analyses. h Principal component analysis (PCA) of 
entire 2724 sequence dataset from the pipeline of DADA2 plus ALDEx2 but not treated using PIME, 
revealing no metadata clustering by PERMANOVA (Adonis) Bray–Curtis p = 0.654, R2= 0.02893. i PCA 
of the 55% prevalence dataset of highly prevalent 86 ASVs from the complete DADA2/ ALDEx2/PIME 
pipeline, revealing significant clustering of metadata by PERMANOVA (Adonis) Bray–Curtis with P < 
0.001, R2= 0.531, with group clusters shown within predicted 95% CI ellipses. Each dataset in h, i was 
log2 transformed, centered and scaled, and run with Bray–Curtis distances with the pca3d subroutine 
of the prcomp R package [41]. j Lack of antidepressant influence on DEPR cohort taxa clustering by 
PCA. Metadata were assigned as: five DEPR subjects with no specific antidepressant listed on their 
chart (blue), 20 DEPR subjects pooled regardless of antidepressant use (red; 15 DEPR subjects with 
charted use of an antidepressant plus five DEPR with no specifically listed antidepressant), or 20 
NODEP subjects (green). There were no outliers from the clustered 20 subject pooled DEPR cohort 
(PERMANOVA P = 0.355) which were collectively isolated from NODEP (P < 0.001) relating to the 86 
prevalent taxa. k Bray–Curtis dissimilarity network analysis of 86 prevalent taxa and lack of 
antidepressant influence on cohort distances. Pearson correlation algorithm was employed with positive 
taxa nodes placed with dissimilarity ordination distances connected by principal coordinates analysis 
(PCoA) edge placement (false discovery rate, FDR P < 0.05), with similarity cutoff at 0.25. Node sizes 
and colors are proportional to relative magnitude within the dataset. Note taxa clustering and purple 
color blend resulting from the overlay of DEPR subjects whose charts listing an antidepressant (red) on 
DEPR subjects whose charts did not list a specific antidepressant (blue), and of which pooled DEPR 
metadata were collectively segregated from clustered NODEP (green). 
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Fig. 2 ASV and taxa prevalences for DEPR vs. NODEP. a .ALDEx2 effect sizes for taxons 
assigned from ASVs. Displayed cutoffs are effect size >0.5 (NODEP) or <−0.5 (DEPR). b DEPR 
ASVs and taxons. c NODEP ASVs and taxons. a–c The DADA2/ALDEx2/ PIME pipeline output 
55% prevalence dataset taxa names were assigned to each 86 unique ASV, regardless of whether 
multiple sequences could be assigned the same taxonomic name, based on the naive Bayesian 
classifier method and the SILVA ribosomal RNA gene database [35] version v132. Redundant 
multiple copies (N > 1) or unique (N = 1) taxonomic names for the ASVs are shown at the levels of 
Family, Genus, and species. The full set of all ALDEx2 effect sizes ASV sequences are listed in 
Supplementary Information Table 1-SI and Table-2SI. 



185 

 

 

 
 

Fig. 3 Metabolic pathway segregation of DEPR vs. NODEP. a Bray–Curtis dissimilarity network 

analysis of microbiome metabolic pathways, and lack of antidepressant influence on cohort distances. 
Data are 284MetaCyc pathways predicted by PICRUSt2 using the DADA2/ALDEx2/PIME 55% bin 
prevalence taxa dataset of 86 ASVs. Pearson correlation algorithm was employed with pathway nodes 
placed by PCoA, showing significant (FDR P < 0.05) positive associations connected by edges, with 
similarity cutoff at 0.25. Node sizes and colors are proportional to relative magnitude within the dataset. 
Note pathway clustering and purple color blend resulting from the overlay of DEPR subjects whose 
charts listed an antidepressant (red) on DEPR subjects whose charts did not list a specific 
antidepressant (blue), and of which pooled DEPR metadata were collectively segregated from clustered 
NODEP. b. Odds ratios in forest plot of select microbiome metabolic pathway data of Fig. 2a. Based on 
the PICRUSt2 MetaCyc pathway data, odds ratios and AUC were generated, with salient pathway 
differences shown. Note the untoward pathways associated with depression pathophysiology phenotype 
in DEPR, in contrast to healthy pathways in NODEP. 
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Abstract 
Classical homocystinuria (HCU) is characterized by increased plasma levels of 

total homocysteine (tHcy) and methionine (Met). Treatment may involve 
supplementation of B vitamins and essential amino acids, as well as restricted Met 
intake. Dysbiosis has been described in some inborn errors of metabolism, but has not 
been investigated in HCU. The aim of this study was to investigate the gut microbiota 
of HCU patients on treatment. Six unrelated HCU patients (males = 5, median age = 
25.5 years) and six age-andsex-matched healthy controls (males = 5, median age = 
24.5 years) had their fecal microbiota characterized through partial 16S rRNA gene 
sequencing. Fecal pH, a 3-day dietary record, medical history, and current medications 
were recorded for both groups. All patients were nonresponsive to pyridoxine and were 
on a Met-restricted diet and presented with high tHcy. Oral supplementation of folate 
(n = 6) and pyridoxine (n = 5), oral intake of betaine (n = 4), and IM vitamin B12 
supplementation (n = 4), were reported only in the HCU group. Patients had decreased 
daily intake of fat, cholesterol, vitamin D, and selenium compared to controls (p < 0.05). 
There was no difference in alpha and beta diversity between the groups. HCU patients 
had overrepresentation of the Eubacterium coprostanoligenes group and 
underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes 
genera. HCU patients and controls had similar gut microbiota diversity, despite 
differential abundance of some bacterial genera. Diet, betaine, vitamin B 
supplementation, and host genetics may contribute to these differences in microbial 
ecology. 

 
 
1. Introduction 
Classical homocystinuria (HCU; OMIM 236200), or cystathionine beta-synthase 

(CBS; EC 4.2.1.22) deficiency, is an inborn error of metabolism (IEM) which 
predominantly affects the transsulfuration pathway. CBS is a key enzyme for the 
transsulfuration pathway, because it irreversibly catalyzes the conversion of 
homocysteine (Hcy) into cystathionine, using pyridoxal phosphate (an active form of 
pyridoxine) as a cofactor. CBS is expressed mainly in the liver, but also in the 
pancreas, kidneys, and brain [1e3]. 

The pathophysiology of HCU is still not fully understood. The spectrum of clinical 
manifestations is broad, ranging from paucisymptomatic patients to a very severe 
multisystem disease. The main organ systems affected are the eyes (ectopia lentis 
and/or severe myopia), skeleton (abnormally high stature, long limbs, osteoporosis, 
bone deformities), central nervous system (CNS) (developmental delay/intellectual 
disability, seizures, psychiatric and behavioral problems, extrapyramidal signs), and 
vascular system (thromboembolic events). The HCU phenotype is closely related to 
pyridoxine responsiveness; usually, pyridoxineresponsive patients have a milder 
phenotype and a later onset than nonresponsive patients [3]. Pyridoxine 
responsiveness is commonly defined according to plasma total homocysteine (tHcy) 
concentration achieved after a challenging test with pyridoxine, with tHcy decreasing 
to below 50 mmol/L [3,4]. 

The aim of HCU treatment is to reduce tHcy to a safe level; nevertheless, normal 
concentrations are usually unachievable, especially in nonresponsive patients. 
Treatment consists of pyridoxine supplementation (for responsive patients) and a 
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Methione(Met)-restricted diet and/or betaine (for nonresponsive patients). As a 
consequence of the Met-restricted diet, nutritional supplementation with a metabolic 
formula (a Met-free mixture of L-amino acids and micronutrients) is necessary; in 
addition, folate and vitamin B12 levels should be monitored and supplemented if 
necessary. Treatment must be lifelong [3]. 

The gut microbiota is composed of trillions of microorganisms [5]. Recent 
studies have shown an impact of these microorganisms on physiological processes, 
and changes in microbiota have been linked to a range of diseases [6,7], including 
CNS [8,9] and vascular disorders [10e12]. Additionally, health-illness continuum in 
humans is associated with differences in microbial communities and their functions 
[13]. 

Diet and genetics are known to influence the gut microbiome [14,15]. The 
restrictive diet, use of a synthetic L-amino acids formula and vitamin supplementation 
used in HCU treatment may affect the gut microbiota [16]. Within this context, the 
present study aims to investigate possible relationships between HCU treatment and 
the gut microbiota. 

 
2.  Methods 

2.1 Experimental design 
This observational, cross-sectional study used a convenience sampling 

strategy, which included six HCU patients and six ageand-sex-matched healthy 
controls. The study protocol was approved by the Ethics Committee of Hospital de 
Clínicas de Porto Alegre (HCPA) (project number 2015-0218). All participants and/or 
their legal guardians provided written informed consent. Patients were recruited from 
outpatient clinics of the Medical Genetics Service (MGS), HCPA, Rio Grande do Sul, 
Brazil. Control subjects were recruited from the Santa Cecília Basic Health Unit, Porto 
Alegre, Brazil, which is located nearby to HCPA; subjects who performed routine 
medical appointments at this Basic Health Unit were invited to participate in the study. 
The inclusion criteria for patients were: a) having a genetic diagnosis of HCU (e.g., 
presence of biallelic pathogenic mutations in the CBS gene); b) being on treatment; c) 
having no other chronic disease; and d) no current use of antibiotics. The inclusion 
criteria for controls were a) no relation to HCU patients, b) no chronic or acute 
diseases, and c) no current use of antibiotics. 

Clinical information, such as treatment strategies and tHcy and Met levels, was 
obtained byreviewing medical records. Besides that, a specific questionnaire was 
applied to every participant, which included questions on the use of medicines 
(antibiotics, laxatives), and of probiotics and fermented milk, and fibers 
supplementation in the last 6 months. Additionally, the use of dietary fiber supplements 
was also recorded. The criteria used to define metabolic control was based on the 1-
year median of tHcy measurements before the stool collection. If the median tHcy value 
was within target, the patient was considered to have good metabolic control. The 
target level of tHcy is 50 mmol/L for pyridoxine-responsive patients, and <100 mmol/L 
for nonresponsive patients [17]. 

All subjects received a kit which consisted of a Styrofoam box containing a 
sterile container in which to store the stool sample, a gel ice pack, and a sterile spatula 
to collect the sample. The participants also received printed instructions for stool 
collection, storage, and transport. They were instructed to collect stool in their own 
homes on the day before their medical appointments at HCPA, store the specimen in 



189 

 

 

a household freezer (20 C), and deliver it the next day, on ice, during the scheduled 
appointment. All participants were also provided printed instructions and a sheet to 
record 3 days of dietary information. The participants were instructed to write down 
everything they had eaten over the 3-day period, as well as the amount and manner of 
preparation of all foods and beverages. Stool samples were preferably to be collected 
on the third day of the food record. Upon returning to the clinic, each participant 
answered a questionnaire about personal features, including dietary and bowel habits 
and current medications. 

 
2.2 Nutritional assessment 

Patients and controls were instructed to complete a 3-day dietary record (day 3 
= the day when the stool sample was collected; days 1 and 2 = before the collection of 
the stool sample). Macroand micronutrient intake were analyzed using Nutribase™ 
software (NB16Cloud, Cybersoft Inc. Phoenix, AZ, USA). As there is no Brazilian table 
of the Met content on foods, daily Met intake could not be estimated; hence, only total 
protein intake was calculated. Daily nutrient intake was computed considering the 
average of the three days of food records. Vitamin supplements and other medications 
were not included in the nutritional analysis. 

 
2.3 pH measurement, bacterial DNA extraction, 16S rRNA geneamplification 

and sequencing 

Frozen stool samples of participants were thawed and aliquoted at room 
temperature (20 C) for pH measurement [18]. To measure the fecal pH, samples were 
diluted 1:10 (w/v) in distilled water. The dilute was homogenized and incubated for 5 
min at room temperature, and fecal pH was measured with an electronic pH meter 
(K39e1014B, KASVI, PR, Brazil) after complete immersion of the electrode for 3 min. 

Bacterial DNA was isolated from 300 mg of frozen stool sample using the QIAmp 
Fast DNA Stool Mini Kit (Qiagen, Valencia, CA, USA), following manufacturer 
instructions. DNA quality was determined by spectrophotometry in a NanoVue™ 
system (GE Healthcare, Chicago, IL, USA). The sequencing library was prepared 
following the procedures described by Barboza et al. [19]. The gut microbial community 
was determined by amplification of the V4 region of 16S rRNA with the barcode 
bacterial/archeal primers 515F and 806R [20]. PCR reactions were carried out with 2U 
of Platinum Taq DNA High Fidelity Polymerase (Invitrogen, Carlsbad, CA, USA), 4 mL 
10X High Fidelity PCR Buffer, 2 mM MgSO4, 0.2 mM dNTPs, 0.1 mM of each barcoded 
primer, 25 mg of Ultrapure BSA (Invitrogen, Carlsbad, CA, USA) and approximately 50 
ng of DNA template in a final volume of 25 mL. PCR conditions were 95 C for 5 min, 
30 cycles at 94 C for 45 s, 56 C for 45 s, and 72 C for 1 min, followed by a final 
extension step of 10 min at 72 C. After visualization on a 1.5% agarose gel, the PCR 
products were purified with Agencourt AMPure XP Reagent (Beckman Coulter, Brea, 
CA, USA). The final concentration of the PCR product was quantified with a Qubit 
Fluorometer kit (Invitrogen, Carlsbad, CA, USA), following manufacturer instructions, 
and combined in equimolar ratios to create a mixture composed of amplified 16S gene 
fragments of each sample. Ultimately, this composite was used for library preparation 
in the Ion One-Touch 2 System, using Ion PGM Template OT2 400 Kit (Thermo Fisher 
Scientific, Waltham, MA, USA). Sequencing was performed with Ion PGM Sequencing 
400 on the Ion PGM System, using 318 Chip kit v2. 
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2.4. 16S profiling data analysis 
The 16S rRNA reads were analyzed following the recommendations of the 

Brazilian Microbiome Project [21], for an efficient removal of sequencing artifacts that 
might exacerbate biases due to the presence of chimeric sequences and sequence 
errors. Briefly, an Operational Taxonomic Unit (OTU) table was built using the 
UPARSE pipeline [22]. Reads were truncated at 200 bp and qualityfiltered with a 
maximum expected error of 0.5. Filtered reads were dereplicated and singletons were 
removed. The sequences were clustered into OTUs at a 97% cutoff, following the 
UPARSE pipeline. Taxonomic classification was carried out in QIIME version 1.9.1 
[23], based on the UCLUST method, against SILVA ribosomal RNA gene database 
version v1327 [24] with 80% boundary confidence. Downstream analyses were 
performed with dataset rarefy to the minimum library size [25,26] in the R software 
environment [27], using the phyloseq [28], vegan [29], and ALDEx2 [30,31] packages. 
Differential abundant microbes were selected based on the effect size rather than on 
p-values only, as proposed by Gloor et al. [31]. Spearman correlation was used to 
evaluate the association between HCU biochemical markers (tHcy and Met levels) and 
OTU richness. 

 
2.5. Statistical analysis 
Statistical analysis of clinical data among groups was carried out in PASW 

Statistics for Windows software (VVs18.0, 2009; SPSS Inc., Chicago, IL, USA). For 
comparison between groups, continuous variables were analyzed using the 
ManneWhitney U test. Categorical variables were compared using Fisher’s exact test 
(p ≤ 0.05).  

 
3. Results 
Six unrelated HCU patients and six healthy individuals were included in the 

study (Tables 1 and 2). All patients had been diagnosed late and were unresponsive 
to pyridoxine. All were on a Metrestricted diet and presented with 
hyperhomocysteinemia. Oral supplementation of folate (n = 6) and pyridoxine (n = 5), 
oral Betaine intake (n = 4), and intramuscular vitamin B12 supplementation (n = 4) 
were reported only in the HCU group. Only two patients had good metabolic control 
(patients H1 and H3, Table 2). 

Nutritional analysis (Table 1) revealed differences in the intake of some nutrients 
between patients and controls. Overall fat (p = 0.025), saturated fat (p = 0.004), 
monounsaturated fat (p = 0.004), cholesterol (p = 0.004), vitamin D (p = 0.004), and 
selenium (p = 0.016) intake was lower in HCU patients compared to controls. 

 
3.1. Microbiota composition and the correlation between gut microbiota and 

HCU biochemical markers 
Nine known bacterial phyla were detected within all samples (Fig.1). The most 

dominant was Bacteroidetes (HCU: 62.5%; controls: 55.2%), followed by Firmicutes 
(HCU: 32.7%; controls: 39.1%) and Proteobacteria (HCU: 2.1%; controls: 5.1%). Alpha 
diversity analysis (Fig. 2) showed no difference between HCU patients and controls, 
neither in richness nor in evenness. The lack of difference in diversity between HCU 
and controls suggests that HCU treatment does not have an effect on gut bacterial 
diversity. Differences in gut composition between treatments were verified by Principal 
Coordinates Analysis (PCoA) and permutational multivariate analysis of variance 
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(PERMANOVA). Beta diversity analysis is dependent upon distances of dissimilarities 
between samples; here, the Bray-Curtis and Binary distances were used. Irrespective 
of the distance applied, the beta diversity analysis showed no difference between HCU 
patients and controls, as observed by PCoA (Fig. 3) and PERMANOVA. 

The association between HCU gut microbiota (number of OTUs), tHcy and Met 
is shown in Fig. 4. Microbial richness had no correlation with tHcy (R = -0.43, p = 0.42) 
and Met levels (R = -0.77, p = 0.1). 

 
3.2. Biomarker analysis 
Although no differences in overall alpha and beta diversity were detected 

between HCU patients and controls, significant associations between HCU patients 
and specific bacteria might still exist. Such associations were tested by modeling the 
data as a log-ratio transformed probability distribution rather than counts. Differential 
abundant microbes analysis indicated that one OTU closely related with the 
Eubacterium coprostanoligenes group was increased in HCU patients (Table 3). On 
the other hand, four OTUs closely related with Alistipes (2 OTUs), Family XIII UCG-
001, and Parabacteroidetes were increased in controls (Table 3). 

 
4. Discussion 
To the best of our knowledge, this is the first study to characterize the gut 

microbiota of HCU patients. Surprisingly, our data suggest the microbiota of HCU 
patients and controls does not differ regarding diversity. 

Dysbiosis can be defined as any perturbation to the structure of complex 
commensal communities [32]. Dysbiosis can contribute to the onset of chronic disease 
in one of three general ways: 1) pathogens and their functions can be acquired or 
opportunistically overgrow (gain of function dysbiosis); 2) health-protective bacteria 
and their functions may be lost or suppressed (loss of function dysbiosis), and 3) a 
combination of loss and gain of function dysbiosis [33]. Studies on the relationship 
between the gut microbiota and other IEM are still scarce and have shown that treated 
phenylketonuria (PKU) [34] and hepatic glycogen storage diseases (GSDs) patients 
have dysbiosis [18]. Even though the genetic and dietary aspects of these IEMs are 
different from HCU, both GSD and PKU patients had decreased alpha and beta 
diversity and distinct microbiota composition when compared to healthy subjects. We 
expected that the gut microbiota profile of patients with HCU would be similar to that 
of patients with PKU, as treatment for both diseases involves a restrictive diet (in PKU, 
there is a restricted intake of phenylalanine and in HCU, of Met) and use of a metabolic 
formula to supplement nutrients. Nevertheless, we found no differences in alpha nor 
beta diversity in HCU patients when compared to controls. We also found no 
association between gut microbiota and biochemical markers in HCU patients. 

Our finding of lower intake of cholesterol, fat (saturated and monounsaturated), 
vitamin D, and selenium in HCU patients is mainly explained by their Met-restricted 
diet, which excludes or restricts many foods from animal origin as well as nuts and 
beans, which are sources of these nutrients [35]. It is important to point out, however, 
that the intake of these nutrients was not below dietary recommendations; that most 
patients, actually, were not fully compliant to the dietary treatment (and, so, showed a 
bad metabolic control); and that the metabolic formula for HCU includes 
supplementation of vitamin D and selenium (at the time of inclusion in the study, only 
3 out of the 6 patients were taking the formula, but only one had a good metabolic 
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control). Regarding other nutrients, no differences were found between the groups. 
The most probably explanation for this finding is also the poor adherency to the Met-
restricted diet. 

A unique feature of HCU treatment is the supplementation of high doses of B 
vitamins [3], and the supplementation of dietary nutrients related to one-carbon 
metabolism has shown a role in modulating the gut microbiota[36e39]. Therefore, 
vitamin supplementation may be involved in the diversity profile found in patients with 
HCU. Furthermore, studies in mice have shown possible beneficial effects of a Met-
restricted diet, such as decreased intestinal permeability, inflammation, and oxidative 
stress [40,41]. 

Gurwara et al. [36] reported that B vitamins, involved in onecarbon metabolism, 
were associated with variations in microbiota profile: high dietary intake of folate, 
pyridoxine, and vitamin B12 was associated with an increase in richness and 
evenness. Interestingly, our study found no difference in richness or in evenness. In 
addition, Gurwara et al. [36] found that high intake of pyridoxine, vitamin B12, and 
folate was associated with an increased abundance of Verrucomicrobia and Alistipes, 
while our study found a decreased abundance of Alistipes in patients with HCU. 
Furthermore, low abundance of Alistipes in the human gut microbiota is known to be 
associated with better dietary quality [42]. As HCU patients have a restricted diet, they 
are not expected to have a high dietary quality, and this was a surprising finding. 
However, some important differences must be noted: (a) the Gurwara et al. study [36] 
was performed only in men between the ages of 50 and 75; (b) bacterial samples were 
obtained by colonoscopy, not from stool samples; and (c) their criterion of high or low 
intake of the analyzed vitamins was exclusively dietary, while our patients with HCU 
were taking high supplemental doses of these vitamins. 

The relationship between gut microbiota and the CNS has been widely 
described in the literature; however, its mechanisms are not fully understood. The gut-
brain axis is bidirectional [43], and a number of studies have associated gut microbiota 
profile with neurodegenerative diseases [9] and neuropsychiatric disorders [8]. In this 
study, we were unable to evaluate CNS manifestations in light of microbiome profile, 
both due to the small sample size and because, in patients with HCU, CNS 
manifestations may be secondary to the toxic effects of high Hcy levels [44]. 
Nevertheless, Hcy itself is able to disrupt the blood-brain barrier [45], and it is plausible 
that the microbiota might be a contributor to CNS manifestations in this condition due 
to a myriad of immune-cellular mechanisms [46]. This relationship must be elucidated 
further to understand how the gut microbiota may be related to CNS manifestations. 

Our study found an increase in the genus Eubacterium coprostanoligenes group 
in HCU patients. This bacterial genus has been associated with anxiety disorder [47], 
psychosocial stress [48], and cholesterol metabolism [49,50]. Although there is lack of 
data in the literature, much because it is a bacterial genus not yet cultivable. In addition, 
we found a decrease in the genera Parabacteroides and Family XIII UCG-001. The 
decrease in the genus Parabacteroides was related to lower intake of milk and dairy 
products [42], and, indeed, the diet of HCU patients restricts intake of these types of 
foods. 

Despite little information in the literature, an increase in Family XIII UCG-001 
abundance has been described as a neuroprotective biomarker in chronic social defeat 
stress-induced depressive-like behavior in mice treated preventively with probiotics 
[51]. 
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This was the first study designed to characterize the gut microbiota in HCU 
patients under treatment. As HCU is a rare disease, we were only able to enroll a small 
number of patients. This, and the cross-sectional design which precludes any causal 
inference were the main limitations of our study. 

 
5. Conclusion 
Our data suggest that the diversity of gut microbiota is similar in patients with 

HCU and healthy controls, despite differences in some genera. The gut microbiota 
profile found in HCU patients is probably a sum of several factors, such as diet and 
treatment; host genetics may be related to differences in microbial ecology and even 
to the presence of bacterial genera still little described in the literature. Future studies 
on the gut microbial composition of HCU patients are needed to confirm these findings 
and to investigate the association of gut microbiota with treatment regimens and 
biochemical features of HCU. 
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Figures 
 

 
 
 
 
Fig. 1. Frequencies of phyla found in HCU patients (n=6) and healthy controls (n=6). The panel 
represents the average abundance per group. HCU: classical homocystinuria. 
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Fig. 2. Alpha diversity measurements of microbial communities in HCU patients (n=6) and controls 
(n=6). Each panel represent one alpha diversity measure: (A) Observed index estimates the amount of 
unique OTUs found (richness). (B) Shannon index accounts for richness (count) and evenness 
(distribution). (C) Simpson index accounts for both richness and evenness. 
 
 

Fig. 3. Principal coordinates analysis (PCoA) representing the comparison of microbial communities in 
HCU patients and controls. PCoA base on (A) Bray-Curtis dissimilarity (F-value = 0.937; R2 = 0.085; p-
value = 0.453). (B) Binary distance (F-value = 0.966; R2 = 0.088; p-value = 0.671). (C) Unweighted 
UniFrac (F-value = 0.212; R2 = 0.895; pvalue = 0.72). (D) Weighted UniFrac (F-value = 0.824; R = 0.076; 
p-value = 0.453). HCU: classical homocystinuria 
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Fig. 4. Correlation between gut microbiota and biochemical markers. Spearman correlations between 
HCU gut microbiota richness (total number of OTUs), (A) tHcy and (B) Met levels. 

 
 
Tables 
 
Table 1. Comparison between the HCU and control groups. 

Variable HCUa (n = 6) Controla (n = 6) p-value 

Sex (male:female) 5:1 5:1 1.000 

Age (years) 25.5 (15.2e31.2) 24.5 (17.2e32.0) 0.810 

Weight (kg) 63.0 (52.5e74.8) 68.9 (50.0e84.5) 0.631 

Height (cm) 173.9 (154.6e182.3) 177.0 (153.2e183.5) 0.873 

BMI (kg/m2) 22.0 (19.7e24.0) 22.1 (19.7e24.8) 1.000 

Fecal pH 7.2 (6.74e7.6) 7.3 (7.0e7.6) 0.873 

Antibioticsb (yes:no) 2:4 1:5 1.000 

Laxativesb (yes:no) 0:6 0:6 1.000 

Probioticsb (yes:no) 0:6 1:5 1.000 

Fibers supplementationb 

(yes:no) 
0:6 0:6 1.000 

Vitamin supplementationb 

(yes:no) 
3:3 6:0 0.181 

tHcy (mmol/L) 80.0 (45.5e97.8) e  

Met (mmol/L) 287.1 (40.0e460.1) e  

Daily intake -Calories (kcal) 
1349.3 (1308.2e1863.3) 1863.0 (1220.0e2493.0) 0.631 

-Calories (kcal/kg) 24.4 (19.1e37.2) 24.7 (18.5e35.5) 0.749 

-Protein (g) 41.7 (28.1e102.6) 82.9 (56.1e140.7) 0.150 

-Protein (g/kg) 0.8 (0.4e1.5) 1.0 (0.9e1.8) 0.418 

-Carbohydrates (g) 262.5 (219.8e304.3) 225.5 (148.2e292.5) 0.423 

-Dietary fiber (g) 20.7 (16.5e29.5) 20.1 (13.6e28.4) 0.749 

-Sucrose (g) 1.8 (0.2e8.3) 1.5 (0.8e10.1) 0.631 

-Fat (g) 30.5 (17.2e40.2) 59.0 (38.8e89.5) 0.025 

–Saturated (g) 8.8 (3.1e10.3) 20.3 (14.1e29.7) 0.004 

–Monounsaturated (g) 5.7 (1.7e10.7) 16.9 (14.0e25.2) 0.004 

–Polyunsaturated (g) 4.8 (2.2e9.6) 8.8 (5.3e16.0) 0.150 

–Omega-3 (g) 0.2 (0.2e0.4) 0.3 (0.1e0.4) 0.629 

–Cholesterol (mg) 32.4 (7.8e48.8) 223.0 (186.2e301.9) 0.004 

-Vitamins –A (mcg) 
372.3 (64.0e1324.6) 180.3 (97.4e534.7) 0.522 

–Pyridoxine (mg) 1.4 (0.6e2.2) 1.2 (0.5e1.9) 0.749 

–Choline (mg) 102.9 (47.6e233.7) 197.8 (131.4e397.8) 0.150 

–Total folate (mcg) 179.4 (130.7e276.2) 349.1 (190.0e405.0) 0.109 

–B12 (mcg) 3.0 (0.1e5.7) 4.5 (2.7e7.9) 0.200 
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–C (mg) 139.0 (33.9e209.0) 82.6 (43.5e110.3) 0.262 

–D (IU) 16.2 (2.9e22.7) 58.5 (36.4e128.5) 0.004 

–E (IU) 2.4 (0.8e3.5) 4.4 (2.6e7.5) 0.109 

–K1 (mcg) 43.8 (28.6e75.0) 23.3 (13.5e68.0) 0.262 

-Minerals –Calcium (mg) 
602.6 (300.9e2577.43) 671.4 (400.4e973.0) 0.749 

–Iron (mg) 9.7 (8.2e42.8) 13.3 (9.3e21.5) 0.748 

–Magnesium (mg) 164.1 (111.7e419.0) 220.3 (166.2e276.8) 0.522 

–Phosphorus (mg) 517.1 (379.3e1483.1) 962.8 (799.0e1426.5) 0.200 

–Potassium (mg) 1500.7 (1116.6e2621.1) 1800.1 (1539.4e2652.8) 0.337 

–Selenium (mcg) 37.1 (23.2e56.5) 93.8 (57.4e146.5) 0.004 

–Zinc 7.1 (4.4e17.8) 12.7 (7.7e19.4) 0.423 

HCU: classical homocystinuria; BMI: body mass index; tHcy: total homocysteine; Met: methionine; -: not 
measured. 
Numerical variables summarized as median (interquartile range) and compared using the Mann-
Whitney U test. Categorical variables were compared using Fisher’s exact test. Significant p-values 
(<0.05) highlighted in bold. 
a Formula and diet, but not vitamin supplementation, were taken into account for analysis. 
b In the previous 6 months. 
 
Table 2. Characteristics of patients with HCU included in the study. 

Patient H1b H2 H3 H4 H5 H6 

Age (years) 4 19 23 28 28 41 

Age at treatment 

onset (years) 

4 13 2 8 6 14 

Sex (M/F) M M M F M M 

Genotype p.Glu176Lys/p

.Val533Gly 

p.Thr191Met/c

.209þ1delG 

p.Ile95Thr/

p.Ile95Thr 

p.Asp376Asn/

p.828ins104, 

737del9 

p.Asn149fs/

p.Asn149fs 

p.Gly85Arg/

p.Gly85Arg 

Consanguinity No No Yes No Yes Yes 

Pyridoxine 

responsiveness 

No No No No No No 

tHcy (mmol/L) 48.6 102.6 36.2 96.3 75 85 

1-year tHcy median 

(mmol/L) 

- 110.1 40.5 117.1 146.9 168.6 

Met (mmol/L) 29.5 690.2 43.5 217.1 357.2 383.5 

Metabolic controla 

(good/ poor) 

Good Poor Good Poor Poor Poor 

Clinical manifestations 

-Ocular Yes Yes Yes Yes Yes Yes 

-Skeletal Yes Yes Yes No Yes Yes 

-CNS Yes No Yes Yes Yes Yes 

-Vascular No No Yes No Yes No 
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Current treatment 

-Met-restricted diet Yes Yes Yes Yes Yes Yes 

-Metabolic formula Yes No No No Yes Yes 

-Pyridoxine Yes Yes Yes Yes No Yes 

-Betaine No Yes Yes No Yes Yes 

-Folate Yes Yes Yes Yes Yes Yes 

-Vitamin B12 Yes No No Yes Yes Yes 

HCU: classical homocystinuria. tHcy: total homocysteine. Met: methionine. CNS: central nervous 
system. 
a Metabolic control was defined on the basis of 1-year tHcy medians before the stool sample collection. 
If the tHcy level was within target, metabolic control was considered good. As all the patients were 
nonresponsive to pyridoxine, the target tHcy level was <100 mmol/L for the whole sample [3]. 
b The patient had been under treatment for 4 months. The patient had only one measure of tHcy and 
Met under treatment. 
          
 
Table 3. Microbial biomarkers differentiating HCU patients from healthy controls. 

HCU: classical HCU: classical homocystinuria. 
Positive values of effect size indicate greater abundance in the HCU patients, whereas negative 
values indicate greater abundance in controls. 
As the data were centered log-ratio transformed, OTUs with extremely low abundance appear to be 
negative. 
Significant p-values (<0.05) highlighted in bold. 
a Two different OTUs corresponding to the same genus were identified, but identification at the 
species level was not possible. 
 

  

Closest microbial 
relative 

Median of the centered log-ratio of 
the number of 

sequences 
 

Effect size p-Value 

 

 HCU (n = 6) Controls (n = 6) 
 

  

Eubacterium 
coprostanoligenes group 

7.037 -1.271 1.026 0.061 

Alistipesa 4.197 11.723 -1.107 0.021 

Alistipesa -1.262 3.263 -1.138 0.044 
Family XIII UCG-001 0.622 5.299 -1.252 0.020 

Parabacteroidetes 2.147 8.660 -1.308 0.009 
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Meconium microbiome and its relation to neonatal growth and head 
circumference catch-up in preterm infants 

 
 

Ana Carolina Terrazzan Nutricionist1, Renato S. Procianoy2, Luiz Fernando 
Wurdig Roesch3, Andrea Lúcia Corso2, Priscila Thiago DobblerID3, Rita C. Silveira1,2* 
 
 
 
 
 
1 Postgraduate Program in Child and Adolescent Health–PPGSCA, Federal 
University of Rio Grande do Sul–UFRGS, Porto Alegre, Brazil  
2 Neonatal Intensive Care Unit Hospital de Clínicas de Porto Alegre, RS, Porto 
Alegre, Brazil  
3 Interdisciplinary Center for Biotechnology Research–CIP-Biotec Federal University 
of Pampa, São Gabriel, Rio Grande do Sul, Brazil 
 
 
* drarita.c.s@gmail.com 
 
 
 
 
DOI: https://doi.org/10.1371/journal.pone.0238632 
Received: December 11, 2019 
Accepted: August 20, 2020 
Published: September 21, 2020 
 

 

 

Abstract 

The purpose was identify an association between meconium microbiome, extra-uterine 
growth restriction, and head circumference catch-up. Materials and methods: 
Prospective study with preterm infants born <33 weeks gestational age (GA), admitted 
at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. 
Excluded out born infants; presence of congenital malformations or genetic 
syndromes; congenital infections; HIV-positive mothers; and newborns whose parents 
or legal guardians did not authorize participation. Approved by the institution’s ethics 
committee. Conducted 16S rRNA sequencing using PGM Ion Torrent meconium 
samples for microbiota analysis. Results: Included 63 newborns, GA 30±2.3 weeks, 

http://orcid.org/0000-0002-7681-5463
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mean weight 1375.80±462.6 grams, 68.3% adequate weight for GA at birth. 
Polynucleobacter (p = 0.0163), Gp1 (p = 0.018), and Prevotella (p = 0.038) appeared 
in greater abundance in meconium of preterm infants with adequate birth weight for 
GA. Thirty (47.6%) children reached head circumference catch-up before 6 months CA 
and 33 (52.4%) after 6 months CA. Salmonella (p<0.001), Flavobacterium (p = 0.026), 
and Burkholderia (p = 0.026) were found to be more abundant in meconium in the 
group of newborns who achieved catch-up prior to 6th month CA. Conclusion: 
Meconium microbiome abundance was related to adequacy of weight for GA. 
Meconium microbiome differs between children who achieve head circumference 
catch-up by the 6th month of corrected age or after this period. 
 

Introduction 
The balance between the host and intestinal microbes is protective to health [1–

3]. Gut microbiota is essential for suitable nutrient absorption, energy storage, and 
immune response, and it’s also responsible for multiple metabolic tasks, including 
production of essential vitamins, fermentation and breakdown of oligosaccharides and 
production of short-chain fatty acids and gases [4, 5]. However, for the microbiota to 
perform such tasks, the host must maintain a favorable gut environment.  

The mechanisms by which microbiota formation occurs via placenta and 
amniotic fluid are still not fully elucidated. Some studies support the hypothesis that 
fetal intestinal microbiome is derived from the swallowing of amniotic fluid containing 
bacteria [6, 7]. The mechanism related to this hypothesis is that maternal bacteria might 
translocate through maternal bloodstream, achieving other organs and systems, 
reaching amniotic fluid also [8] Yet, more studies are needed in order to better elucidate 
mechanisms involved in microbiota formation via placenta and amniotic fluid [9, 10]. 

There is evidence of a gut-brain axis, linking gut microbiota and the development 
of nervous system function. The maintenance of this bidirectional communication 
between central and enteric nervous system evolves endocrine, immune and neuronal 
pathways and it’s essential for neurological development and brain growth [11, 12]. 

For many reasons preterm infants are also high-risk infants for impaired growth, 
nutrition and neurodevelopment; and the possible early dysbiosis might interfere on 
microbiota metabolic capacity, and consequently alter nutrient absorption, influencing 
growth and neurodevelopment [1, 13]. 

A better understanding of microbiome variation may allow the early detection of 
a subpopulation of preterm infants at higher risk for growth and developmental 
impairment during follow-up. Thus, we aimed to identify and describe the composition 
of the microbiota of the first meconium of preterm infants. We also aimed to verify if 
there was an association between microbiota composition with restricted extra-uterine 
growth and with head circumference catch-up after discharge, both important growth 
variables that may influence the neurodevelopmental outcomes. 

 

Material and methods 

The study was approved by the Institutional Ethics Committee of Hospital de 
Clinicas de Porto Alegre and Brazilian review board. All mother or legal guardian had 
provided written informed consent. This was a prospective cohort study including 
preterm infants gestational age <33 weeks, born and admitted at the Neonatal Unit and 
attending the Follow-Up Preterm Program of a tertiary hospital in Porto Alegre, RS. 
Infants born in another hospital, presence of congenital malformations or genetic 
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syndromes, congenital infections, and HIV+ mother were exclusion criteria. Data 
collection started following Institution Ethics Committee approval (140009 – 
n˚1.388.950). Clinical data and sample characterization were prospectively recorded 
and associated to meconium microbiome sequencing data bank. Maternal variables 
studied were: maternal age, mode of delivery, maternal antibiotics, presence of urinary 
tract infections (urine culture test positive and clinical signs), or clinical chorioamnionitis 
(maternal fever, uterine hypertonia, malodorous or purulent amniotic fluid, maternal 
leukocytosis or fetal tachycardia), preeclampsia, and gestational diabetes. 
Preeclampsia was defined as presence of hypertension (blood pressure > 140/90 
mmHg after 20 weeks of gestation with significant proteinuria). For gestational 
diabetes, fasting was 92g/dL or glycemia of 153 g/dL following oral glucose tolerance 
test, with onset during pregnancy. Neonatal variables: gender, birth weight, gestational 
age (determined by the best obstetrical estimate, including first trimester ultrasound 
and/or last menstrual period date, confirmed by pediatric physical examination 
immediately after birth), being appropriate-for-gestational-age (AGA), small-for-
gestational-age (SGA: below the 10th percentile according to reference curve), 
intrauterine growth restriction (below 3rd percentile). We also looked at hospitalization 
data to verify periintraventricular leukomalacia, necrotizing enterocolitis, early and late 
sepsis, hospitalization after discharge, and use of anticonvulsant. 

Following NICU discharge, patients were referred to the Follow-Up Program. 
According to the routine of the institution, all children have monthly appointments up to 
6 months of corrected age. Routine also includes anthropometric measurement 
(weight, length, head circumference). For this study, we evaluated head circumference 
at 2, 4, and 6 months corrected age in order to identify those patients for whom catch-
up head circumference was achieved before or after 6 months corrected age. Catch-
up was defined as a 0.67 z-score variation between two consecutive z-scores [14]. 
Fenton Growth Calculator for Preterm Infants (2013) [15] was used to generate birth 
data z-scores, as well as to determine adequacy of weight for gestational age; and 
WHO Anthro, 3.2.2 version (2011) was used for z-scores from follow-up period. Both 
software take into account gender and age, with age being corrected for preterm 
infants. Standardized equipment for measuring the infants was used by a trained 
researcher (ACT). Weight was measured using a digital scale, accurate to within 5g 
(ELP, 25BBA, Balmak1), with the infant wearing no clothes. Length was measured to 
the nearest centimeter in horizontal position using a length board accurate to 0.1 cm, 
with the infant lying down. Head circumference was measured using a non-stretch 
tape, accurate to 0.1 cm, placed on the broadest part of the forehead above eyebrows, 
above the ears, and around the most prominent part of the back of the head. 

Feeding practices, regarding type of milk the infants were receiving (mother’s 
milk, infant formula, or cow’s milk) were evaluated, from hospital discharge up to six 
months corrected age. 

 

Meconium collection samples 

After the mother or legal guardian had provided written informed consent, the 
first meconium passed by the infant was collected from diaper in sterile conditions, 
immediately stored at -80˚C in a cryogenic storage Dewar, and transported to a 
laboratory where microbial DNA extraction and microbial community composition 
analysis was performed. This collection occurs mandatorily before the newborn 
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receives any enteral feeding, as some studies suggest differences in microbial 
colonization between breastfed infants and formula-fed infants [16]. 

 

Microbial DNA extraction, amplification, and sequencing 

Microbial DNA was isolated from 180 mg of each meconium sample using the 
QIAamp Fast DNA Stool Mini Kit (Qiagen, Valencia, CA, USA), in accordance with 
manufacturer instructions. DNA quality was verified by spectrophotometry in a 
NanoVue™ system (GE Healthcare, Chicago, IL, USA). All DNA samples were stored 
at -80˚C until use. V4 region of 16S rRNA gene was amplified and sequenced using 
ION PGM™ Ion Torrent (Thermo Fisher Scientific, Waltham, MA, USA), with primers 
515F and 806R. Multiple samples were amplified by polymerase chain reaction (PCR) 
using barcoded primers linked to adapter “A” sequence (50-CC 
ATCTCATCCCTGCGTGTCTCCGACTCAG-30) and “P1” sequence (50-
CCTCTCTATGGGCAGTCGGTGAT-30) to obtain a primer sequence composed for the 
A-barcode-806R and P1515F adapter and primers. PCR reaction final volume was 25 
μL. Each mix consisted of 2U Platinum1 Taq DNA High Fidelity Polymerase 
(Invitrogen, Carlsbad, CA, USA), 4 μL 10X High Fidelity PCR Buffer, 2 mM MgSO4, 
0.2 mM dNTPs, 0.1 μM of both primers described above, 25 μg UltraPure BSA (Invi-
trogen, Carlsbad, CA, USA), and approximately 50 ng of template DNA. PCR 
conditions used were: 95˚C for 5 min, 35 cycles at 94˚C for 45 s, 56˚C for 45 s, and 
72˚C for 1 min, followed by 72˚C for 10 min. Resulting PCR products were purified with 
Agencourt1 AMPure1 XP Reagent (Beckman Coulter, La Brea, CA, USA) and 
quantified using the Qubit Fluorometer kit (Invitrogen, Carlsbad, CA, USA), following 
manufacturer recommendations. 

Finally, reactions were combined in equimolar concentrations to create a 
mixture composed of amplified fragments of 16S gene from each sample. This 
composite sample was used for library preparation with OneTouch™ 2 Ion system 
using the ION™ PGM Template 400 OT2 kit (Thermo Fisher Scientific, Waltham, MA, 
USA). Sequencing was performed using commercially available ION PGM™ 
Sequencing 400 kit on an ION PGM™ System, using an Ion 318™ Chip v2, with a 
maximum of 40 samples per microchip. 

 

Sequence processing for analysis 

Fastq files exported from ION PGM™ system were analyzed following 
recommendations from Brazilian Microbiome Project (BMP) [17], using the BMP 
Operating System [18]. Briefly, an Operational Taxonomic Unit (OTU) table was 
compiled using UPARSE pipeline [19] wherein sequences were truncated at 200 base 
pairs and quality filtered using a maximum expected error cutoff of 0.5. Sequences 
were clustered into OTUs using a 97% similarity cutoff, and chimeric sequences were 
removed. Taxonomic classification was performed in QIIME software environment [20], 
based on UCLUST method, against Greengenes 13.5 database [21], with a confidence 
limit of 80%. Sampling effort was estimated using Good’s coverage formula [22]. For 
downstream analysis, the data set was filtered by removing Chloroplast/Cyanobacteria 
sequences and only OTUs with more than 5 sequence reads were kept before rarefying 
all samples to 5379 sequences each [23]. 

Functional prediction for the gut microbiome was performed using PICRUSt 24]. 
For that, the raw 16S rRNA dataset was prepared following the instructions of Langille 
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et al. (2013) [24]. After quality filtering and trimming, OTUs were picked against the 
Greengenes [21] database. 

 

Statistical analyses 

Data obtained were stored in a database constructed for this specific purpose, 
using Excel software. Afterwards, data were processed and analyzed using PASW 
(SPSS) software, 18.0 version (Statistical Package for Social Sciences). Results are 
expressed as mean ± Standard Deviation (SD), minimum and maximum values, or 
median and interquartile (p25-p75). Differences between medians were analyzed with 
Mann-Whitney test. Between-groups differences were analyzed by T test, Qui Square, 
and ANOVA when more than two groups were analyzed. 

Microbiome database was imported into R (R Development Core Team, 2008) 
to assess structural differences in the microbial community and detect possible 
confounders; a compositional dissimilarity matrix was generated based on the Bray-
curtis distances between samples using the phyloseq package [25]. The matrix was 
used in a nonparametric Multivariate Analysis of Variance (PERMANOVA) with the 
Adonis function available in the vegan package [26]. To estimate alpha diversity, 
microbial dominance and Shannon diversity index were calculated and plotted using 
the "phyloseq" package [25]. Alpha diversity measurements were tested for normality 
with Shapiro-Wilk test and variables were compared by Kruskal-Wallis rank sum test. 
Differential abundance analysis was performed with DESEq2 [27]. The p-values were 
adjusted for multiple comparisons using the FDR method. 

For the functional prediction of the gut microbiota, functions were categorized 
by the third KEGG Pathway Hierarchy Level and hypothesis testing was performed 
with two-sided White’s non-parametric t-test. Hypothesis testing and plotting were done 
using STAMP [28] Only features with a difference in proportion of 0.1 (Effect size > 0.1) 
were considered as active. 

 

Results 

Eighty-seven samples were collected. Eleven were excluded for not being 
sterile, six did not have enough material for analysis, and in seven it was not possible 
to determine microbial DNA. In total, for this study we analyzed 63 meconium samples 
of preterm infants, of whom 30 (47.6%) were boys, with mean gestational age of 30±2.3 
weeks. Mean weight, length, and head circumference at birth were 1375.80±462.6 
grams, 38.0±4.0 centimeters, and 27±2.7 centimeters, respectively. Mean maternal 
age was 25.95±6.5 years, and 45 (71.4%) infants were delivered by C-section. 
Prevalence of preeclampsia, gestational diabetes, and urinary tract infection was 
16(25.4%), 7 (11.1%), and 7 (11.1%), respectively. At discharge, mean gestational age 
was 38±3 weeks and mean weight was 2573.05±292.18 grams.  

Forty-nine (68.3%) were AGA, and of these 57.14% (n = 36) were also 
discharged AGA. Thirteen (20.63%) were born AGA and were SGA at discharge. 
Twelve (19.4%) were born SGA and were discharged also SGA. Only two (3.17%) of 
those born SGA were LGA at discharge (this group was excluded from data analysis, 
because of its limited size). The growth pattern was significantly higher among the AGA 
neonates. Regarding use of breast milk or formula during the hospital stay, no 
difference was found according to adequacy of weight for gestational age at birth and 
discharge. (Table 1). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787113/#CR21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787113/#CR21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787113/#CR21
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In total, we identified 5,309 different OTUs across all samples, of these, 16 
OTUs had mean abundance higher than 1%. Microbial composition was similar when 
compared according to weight at birth and at discharge. Alpha diversity measurements 
between groups AGA-AGA vs. AGA-SGA vs. SGA-SGA were similar (Observed OTUs, 
p-value = 0.745) and Shannon Diversity Index, p-value = 0.127 (Fig 1). 

The overall microbial composition at phylum level according to weight adeqacy 
at birth is presented in Fig 2A, and at discharge in Fig 2B. Four phyla were found to be 
dominant across the samples irrespective of weight adequacy at birth or delivery. They 
were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. On average, 
infants in the SGA group at birth or discharge had higher Firmicutes while those in the 
AGA group had higher Proteobacteria then their couterparts. 

When compared to the SGA at birth group, those born AGA had an increased 
abundance of OTUs belonging to genus Polynucleobacter (p = 0.0163), phylum 
Proteobacteria, Gp1 (p = 0.018) phylum Acidobacteria, and Prevotella (p = 0.038) 
phylum Bacteriodetes (Fig 3A). 

Between most abundant OTUs observed, when comparing preterm AGA or 
SGA at discharge, those OTUs belonging to Escherichia fergusoni (p = 0.014) and 
Streptococcus dentisani (p = 0.043) genus were more abundant in the AGA at 
discharge group, and this difference was statistically significant. By contrast, the SGA 
at discharge group presented increased abundance of Prevotella copri (p = 0.002), 
Roseburia inulinivorans (p = 0.003), Staphylococcus sp. (p = 0.003), Staphylococcus 
capitis subsp. Capitis (p = 0.004), Sutterella stercoricanis (p = 0.027), Corynebacterium 
tuberculostearicum (p = 0.033), and Ruminococcaceae (p = 0.043) (Fig 3B) 

Regarding head circumference (HC) catch-up growth, 30 (47.6%) infants 
completed HC catch-up growth by the age of 6 months corrected age and 33 (52.4%) 
after 6 months of corrected age. Also, catch-up occurred independently of weight 
adequacy for gestational age at birth or at discharge. There were no statistically 
significant differences regarding clinic variables at birth, sepsis during NICU stay, use 
of anticonvulsant, and rehospitalizations after discharge. As expected, the group that 
completed HC catch-up growth by the age of 6 months corrected age had higher z-
score and measures of weight and head circumference between 2 and 6 months of 
corrected age. There was a difference between groups only at 6 months of corrected 
age, with a higher number of infants receiving infant formula in those whose HC 
catchup growth was completed by the 6th month of corrected age (Table 2). 

According to the PERMANOVA (Table 3) there was no statistically significant 
difference for microbial beta diversity between infants with early HC catch-up growth 
(up to 6 months) and late HC catch-up growth (after 6 months) (p = 0.093). However, 
after analyzing differences in microbial alpha diversity, Shannon Index was statistically 
significant (p = 0.045), indicating more microbial diversity in meconium from infants 
who had their HC catch-up growth later, after 6 months of corrected age (Fig 4). Pre-
eclampsia was not associated to differences in the meconium microbiota (p-value = 
0.64). 

The overall microbial composition at phylum level within groups with the head 
circumference catch-up by 6 months and after 6 months is presented in Fig 5B. Four 
phyla were found to be dominant within the samples irrespective of the group. They 
were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. 

Differential abundance analysis showed increased abundance of Bacterioidetes 
and Proteobacteria phylum, with OTUs belonging to Salmonella (p<0.001), 
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Flavobacterium (p = 0.026), and Burkholderia (p = 0.026) genus being the most 
abundant in meconium from infants who achieved HC catch-up growth by the 6th 
month of corrected age. Prevotella (p = 0.005), Enhydrobacter (p = 0.036), 
Brevundinomonas (p = 0.043), Bradyhizobium (p = 0.018), and Acinetobacter (p = 
0.007) genus were more abundant in meconium of those infants who achieved HC 
catch-up growth after 6 months of corrected age (Fig 5A and 5B). 

In order to better understand the differences of the gut microbiota in relation with 
the time of HC catch up, we also explored the functional prediction of these 
communities, using PICRUSt [24]. Infants with HC catch up before the 6th month of 
corrected age presented a microbiota with higher predicted genes relateted with 
transportation (Transporters and ABC transporters), while those with HC cacth up after 
6 months had more genes related with sugar and amino acid metabolism (Fig 6). 

When analysing functional gene prediction according with weight adequacy at 
birth or discharge, there were no significant differences, considering the treshold of 
effect size > 0.1 (S1 Fig). 

 

Discussion 

Increased abundance of OTU belonging to Prevotella, Polynucleobacter, and 
Gp1 genus in preterm infants born AGA was observed. Preterm AGA at discharge 
showed increased abundance of OTU belonging to Escherichia fergusoni and 
Streptococcus dentisani genus. We also found more abundance of OTUs Salmonella, 
Flavobacterium, and Burkholderia genus in the meconium of infants who achieved HC 
catch-up growth by the 6th month of corrected age. There are few studies with similar 
data; the great majority of studies consider the microbiome of fullterm infants, and 
those that assess prematurity take into account only gestational age, without relating 
it to adequacy of weight for gestational age [29, 30]. 

Ardissone et al. (2014) [31] found several taxonomic families within Firmicutes 
phylum correlated to gestational age, including Staphylococcus genus, which were 
most abundant among preterms born at <33 gestational weeks. Jacquot et al. [32] 
found an association between gestational age less than 28 weeks and lower microbial 
diversity score at first week of life, where Staphylococcus spp genus was found in 67% 
of the patients. The authors also enlight that although it is clear that preterm infants 
can also present an important Staphylococcus colonization, these infants are at higher 
risk of late onset sepsis related to coagulase negative Staphylococcus during the first 
weeks of life [32]. 

Itani et al. (2017) [33] also described increased Staphylococcus abundance in 
feces from preterm infants less than 33 weeks of gestational age. Our data represent 
meconium microbiome, and we observed significantly increased Staphylococcus 
genus abundance in preterm infants who were SGA at discharge, with hospital 
discharge being equivalent to the term of gestational age. We hypothesize that besides 
gestational age, adequacy of weight for gestational age at birth is also related to 
microbial community structure. Also, although Staphylococcus colonization is a normal 
characteristic of healthy gut microbiota [34], we understand that a microbiota more 
abundant in Staphylococcus might interfere for nutrient absorption e metabolism, 
leading to a worse weigh gain during NICU stay, despite the efforts of nutrition therapy. 

Nataro and Guerrant (2017) [35] suggest that Prevotella genus is associated to 
better growth, while Streptococcus lutetiensis and Escherichia coli are associated to 
growth failure, but they do not distinguish preterm from full-term infants. In our study, 
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AGA at birth presented significant higher abundance of Prevotella genus, we believe 
this may reflect fetal period, once this microbe has been associated to improved 
glucose metabolism by promoting increased glycogen storage [36]. 

On the other hand, in contrast to Nataro and Guerrant (2017) [35] results, when 
we evaluate the adequacy of weight for gestational age at discharge, AGA preterms 
were the ones who presented increased Escherichia fergusoni and Streptococcus 
dentisani abundance in meconium, while SGA at discharge preterms presented 
increased Prevotella copri abundance in meconium. Through our results, we cannot 
infer about microbiota changes during the hospital stay, however, we have some 
hypothesis: a) Those infants with better growth (AGA at discharge) possibly had earlier 
contact with their parents and better evolution of dietary acceptance, both factors that 
can favor benefic changes in the microbiota. b) As we already mentioned, SGA infants 
at discharge also had abundant Staphylococcus in meconium and maybe during 
hospital stay this microbe was more resistant or had more impact host metabolism than 
Prevotella copri, influencing to the worse weigh gain. We understand that other 
external factors act together with the microbiome, being important influences in weight 
gain during hospital stay. Future studies, evaluating progressive changes in the 
microbiota, in association with dietary characteristics may answer this hypothesis. 

Preterm infants miss an important phase of brain growth and maturation, which 
would occur during the last trimester of pregnancy [37]. During this phase the cortical 
gray matter is already matured, but some of the most important developing stages such 
as the increase in the complexity of connections, axons, glial cells, and 
oligodendrocytes in the withe matter, will be concluded as the 3rd trimester goes by 
[38, 39]. Therefore prematurity is associated with neurodevelopmental disability, with 
long term effects [3, 40, 41]. Catch down during hospital stay and during the first 
months of life are associated to increased risk of neurologic impairment in preterm 
infants, nevertheless the mechanisms that guarantee this association are not yet 
completely elucidated [6]. On the other hand, catch-up growth of head circumference 
in the first years of life is a protective factor for neurodevelopment, being associated to 
better cognitive and behavioral performance in early childhood [42, 43]. 

Taken together, neurological immaturity and a dysbiotic and immature gut, both 
associated with prematurity may disrupt the bidirectional communication between the 
nervous system and enteric cells, leading to altered signaling and neurological 
development, and also altered immune responses [3, 44, 45]. 

In the present study we were able to verify a higher microbial biodiversity in 
meconium from those children who had head circumference catch-up growth after 6 
months of corrected age, with Prevotella, Enhydrobacter, Brevundinomonas, 
Bradyhizobium, and Acinetobacter being the most prevalent genus observed in the 
group. Moreover, in the group of infants whose head circumference catch-up growth 
was completed until 6 months of corrected age, Salmonella, Flavobacterium, and 
Burkholderia were most abundant. Community functional prediction suggests that the 
gut mictobiota of infants with head catch up until the 6th month presented higher 
presence of transporter genes, including ABC transporters, while infants with head 
catch up after the 6th month presented more genes predicted to be involved in the 
metabolism of complex carbohydrates, such as starch, and amino acids. This 
difference might influence energy intake from different sources and might influence 
growth. 
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Despite several studies aiming to explain the role of microbiome in the gut–brain 
axis, interactions between neurologic mechanisms and microbiome development in 
preterm infants are not well understood [38]. To our knowledge, this is the first study 
investigating meconium microbial composition and its association to head 
circumference catch-up growth in preterm infants. We suggest more studies should be 
conducted so that the pathways of this relationship may be better understood. 

Guney Varal et al (2018) [46] conducted a study with preterm infants, using a 
prepared commercial symbiotic solution administered with enteral nutrition. Their 
results show a lower odd to lower head circumference growth in the study group. 
Wejryd et al (2018) [47] related supplementation with L. reuteri to better head 
circumference growth, also during hospital stay. Both studies corroborate the 
hypothesis that a favorable gut microbiota might enhance the chances of achieving 
better neurodevelopment/ growth via the beneficial effects on cytokines, nervous and 
immune system. However, a recent systematic review conducted by Hortensius et al 
(2019) [48] suggests that until the present, despite the positive results on head growth, 
there is no significant data regarding the effect of supplementation with probiotics on 
neurodevelopmental outcome was found. Therefore, it’s indeed necessary more follow 
up studies. 

Experimental studies with germ-free mice have observed systemic inflammation 
and neuroinflammation in the offspring as well as impaired myelination and blood–brain 
barrier formation. These studies suggest a relationship between microbial colonization, 
immune system, and brain activity, as well as an essential role for microbiota in neural, 
structural, and functional development [45, 49]. Although animal model studies have 
already clearly elucidated the role of gut microbiota in childhood development 
programming, and there is a window of opportunity in which microbiota can affect 
physiological function of several systems, with long-term consequences, there have 
been only a limited number of studies with humans, specifically preterm newborns, that 
would enable complete understanding of processes involving microbiome and 
neurologic development [50]. 

Several factors such as infection, neurologic impairment, diet, and antibiotic use 
are crucial in ensuring growth. In our study the groups were similar for sepsis. However, 
post-discharge hospitalizations, anticonvulsant treatment, and milk feeding were 
different at 6 months of corrected age, which may directly interfere with growth, 
neurodevelopment, and microbial colonization. Thus, we cannot infer if meconium 
microbiota was the only determinant factor for head circumference catch-up growth. 
Yet, considering the intimate relationship between brain and gut [51], we suggest 
identifying microbiome variations associated and predisposing to accelerated head 
circumference catch-up growth as a relevant tool for clinical practice in the context of 
improving care and future health of preterm infants. 

It is worth mentioning that food directly influences bacterial flora establishment, 
and human milk is a greater promoter of Bifidobacteria and Lactobacillus colonization 
when compared to formula based on cow’s milk [52]. Oligosaccharides (HMO) present 
in breast milk, which are complex glycans and not digestible by humans, are the main 
microbiome substrate, especially for Bifidobacteria, playing a fundamental role for 
beneficial bacterial community proliferation in children’s gut, due to both probiotic and 
prebiotic effects, highlighting the importance of promoting breastfeeding in the NICU 
environment [52–54]. 
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It was a challenge to analyze the relationship between microbiome, born SGA 
or AGA, and head circumference catch-up growth, since there are so few studies and 
many unanswered questions. This study encountered limitations, such as the lack of 
microbiome data at discharge and follow up, which could give us more information 
regarding changes that occurred during hospital stay. We also understand the sample 
size as a limitation of this study; on the other hand, we emphasize the follow-up of 
preterm infants as strength. 

 

Conclusion 

Meconium microbial abundance seems to be related to adequacy of weight for 
gestational age as well as to weight gain during neonatal period in low-birth-weight 
preterm infants. Also, abundance of meconium OTUs from infants who achieved early 
head circumference catch-up growth (defined in this study as up to the 6th month of 
corrected age) differs from those who had late head circumference catch-up growth (in 
this study, after 6 months of corrected age). Further studies following changes in 
microbial colonization, as well as its associations to diet patterns, in order to verify 
associations between microbiota and medium-term outcomes, may lead to new 
conduct definitions for clinical practice. 
 

Author Contributions 

Conceptualization: Renato S. Procianoy, Luiz Fernando Wurdig Roesch, Rita C. 
Silveira. 
Data curation: Ana Carolina Terrazzan Nutricionist, Andrea Lúcia Corso, Rita C. 
Silveira. 
Formal analysis: Ana Carolina Terrazzan Nutricionist, Luiz Fernando Wurdig Roesch, 
Priscila Thiago Dobbler. 
Funding acquisition: Rita C. Silveira. 
Investigation: Ana Carolina Terrazzan Nutricionist, Luiz Fernando Wurdig Roesch, 
Andrea Lúcia Corso, Rita C. Silveira. 
Methodology: Ana Carolina Terrazzan Nutricionist, Renato S. Procianoy, Priscila 
Thiago Dobbler. 
Project administration: Renato S. Procianoy. 
Resources: Renato S. Procianoy, Rita C. Silveira. 
Software: Priscila Thiago Dobbler. 
Supervision: Rita C. Silveira. 
Visualization: Andrea Lúcia Corso. 
Writing – original draft: Ana Carolina Terrazzan Nutricionist. 
Writing – review & editing: Renato S. Procianoy, Luiz Fernando Wurdig Roesch, Rita 
C. Silveira. 
 
References 

1. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of Gut Microbes on 
Nutrient Absorption and Energy Regulation. 2012; 27:201–214 

2. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and 
Child Growth– First 1000 Days and Beyond. Trends in Microbiology 2019; 27: 131–
147 https://doi.org/10.1016/j.tim. 2018.09.008 PMID: 30529020 



214 

 

 

3. Lu J, Claud E. Connection between gut microbiome and brain development in preterm 
infants. Dev Psychobiol. 2019; 61: 739–751 https://doi.org/10.1002/dev.21806 PMID: 
30460694 

4. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota 
functions: metabolism of nutrients and other food componentes. Eur J Nutr. 2018; 
57:1–24 

5. Turroni F, Milani C, Durant S, Lugli GA, Bernasconi S, Margolles A, et al. The infant 
gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020. 
46:16 https://doi.org/10.1186/ s13052-020-0781-0 PMID: 32024556 

6. Jime´nez E, Marı´n ML, Martı´n R, Odriozola JM, Olivares M, Xaus J, Ferna´ndez L, e 
tal. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008; 159: 
187–193. https://doi.org/10.1016/j. resmic.2007.12.007 PMID: 18281199 

7. Mshvildadze M, Neu J, Shuster J, Theriaque D, Li N, Mai V. Intestinal Microbial 
Ecology in Premature Infants Assessed Using Non-Culture Based Techniques. J 
Pediatr. 2010; 156: 20–25. https://doi.org/ 
10.1016/j.jpeds.2009.06.063 PMID: 19783002 

8. Collado Maria Carmen & Rautava Samuli & Aakko, Juhani & Isolauri, Erika & 
Salminen, Seppo. Human gut colonisation may be initiated in utero by distinct microbial 
communities in the placenta and amniotic fluid. Scientific Reports. 2016; 6: 23129 
https://doi.org/10.1038/srep23129 PMID: 27001291 

9. Jimenez E, Fernandez L, Marin ML, Martı´n R, Odriozola JM, Nueno-Palop C, et al. 
Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by 
cesarean section. Curr Microbiol. 
2005; 51:270–274 https://doi.org/10.1007/s00284-005-0020-3 PMID: 16187156 

10. Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A critical assessment of the 
“sterile womb” and “in utero colonization” hypotheses: implications for research on the 
pioneer infant microbiome. Microbiome. 2017; 5:48 https://doi.org/10.1186/s40168-
017-0268-4 PMID: 28454555 

11. Rogers GB, Keating DJ, Young RL, Wong M-L, Licinio J, Wesselingh S. From gut 
dysbiosis to altered brain function and mental illness: mechanisms and pathways. 
Molecular Psychiatry. 2016; 21:738–748 https://doi.org/10.1038/mp.2016.50 PMID: 
27090305 

12. Niccolai E, Boem F, Russo E, Amedei A. The Gut–Brain Axis in the 
Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the 
Emerging Director “Microbiome”. Nutrients. 2019; 11:156. 

13. Henderickx JGE, Zwittink RD, van Lingen RA, Knol J and Belzer C. The Preterm Gut 
Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Front. Cell. 
Infect. Microbiol. 2019; 9:85. https:// doi.org/10.3389/fcimb.2019.00085 PMID: 
31001489 

14. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association be-tween 
postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 
2000; 320:967–71. https://doi.org/10. 1136/bmj.320.7240.967 PMID: 10753147 

15. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fen-ton 
growth chart for preterm infants. BMC Pediatr. 2013; 13:59. 
https://doi.org/10.1186/1471-2431-13-59 PMID: 23601190 

16. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: 
composition and development. Acta Paediatr Suppl 2003; 91:48–55. 
https://doi.org/10.1111/j.1651-2227.2003.tb00646.x PMID: 14599042 



215 

 

 

17. Pylro VS, Roesch LF, Ortega JM, do Amaral AM, To´tola MR, Hirsch PR, et al. Brazilian 
Microbiome Project Organization Committee. Brazilian Microbiome Project: revealing 
the unexplored microbial diversity—challenges and prospects.Microb Ecol. 2014; 67: 
237. https://doi.org/10.1007/s00248-0130302-4 PMID: 24173537 

18. Pylro VS, Morais DK, de Oliveira FS, Dos Santos FG, Lemos LN, Oliveira G, et al. 
BMPOS: a Flexible and User-Friendly Tool Sets for Microbiome Studies. Microbial 
Ecology.2016; 72: 443–447. https://doi. 
org/10.1007/s00248-016-0785-x PMID: 27220974 

19. Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. 
Nature Methods. 2013; 10:996–8 https://doi.org/10.1038/nmeth.2604 PMID: 
23955772 

20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 
QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 
Nature Methods. 2010; 

21. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An 
improved Greengenes taxonomy with explicit ranks for ecological and evolutionary 
analyses of bacteria and archaea. ISME J. 2012; 6: 610–618. 
https://doi.org/10.1038/ismej.2011.139 PMID: 22134646 

22. Good IJ. The population frequencies of species and the estimation of popula-tion 
parameters. Biometrika.1953; 40: 237±264. 

23. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LFW. Rethinking microbial diversity 
analysis in the high throughput sequencing era. Journal of Microbiological Methods. 
2011; 86:42–51 https://doi.org/10. 
1016/j.mimet.2011.03.014 PMID: 21457733 

24. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes J. et al. 
Predictive functional profiling of microbial communities using 16S rRNA marker gene 
sequences. Nature Biotechnology. 
2013;1–10 https://doi.org/10.1038/nbt.2482 PMID: 23302909 

25. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis 
and graphics of microbiome census data. PLoS ONE. 2013; 8: e61217. 
https://doi.org/10.1371/journal.pone.0061217 PMID: 23630581 

26. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara R, Simpson G, et al. Vegan: 
Community Ecology Package. 2011. 

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biology. 2014; 15:550 
https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281 

28. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of 
taxonomic and functional profiles. Bioinformatics. 2014; 30: 3123–3124. 
https://doi.org/10.1093/bioinformatics/btu494 PMID: 25061070 

29. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM et al. 
Patterned progression of bacterial populations in the premature infant gut. Proc Natl 
Acad Sci. 2014; 111:12522–7. https://doi.org/10.1073/pnas.1409497111 PMID: 
25114261 

30. Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, et al. 
Intestinal microbiota development and gestational age in preterm neonates. Scientific 
Reports. 2018; 8: 2453 https://doi.org/ 
10.1038/s41598-018-20827-x PMID: 29410448 



216 

 

 

31. Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC et 
al. Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. 
PLoS ONE. 2014; 9: e90784. https://doi.org/10.1371/journal.pone.0090784 PMID: 
24614698 

32. Jacquot A, Neveu D, Aujoulat F, Mercier G, Marchandin H, Jumas-Bilak E, et al. 
Dynamics and Clinical Evolution of Bacterial Gut Microflora in Extremely Premature 
Patients. J Pediatr. 2011; 158:390–6 https://doi.org/10.1016/j.jpeds.2010.09.007 
PMID: 20961563 

33. Itani T, Ayoub Moubareck C, Melki I, Rousseau C, Mangin I, Butel MJ, et al. 
Establishment and development of the intestinal microbiota of preterm infants in a 
Lebanese ter-tiary hospital. Anaerobe. 
2017; 43:4–1 https://doi.org/10.1016/j.anaerobe.2016.11.001 PMID: 27833033 

34. Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota 
Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. 
Microorganisms. 2019; 7:14 

35. Nataro J; Guerrant R. Chronic consequences on human health induced by 
microbialpathogens: Growth faltering among children in developing countries. Vaccine. 
2017. 35: 6807–6812 https://doi.org/10. 
1016/j.vaccine.2017.05.035 PMID: 28549806 

36. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T. Dietary 
Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased 
Abundance of Prevotella. Clinical And Translational Report. 2015; 22: 971–982. 

37. Cai S., Zhang G., Zhang H. et al. Normative linear and volumetric biometric 
measurements of fetal brain development in magnetic resonance imaging. Childs Nerv 
Syst. 2020. https://doi.org/10.1007/s00381020-04633-3 

38. Lu L; Claud EC. Intrauterine Inflammation, Epigenetics, and Microbiome In-fluences 
on Preterm Infant Health. Current Pathobiology Reports. 2018. 6:15–21 
https://doi.org/10.1007/s40139-018-0159-9 PMID: 29938128 

39. Volpe JJ. The encephalopathy of prematurity—brain injury and impaired brain 
development inextricably intertwined. Semin Pediatr Neurol. 2009; 16: 167–78 
https://doi.org/10.1016/j.spen.2009.09.005 PMID: 19945651 

40. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and 
developmental disturbances. Lancet Neurol. 2009; 8: 110–124 
https://doi.org/10.1016/S1474-4422(08)70294-1 PMID: 19081519 

41. Cheong J.L.Y., Burnett A.C., Treyvaud K. et al. Early environment and long-term 
outcomes of preterm infants. J Neural Transm. 2020; 127: 1–8 
https://doi.org/10.1007/s00702-019-02121-w PMID: 31863172 

42. Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant 
growth before and after term: effects on neurodevelopment in pre-term infants. 
Pediatrics 2011; 128:e899–906. https://doi.org/10.1542/peds.2011-0282 PMID: 
21949135 

43. Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship 
of poor linear growth velocity with neonatal illness and two year neurodevelopment in 
preterm infants. Neonatology 
2012; 102:19–24 https://doi.org/10.1159/000336127 PMID: 22441508 

44. Ba¨ckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P. Dynamics 
and Stabilization of the Human Gut Microbiome during the First Year of Life. Resource. 
2015; 17:690–703 



217 

 

 

45. Lu J, Lu L, Yu Y, Cluette-Brown J, Martin CR, Claud EC. Effects of Intestinal Microbiota 
on Brain Development in Humanized Gnotobiotic Mice. Scientific Reports. 2018.:1–16 
https://doi.org/10.1038/s41598017-17765-5 PMID: 29311619 

46. Guney Varal I, Koksal N, Ozkan H, Bagci O, Dogan P. Potential use of multi-strain 
synbiotics for improving postnatal head circumference. Pak J Med Sci. 2018; 34:1502–
1506 https://doi.org/10.12669/pjms. 346.16107 PMID: 30559812 

47. Wejryd E., Marchini G., Frimmel V., Jonsson B. and Abrahamsson T. Probiotics 
promoted head growth in extremely low birthweight infants in a double-blind placebo-
controlled trial. Acta Paediatr. 2019; 108: 
62–69 https://doi.org/10.1111/apa.14497 PMID: 29999201 

48. Hortensius LM, van Elburg RM, Nijboer CH, Benders MJNL and de Theije CGM. 
Postnatal Nutrition to Improve Brain Development in the Preterm Infant: A Systematic 
Review From Bench to Bedside. Front. 
Physiol. 2019; 10:961 https://doi.org/10.3389/fphys.2019.00961 PMID: 31404162 

49. Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ et al. 
Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry. 2016; 
6:e774 https://doi.org/10.1038/tp.2016. 42 PMID: 27045844 

50. Ruiz L, Moles L, Gueimonde M, Rodriguez JM. Perinatal Microbiomes’ Influence on 
Preterm Birth and Preterms’ Health: Influencing Factors and Modulation Strategies. J 
Pediatr Gastroenterol Nutr. 2016; 
63:e193–e203 https://doi.org/10.1097/MPG.0000000000001196 PMID: 27019409 

51. DiBartolomeo ME, Claud EC. The Developing Microbiome of the Preterm Infant. Clin 
Ther. 2016. 
38:733–739 https://doi.org/10.1016/j.clinthera.2016.02.003 PMID: 26947798 

52. Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbiota shaping 
in newborns. Front Cell Infect Microbiol. 2012; 2:94 
https://doi.org/10.3389/fcimb.2012.00094 PMID: 23087909 

53. Petherick A. Development: Mother’s milk: A rich opportunity. Nature. 2010; 468:S5–
S7 https://doi.org/ 
10.1038/468S5a PMID: 21179083 

54. Victora CG, Bahl R, Barros AJ, Franc¸a GV, Horton S, Krasevec J, et al. Lancet 
Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, 
mechanisms, and lifelong effect. Lancet. 2016; 387: 475–490 
https://doi.org/10.1016/S0140-6736(15)01024-7 PMID: 26869575 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



218 

 

 

Figures 

 
Fig 1. Alpha diversity measurements of meconium microbial communities from preterm infants 
comparing weight adequacy at birth and at discharge. The left panel presents the number of 
observed Operational Taxonomic Unities (OTUs) (p-value = 0.745). The right panel presents the 
Shannon microbial index of diversity (p-value = 0.127). Boxes span the first to third quartiles; the 
horizontal line inside the boxes represents the median. Whiskers extending vertically from the boxes 
indicate variability outside the upper and lower quartiles, and single circles indicate outliers. AGA: 
adequate for gestational age; SGA: small for gestational age. (The group SGA-LGA was excluded from 
data analysis, because of its limited size). 
 
 

 
Fig 2. Relative phyla abundance of the gut microbiota according with weigh adequacy. Each 
stacked bar represents the mean relative abundance of weight adequacy group at birth (A) and at 
moment of discharge (B). 
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Fig 3. Differential abundance analysis according to weight adequacy. Each dot represents an 
individual OTU, organized by their Genus. (A) Differential abundance analysis according to weight 
adequacy at birth: Polynucleobacter (p = 0.0163), Gp1 (p = 0.018) and Prevotella (p = 0.038) were more 
abundant in meconium of preterm born AGA. (B) Differential abundance analysis according to weight 
adequacy for gestational age at discharge: Escherichia fergusoni (p = 0.014) and Streptococcus 
dentisani (p = 0.43) were more abundant in meconium of preterm AGA at discharge; Prevotella copri (p 
= 0.002), Roseburia inulinivorans (p = 0.003), Staphylococcus sp. (p = 0,003), Staphylococcus capitis 
subsp. Capitis (p = 0.004), Sutterella stercoricanis (p = 0.014), Corynebacterium tuberculostearicum (p 
= 0.033) and Ruminococcaceae (0.043) were more abundant in meconium of preterm SGA at discharge. 
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Fig 4. Alpha diversity measurements of meconium microbial communities from preterm infants 
comparing head circumference (HC) catch up until or after 6 months of corrected age. The left 
panel presents the number of observed Operational Taxonomic Unities (OTUs) (p-value = 0.225). The 
right panel presents the Shannon microbial index of diversity (p-value = 0.045). Boxes span the first to 
third quartiles; the horizontal line inside the boxes represents the median. Whiskers extending vertically 
from the boxes indicate variability outside the upper and lower quartiles, and single circles indicate 
outliers. 

 

Fig 5. Differential abundance analysis according to head circumference catch up. Each dot 
represents an individual OTU, organized by their Genus. (A) Differential abundance analysis according 
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to early or late HC catch up. Data plotted as log2 fold change; OTUs to the right of the zero line were 
more abundant in HC catch up until 6 months corrected age group, and OTUs to the left of the zero line 
were more abundant in HC catch up after 6 months corrected age group. (B) Difference for microbial 
composition between infants with early HC catch up growth (up to 6 months) and late HC catch up 
growth (after 6 months); HC: head circumference. 

 

 
Fig 6. Microbial community functional prediction. Gut microbiota functional predictoin, using 
PICRUSt, of infants with early or late HC catch up. The bar plot respresents function mean proportion, 
and error bars represents the difference between the two groups. Coloring of the error bar is according 
with the group with the higher proportion of the respective function. Blue color (A) represents infants with 
HC catch up until 6 months, and Orange (B) represents those with HC catch up after 6 months of age. 

 
 
Tables 
 
Table 1. Clinical characteristics of preterm infants according to adequacy of weight for 
gestational age at birth and discharge. 

Variables AGAbirth-
AGAdischarge 

(n = 36) 

AGAbirth-
SGAdischarge 

(n = 13) 

SGAbirth-
AGAdischarge 

(n = 12) 

SGAbirth-
LGAdischarge (n = 2) 

p value 

Male 16 (44.4%) 7 (53.85%) 6 (50.%) 1 (50%) 0.944 

Maternal Age 
(years) 

25.92±6.69 25.62±6.13 26.58±6.62 27.5±10 0.973 

C-section 15 (41.7%) 2 (15.4%) 1 (8.3%) 0 0.062 

Preeclampsia 4 (11.1%) a 4 (30.8%)a.b 6 (50%)b 2 (100%)b 0.003 

GDM 5 (13.9%) 1 (7.7%) 1 (8.3%) 0 0.855 

UTI 5 (13.9%) 1 (7.75) 1 (8.3%) 0 0.855 

GA at birth (weeks) 30.11±2.35 29.85±2.44 29.58±2.74 31.5±0.7 0.744 

BW (kg) 1.500±0.507 a 1.3800±0.506 a.b 1.000±0 b 1.000±0 a.b 0.010 

BW z-score 0.16 (-1.42–2.46) a -0.28 (-1.11–1.51)a.c -1.65 (-2.08–-1.35) b -1.44 (-1.55–-1.34)b.c <0.001 
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L at birth (cm) 40.18±3.28 a 38±3.69 34.5±5.1 b 38±1.41 0.001 

BL z-score  0.20 (-2.0–1.69) a -0.53 (-1.60–-0.67) b -1.83 (-3.42–-0.12) c -1.40 (-1.45–-1.35) a.b.c <0.001 

CP at birth (cm) 27.94±2.54 a 27.38±2.3 a.b 24.92±2.9 b 25.3±0.49 a.b 0.008 

CP at birth z-score  0.13 (-1.66–2.05) a -0.14 (-1.48–1.35) a -1.67 (-2.40–-0.53) b -1.24 (-1.57–-0.92)a.b <0.001 

Length of 
hospitalization 
(days) 

47.4(14–114) 63.3 (29–122) 72.8 (25–137) 48 (25–71) 0.104 

GA discharge 

(weeks) 
36.8±2.24 a 38.9±2.95a.b 39.9±3.86 b 38.3±3.9 a.b 0.008 

Weight at discharge 

(kg) 
2.63±0.572 2.49±0.335 2.440±0.489 2.777±0.682 0.625 

Type of milk at 
discharge 

     

EBM 5 (13.9%) 2 (15.4%) 1 (8.3%) 1 (50%) 0.176 

BM+formula 19 (52.8%) 6 (46.2%) 10 (83.3%) 1(50%)  

Formula 12 (33.3%) 5 (38.5%) 1(8,3%) 0  

*Mean ± SD; 
**Absolut frequency (%); 
**Mean (Min-Max); AGA: Appropriate-for-Gestational-Age; SGA: Small-for-gestational-age BW: Birth 
weight; L: Length; CP: Head circumference; GA: Gestational Age; GDM: gestational diabetes mellitus; 
UTI: Urinary Tract Infection; EBM: Exclusive Breast Milk; BM; Breast Milk 

 
 
 
 
 
 
 
Table 2. Clinical characteristics, growth and type of milk received according to catch-up before 
or after 6 months of corrected age. 

Variables Catch up <6m (n = 30) Catch up >6m (n = 33) P value 

Male 16 (53.3%) 14 (42.4%) 0.454 

Maternal age(years) 25.33±6.26 27±6.77 0.299 

C-section 12 (40%) 18 (60%) 0.093 

Preeclampsia 4 (13.3%) 12 (36.4%) 0.046 

Gestational Diabetes 4 (13.3%) 3 (9.1%) 0.700 

Urinary tract infection 4 (13.3%) 3 (9.1%) 0.700 

Maternal antibiotics 20(66.7%) 21(63.6%) 1.000 

GA at birth (weeks) 30.4±2.29 29.6±2.4 0.209 

AGA at birth 22(73.3%) 26(78.8%) 0.612 

Weight at birth (kg) 1.434 ±0.443 1.323±0.479 0.345 

Z-score Weight at birth -0.33 (-2.08–1.25) -0.31 (-1.87–2.46) 0.933 

Length at birth(cm) 38.7±3.84 38.2±4.32 0.654 

z-score Length at birth  -0.34 (-3.4–1.5) -0.42 (-3.04–1.69) 0.788 

Head circunference at birth (cm) 27.52 ±2.66 26.55±2.92 0.247 
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Z-score Head circunference at birth  -0.27 (-2.36–1.79) -0.34 (-2.4–2) 0.785 

NICU stay (days) 49 (14–114) 61 (29–122) 0.137 

Periventricular leukomalacia 2 (6.7%) 3 (9.1.%) 0.546 

Necrotizing enterocolitis 4 (13.3%) 6(18.2%) 0.430 

Early sepsis 0 1 (3%) 0.625 

Late sepsis 2 (6.6%) 3 (9%) 0.423 

Gestational age at discharge (weeks) 37.4±2.3 38.4±3.4 0.174 

Weight at discharge (kg) 2.63±0.572 2.49±0.335 0.625 

Weight z-score at discharge  -0.94 (-3.2–1.38) -1.35 (-3.33–0.27) 0.104 

AGA at discharge 18(60%) 19 (57.6%) 0.845 

Hospitalization after discharge  4 (13.3%) 10 (30.3%) 0.106 

Use of anticonvulsant  5 (16.7%) 10 (30.3%) 0.204 

Weight at 2 months CA (kg) 5.450±0.970 4.98±0.810 0.055 

Weight Z-score at 2 months CA 0 (-3.82–2.30) -0.55 (-2.64–2.12) 0.134 

Head circumference at 2 months CA (cm) 39.44±1.78 38.43±1.70 0.084 

Head circumference Z-score at 2 months 
CA 

0.75 (-2.69–2.87) 0 (-3.51–2.44) 0.040 

Weight at 4 months CA (kg) 7.130±1.00 6.240v1.13 0.008 

Weight Z-score at 4 months CA 0.37 (-1.81–2.66) -0.68 (-4.31–2.44) 0.012 

Head circumference at 4 months CA (cm) 42.57±1.14 40±2.0 <0.001 

Head circumference Z-score at 4 months 
CA 

1.13(-0.54–3.23) -0.27 (-3.63–2.81) 0.001 

Weight at 6 months CA (kg) 7.80±1.21 7.0±1.15 0.021 

Variables Catch up <6m (n = 30) Catch up >6m (n = 33) P value 

Weight Z-score at 6 months CA 0.05(-4.75–2.55) -0.72(-4.38–2) 0.050 

Head circumference at 6 months CA (cm) 44.1±1.25 41.71±1.96 <0.001 

Head circumference Z-score at 6 months 
CA 

0.94 (-1.92–2.75) -0.39 (-3.55–2.14) <0.001 

Type of milk    

Milk at discharge 

EBM 4 (13.3%) 5 (15.2%) 

0.090 BM+Formula 18 (60%) 18 (54.4%) 

Formula 8 (26.7%) 10 (30.3%) 

Milk at 2 months CA 

EBM 4 (14.3%) 6 (17.9%) 

0.0752 
BM+Formula 9 (28.6%) 11 (33.3%) 

Formula 15(53.6%) 16 (48.4%) 

Cow’s milk 1 (3%) 0 

Milk at 4 months CA 

EBM 2 (6.6%) 5(14.8%) 

0.404 BM+Formula 8 (27.3%) 11(33.3%) 

Formula 19(63.6%) 17(51.9%) 
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Cow’s milk 1 (3%) 0 

Milk at 6 months CA 

EBM 2 (6.9)a.b 3 (7.4%)a.b 

0.038 
BM+Formula 3 (10.3%) 12 (37%) 

Formula 21 (69.9%) 18(55.6%)b 

Cow’s milk 4 (13.8%) 0b 

*Mean ± SD; 
**Absolut frequency (%); 
***Mean (Min-Max); CA: corrected age; AGA: Appropriate-for-Gestational-Age; SGA: Small-for-
gestational-age BW: Birth weight; L: Length; CP: Head circumference; GA: Gestational Age; GDM: 
gestational diabetes mellitus; UTI: Urinary Tract Infection; EBM: Exclusive Breast Milk; BM; Breast Milk 

 
 
Table 3. Nonparametric Multivariate Analysis of Variance of bacterial community structure used 
for controlling confounding variables. 

Variables F Model R2 p-value 

Weight Adequacy 0.961 0.101 0.536 

HC Catch-up 1.255 0.033 0.201 

Preeclampsia 0.836 0.022 0.640 
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ANEXO A – Parecer Comitê de Ética
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