UNIVERSIDADE FEDERAL DO PAMPAPROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA

GLÉDSON LEITE LEAL

POTENCIAL PARA ESTABELECIMENTO E PRODUÇÃO DA CULTIVAR DE CAPIM-SUDÃO BRS ESTRIBO (SORGHUM SUDANENSE L.) NA REGIÃO SUL DO BRASIL COM BASE NO BALANÇO HÍDRICO CLIMATOLÓGICO E TÉCNICAS DE ESTATÍSTICA ESPACIAL

BAGÉ

2021

GLÉDSON LEITE LEAL

POTENCIAL PARA ESTABELECIMENTO E PRODUÇÃO DA CULTIVAR DE CAPIM-SUDÃO BRS ESTRIBO (SORGHUM SUDANENSE L.) NA REGIÃO SUL DO BRASIL COM BASE NO BALANÇO HÍDRICO CLIMATOLÓGICO E TÉCNICAS DE ESTATÍSTICA ESPACIAL

Dissertação apresentada ao Programa de Pós-Graduação em Computação Aplicada como requisito parcial para a obtenção do título de Mestre em Computação Aplicada.

Orientador: Prof. Dr. Alexandro Gularte Schä-

fer

Coorientador: Prof. Dr. Gustavo Trentin

BAGÉ

Ficha catalográfica elaborada automaticamente com os dados fornecidos pelo(a) autor(a) através do Módulo de Biblioteca do Sistema GURI (Gestão Unificada de Recursos Institucionais) .

Leite Leal, Glédson

potencial para estabelecimento e produção da cultivar de Capim-Sudão BRS Estribo *(Sorghum Sudanense L.)* na Região Sul do Brasil com base no balanço hídrico climatológico e técnicas de estatística espacial / Glédson Leite Leal. - Bagé, 2021-

96p.

Dissertação(Mestrado) - - Universidade Federal do Pampa, , 2021.

"Orientação: Prof. Dr. Alexandro Gularte Schäfer"

1. Precipitação. 2. Evapotranspiração. 3. Interpolação. 4. SIG. I. Título.

GLÉDSON LEITE LEAL

POTENCIAL PARA ESTABELECIMENTO E PRODUÇÃO DA CULTIVAR DE CAP	
BRS ESTRIBO (SORGHUM SUDANENSE L.) NA REGIÃO SUL DO BRASIL COM	
BALANCO HÍDRICO CLIMATOLÓGICO É TÉCNICAS DE ESTATÍSTICA ESPA	ACIAL

Dissertação/Tese apresentada ao Programa de Pós-Graduação em Computação Aplicada da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Computação Aplicada.

Dissertação defendida e aprovada em: 21 de maio de 2021.

Banca examinadora:

Prof. Dr. Alexandro Gularte Schäfer
Orientador
Unipampa

.....

Prof. Dr. Marcelo Romero de Moraes Unipampa

Prof. Dr. Naylor Bastiani Perez Embrapa Pecuária Sul

Prof. Dr. Paulo Roberto Megna Francisco

UFCG

Assinado eletronicamente por **ALEXANDRO GULARTE SCHAFER**, **PROFESSOR DO MAGISTERIO SUPERIOR**, em 17/08/2021, às 22:32, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

Assinado eletronicamente por MARCELO ROMERO DE MORAES, PROFESSOR DO MAGISTERIO SUPERIOR, em 18/08/2021, às 11:35, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site https://sei.unipampa.edu.br/sei/controlador externo.php?
acesso externo=0, informando o código verificador **0594020** e o código CRC **61B6BE2C**.

AGRADECIMENTOS

Ao professor Dr. Alexandro Schäfer pela orientação e paciência em todas as fases na produção deste trabalho. Não foram poucas vezes que precisei recorrer aos conhecimentos e estímulos do Professor Alexandro para dar prosseguimento ao estudo.

Ao professor Dr. Gustavo Trentin pela orientação e ensinamentos pontuais, sucintos mas de extrema relevância. Pela paciência em repassar seus conhecimentos, outrora desconhecidos por mim, de forma apaixonada, demonstrando o comprometimento com sua profissão.

À Universidade Federal do Pampa e à Empresa Brasileira de Pesquisa Agropecuária EMBRAPA Pecuária Sul, aos seus professores, pesquisadores, colegas e amigos.

À Banca examinadora pela predisposição e o tempo dedicado na avaliação deste trabalho.

Aos meus familiares, pelo apoio, dedicação, amor, compreensão pelos inúmeros finais de semana e feriados que não pude estar presente, porque estava em busca de um sonho, que está se tornando realidade. Amo vocês!

"Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito."

(Bíblia Sagrada, Romanos 12:2)

RESUMO

O conhecimento da disponibilidade hídrica para produção de qualquer produto agropecuário é um dos componentes necessários para o sucesso de seu desenvolvimento. A quantidade de água disponível no solo pode ser quantificada através do Balanço Hídrico Climatológico (BHC), determinando as potencialidades e fragilidades para a utilização de uma região agrícola. Neste trabalho, a cultura analisada foi uma forrageira de clima tropical, o capim-sudão BRS Estribo que é de produção anual, de hábito ereto, porte alto, sendo atóxica aos animais. A área de estudo foram os Estados do Paraná, Santa Catarina e Rio Grande do Sul que compõem a Região Sul do Brasil. Através do BHC, foi possível determinar as áreas com excessos e deficiências hídricas em toda a Região Sul do Brasil, através de técnicas de Geoestatística e Geoprocessamento, com apoio de um Sistema de Informação Geográfica (SIG). Nesta análise, foram usados os dados de precipitação e evapotranspiração das 566 estações pluviométricas e meteorológicas, oriundas do Atlas Climatológico da Região Sul do Brasil, em um período histórico de 30 anos. Neste contexto, o objetivo deste trabalho foi espacializar o BHC, na Região Sul do Brasil, com a finalidade de estimar as possíveis áreas com deficiências e excessos hídricos na produção do capim-sudão, em dois períodos de semeadura, o primeiro, entre outubro a março e o segundo, entre dezembro a março, com capacidades de armazenamento (CAD) de 50 e 75mm. A primeira semeadura apresentou grandes áreas sem excedente hídrico, nos meses de dezembro e janeiro, a exemplo da Campanha Gaúcha. O mês de outubro apresentou as maiores médias de excedente hídrico, com valores entre 57 e 341mm. À partir de novembro, começam as ocorrências de estações sem apresentar excedente hídrico. Na segunda semeadura, o mês de dezembro apresentou uma média de 95mm de excedente hídrico e o município de Paranaguá apresentou a maior média com 310mm. Concluiu-se que nos dois períodos de semeadura, a produção do capim-sudão praticamente não apresentou regiões com deficiência hídrica.

Palavras-chaves: Precipitação. Evapotranspiração. Interpolação. SIG.

ABSTRACT

The knowledge of water availability for the production of any agricultural product is one of the necessary components for the success of its development. The amount of water available in the soil can be quantified through the Climatological Water Balance (BHC), determining the strengths and weaknesses for the use of an agricultural region. In this work, the analyzed crop was a forage plant from a tropical climate, the Sudan grass BRS Estribo, which has an annual production, erect habit, tall, and is non-toxic to animals. The study region was the States of Paraná, Santa Catarina and Rio Grande do Sul that make up the Southern Region of Brazil. Through the BHC, it was possible to determine the areas with water excesses and deficiencies throughout the southern region of Brazil, through Geostatistics and Geoprocessing techniques, with the support of a Geographic Information System (GIS). In this analysis, precipitation and evapotranspiration data from 566 pluviometric and meteorological stations were used, from the Climatological Atlas of the Southern Region of Brazil, in a historical period of 30 years. In this context, the objective of this work was to spatialize the BHC, in the southern region of Brazil, in order to estimate the possible areas with water deficiencies and excesses in the production of sudão grass, in two sowing periods, the first, between October and March and the second, from December to March, with storage capacities (CAD) of 50 and 75mm. The first sowing showed large areas without excess water, in December and January, like the Campanha Gaúcha. The month of October had the highest averages of water surplus, with values between 57 and 341mm. From November onwards, seasons begin without presenting excess water. In the second sowing, the month of December had an average of 95mm of water surplus and the municipality of Paranaguá had the highest average with 310mm. It was concluded that in the two sowing periods, Sudan grass production practically did not present regions with water deficit.

Key-words: Water balance. Interpolation. GIS.

LISTA DE ILUSTRAÇÕES

FIGURA	1 –	Capim-Sudão BRS Estribo	20
FIGURA	2 -	Etapas do desenvolvimento do trabalho	33
FIGURA	3 -	Localização da Área de Estudo	35
FIGURA	4 –	Modelo de um semivariograma	39
FIGURA	5 -	Estações pluviométricas espacializadas na Região Sul do Brasil .	42
FIGURA	6 -	Médias mensais de precipitação na Região Sul do Brasil para o	
		período entre 1976 até 2005	44
FIGURA	7 –	Médias mensais de evapotranspiração na Região Sul do Brasil	
		para o período entre 1976 até 2005	44
FIGURA	8 –	Extrato do balanço hídrico climatológico em alguns municípios da	
		Região Sul do Brasil para o período entre 1976 até 2005. Valores	
		expressos em mm	46
FIGURA	9 –	Fluxograma para a produção das imagens espacializadas	48
FIGURA	10 –	Semivariogramas plotados para médias mensais de precipitação	
		na Região Sul do Brasil para o período entre 1976 até 2005	49
FIGURA	11 –	Médias mensais de precipitação espacializadas na Região Sul do	
		Brasil para o período entre 1976 até 2005	50
FIGURA	12 –	Médias mensais de evapotranspiração espacializadas na Região	
		Sul do Brasil para o período entre 1976 até 2005	52
FIGURA	13 –	Fluxograma para a produção das imagens espacializadas da re-	
		sultantes do BHC	53
FIGURA	14 –	Excedente Hídrico mensal com o uso do balanço hídrico climatoló-	
		gico para solos com capacidade de 50mm na Região Sul do Brasil	
		para o período entre 1976 até 2005	54
FIGURA	15 –	Deficiência Hídrica mensal com o uso do balanço hídrico clima-	
		tológico para solos com capacidade de 50mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	55
FIGURA	16 –	Excedente Hídrico mensal com o uso do balanço hídrico climatoló-	
		gico para solos com capacidade de 75mm na Região Sul do Brasil	
		para o período entre 1976 até 2005	56
FIGURA	17 –	Deficiência Hídrica mensal com o uso do balanço hídrico clima-	
		tológico para solos com capacidade de 75mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	58
FIGURA	18 –	Excedente Hídrico mensal com o uso do balanço hídrico climato-	
		lógico para solos com capacidade de 100mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	59

FIGURA	19 –	Deficiência Hídrica mensal com o uso do balanço hídrico climato- lógico para solos com capacidade de 100mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	60
FIGURA	20 –	Excedente Hídrico mensal com o uso do balanço hídrico climato-	
		lógico para solos com capacidade de 125mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	61
FIGURA	21 –	Deficiência hídrica mensal com o uso do balanço hídrico climato-	
		lógico para solos com capacidade de 125mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	62
FIGURA	22 –	Excedente Hídrico mensal com o uso do balanço hídrico climato-	
		lógico para solos com capacidade de 150mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	63
FIGURA	23 –	Excedente Hídrico mensal com o uso do balanço hídrico climato-	
		lógico para solos com capacidade de 150mm na Região Sul do	
		Brasil para o período entre 1976 até 2005	64
FIGURA	24 –	1ª Semeadura do capim sudão - Excedente Hídrico mensal com o	
		uso do balanço hídrico climatológico para solos com capacidade	
		de 50mm na Região Sul do Brasil para o período entre 1976 até	
		2005	67
FIGURA	25 –	1ª Semeadura do capim sudão - Excedente Hídrico mensal com o	
		uso do balanço hídrico climatológico para solos com capacidade	
		de 75mm na Região Sul do Brasil para o período entre 1976 até	
		2005	68
FIGURA	26 –	1ª Semeadura do capim sudão - Deficiência hídrica mensal com o	
		uso do balanço hídrico climatológico para solos com capacidade	
		de 50mm na Região Sul do Brasil para o período entre 1976 até	
		2005	69
FIGURA	27 –	1ª Semeadura do capim sudão - Deficiência hídrica mensal com o	
		uso do balanço hídrico climatológico para solos com capacidade	
		de 75mm na Região Sul do Brasil para o período entre 1976 até	
		2005	70
FIGURA	28 –	2ª Semeadura do capim sudão - Excedente hídrico mensal com o	, 0
1100101	20	uso do balanço hídrico climatológico para solos com capacidade	
		de 50mm na Região Sul do Brasil para o período entre 1976 até	
		2005	71
EIGLIBA	20	2ª Semeadura do capim sudão - Excedente hídrico mensal com o	/ 1
IIGUNA	<u> </u>	•	
		uso do balanço hídrico climatológico para solos com capacidade	
		de 75mm na Região Sul do Brasil para o período entre 1976 até	70
		2005	72

FIGURA 30 -	- 2ª Semeadura do capim sudão - Deficiência hídrica mensal com o	
	uso do balanço hídrico climatológico para solos com capacidade	
	de 50mm na Região Sul do Brasil para o período entre 1976 até	
	2005	72
FIGURA 31 -	- 2ª Semeadura do capim sudão - Deficiência hídrica mensal com o	
	uso do balanço hídrico climatológico para solos com capacidade	
	de 75mm na Região Sul do Brasil para o período entre 1976 até	
	2005	73

LISTA DE TABELAS

TABELA 1	1 —	Entradas e Saídas do cálculo do Balanço Hídrico	36
TABELA 2	2 –	Estatística descritiva dados pluviométricos na Região Sul do Brasil	
		para o período entre 1976 até 2005 (mm)	41
TABELA 3	3 –	Estatística descritiva dados de evapotranspiração na Região Sul	
		do Brasil para o período entre 1976 até 2005 (mm)	43
TABELA 4	4 –	Estatística Moran / para os valores de precipitação e evapotrans-	
		piração da Região Sul do Brasil para o período entre 1976 até	
		2005	45
TABELA 5	5 –	Valores de Kc	65
TABELA 6	6 –	Valores de Kc aplicados nas duas semeaduras para o capim sudão	66
TABELA 7	7 –	Extrato do BHC da cidade de Bagé/RS (mm)	83
TABELA 8	8 –	Extrato do BHC da cidade de Londrina/PR (mm)	83
TABELA 9	9 –	Extrato do BHC da cidade de Uruguaiana/RS (mm)	84
TABELA 1	10 –	Extrato do BHC da cidade de Paranaguá/PR (mm)	84
TABELA 1	11 –	Extrato do BHC da cidade de São Joaquim/PR (mm)	85
TABELA 1	12 –	Localização das estações de monitoramento na Região Sul do	
		Brasil usadas neste estudo	91

LISTA DE ABREVIATURAS E DE SIGLAS

ABIEC Associação Brasileira das Indústrias Exploradoras de Carnes

ALT Alteração no Armazenamento

ANA Agência Nacional de Águas

ANEEL Agência Nacional de Energia Elétrica

ARM Armazenamento de Água do Solo

BHC Balanço Hídrico Climatológico

CAD Capacidade de Água Disponível

CAD Computer-Aided Design

DEF Deficiência Hídrica

DPI Divisão do Processamento de Imagens

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

EPAGRI Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

ETP Evapotranspiração Potencial

ETR Evapotranspiração Real

ETm Evapotranspiração de Cultura

EXC Excedente Hídrico

FAO Organização das Nações Unidas para a Alimentação e a Agricultura

FEPAGRO Fundação Estadual de Pesquisa Agropecuária

GIS Geographic Information System

IAPAR Instituto Agronômico do Paraná

INMET Instituto Nacional de Meteorologia

INPE Instituto Nacional de Pesquisas Espaciais

IPCC Intergovernmental Panel on Climate Change

ISNA Índice de Satisfação da Necessidade de Água para a Cultura

Kc Coeficiente de Cultura

NEG ACUM Negativo Acumulado

ONU Organização das Nações Unidas

P Precipitação

SARRA Systeme d'Analyse Regionale dês Risques Agroclimatiques

SNPA Sistema Nacional de Pesquisa Agropecuária

WGS 84 World Geodetic System of 1984

LISTA DE SÍMBOLOS

 Δ ARM Variação de Armazenamento de Água no Volume Considerado

SUMÁRIO

1	INTRODUÇÃO	18
1.1	JUSTIFICATIVA	19
1.2	PROBLEMA DE PESQUISA	22
1.3	OBJETIVOS	22
1.4	ORGANIZAÇÃO DO TEXTO	22
2	REVISÃO DA LITERATURA	23
2.1	BALANÇO HÍDRICO	23
2.2	CAPIM-SUDÃO BRS ESTRIBO	24
2.3	SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)	25
2.3.1	Métodos de Análise de Dados Geográficos	25
2.3.1.1	Dependência Espacial dos Dados	27
2.4	TRABALHOS CORRELATOS	28
2.4.1	Detalhamento dos Trabalhos Reportados	29
3	METODOLOGIA	33
3.1	DEFINIÇÃO DAS ETAPAS DE DESENVOLVIMENTO DA PESQUISA	33
3.2	CONCEPÇÃO DO TRABALHO	34
3.2.1	Definição do tipo de pesquisa	34
3.2.2	Delimitação da área de estudo	34
3.3	TRATAMENTO DOS DADOS	35
3.3.1	Aquisição dos dados	35
3.3.2	Edição dos dados	36
3.3.3	O Método do Balanço Hídrico	36
3.3.4	Evapotranspiração de Cultura (ETc)	38
3.4	ESPACIALIZAÇÃO DOS DADOS	38
4	RESULTADOS	41
4.1	ANÁLISE DOS DADOS DE PRECIPITAÇÃO E EVAPOTRANSPIRAÇÃO	41
4.2	APLICAÇÃO DO BALANÇO HÍDRICO CLIMATOLÓGICO	45
4.3	ESPACIALIZAÇÃO DOS DADOS COLETADOS	47
4.4	ESPACIALIZAÇÃO DO BALANÇO HÍDRICO CLIMATOLÓGICO	51
4.5	ESPACIALIZAÇÃO DAS SEMEADURAS DO CAPIM SUDÃO	65
4.5.1	Primeira Semeadura	66
4.5.2	Segunda Semeadura	68

5	CONSID	ERAÇÕES FINAIS	74
	REFERÉ	NCIAS	76
APÊN	DICES		82
APÊND	DICE A	TABELAS DO BALANÇO HÍDRICO CLIMATOLÓGICO EM ALGUMAS ESTAÇÕES DE MONITORAMENTO NA REGIÃO SUL DO BRASIL	83
APÊND	DICE B	SCRIPTY EM PYTHON PARA O FLUXOGRAMA DE ES- PACIALIZAÇÃO DAS MÉDIAS MENSAIS	86
APÊND	DICE C	SCRIPTY EM PYTHON PARA O CÁLCULO DO BALANÇO HÍDRICO CLIMATOLÓGICO	88
ANEX	os		90
ANEXC	Α (LOCALIZAÇÃO DAS ESTAÇÕES DE MONITORAMENTO NA REGIÃO SUL DO BRASIL USADAS NESTE ESTUDO	91

1 INTRODUÇÃO

A população global cresce de forma exponencial, atingindo 7,7 bilhões de pessoas em meados de 2018, um acréscimo de um bilhão de pessoas desde 2007 e dois bilhões desde 1994, conforme ONU, através do relatório "Perspectivas Mundiais de População 2019: Destaques", podendo chegar a 9,7 bilhões em 2050 (UNITED NATIONS; SOCIAL AFFAIRS, 2019). Desta forma, o aumento na produção de alimentos, a exemplo da carne bovina, tornou-se indispensável para abastecer a crescente demanda a procura de alimentos. O consumo de carne bovina representa um dos principais aportes de nutrientes na dieta humana, prevenindo doenças como anemia e servindo de fontes de importantes nutrientes a exemplo de vitaminas do complexo B, além de facilitar o balanceamento das dietas devido a sua elevada densidade energética e nutricional. Para a maioria das pessoas, a falta de carne vermelha pode representar perda na qualidade de vida (MEDEIROS, 2008).

Devido ao seu extenso território e variabilidade de ecossistemas, o Brasil é um dos maiores produtores de carne bovina mundial, situando-se na segunda posição, atingindo 9,5 bilhões de toneladas de carne, sendo resultante de constantes avanços tecnológicos nas últimas quatro décadas (MARCHEZINI *et al.*, 2019). Segundo a Associação Brasileira das Indústrias Exploradoras de Carnes (ABIEC), o Brasil encerrou o ano de 2019 registrando crescimento no Produto Interno Bruto (PIB), que atingiu R\$ 7,3 trilhões. No mesmo período, o PIB da pecuária somou R\$ 618,50 bilhões, 3,5% acima em comparação a 2019, representando 8,5% do PIB total brasileiro, demonstrando sua importância na economia do país (ABIEC, 2020).

A crescente evolução na produção da bovinocultura de corte implica em concorrência de espaço territorial na Região Sul do Brasil (PIRES, 2020). Uma das culturas que competem geograficamente com a pecuária é a soja e, desta forma, surge um grande desafio em aumentar a eficiência econômica e competitiva da atividade (REGERT et al., 2015). Um exemplo desse fato é o ocorrido no município gaúcho de Soledade, onde a expansão da sojicultura, juntamente com outras lavouras, ocupou cerca de 20 mil hectares de pasto nativo e, até o ano de 2013, o número de bovinos caiu 15%, segundo o Sindicato Rural da Cidade (PATRONI, 2013). Em outras regiões brasileiras, a agricultura também avança sobre a pecuária, como em Mato Grosso do Sul, estado que vem sofrendo transformações no modo de produção do gado de corte ao mesmo tempo que se reduz a área ocupada e se mantém o número de rebanho (DIGITAL, 2019).

Para que se mantenha a atividade pecuária de maneira intensiva e competitiva, o uso de pastagens precisa estar elencada a um plano para a reversão da degradação

e o aumento produtivo das pastagens. De acordo com PEREZ e SILVEIRA (2015), a degradação ocorre por diversos fatores, entre eles, a falta de ajuste entre o crescimento do pasto e a taxa de ocupação espacial. No Rio Grande do Sul, a vegetação campestre ainda é considerada a principal fonte de pastagens, incluindo gramíneas e leguminosas forrageiras, compostas e outras famílias. Outro fator que pode elevar a produção pecuária, é a substituição da vegetação natural por pastagens de elevada produção e qualidade (PEREZ; SILVEIRA, 2015).

Além da melhoria das pastagens, com o uso de forrageiras de alta produção, conhecer o clima de uma determinada região é fundamental para a produção animal ou vegetal. Através do balanço hídrico é possível classificar o clima de uma região, determinar espaços territoriais agroclimáticos e ambientais, além de auxiliar os produtores no gerenciamento da capacidade hídrica no solo (SANTOS; HERNANDEZ; ROSSETTI, 2013). Desta forma, o balanço hídrico pode estimar as áreas onde uma cultura pode ser explorada com maior eficiência (BARRETO *et al.*, 2009).

1.1 JUSTIFICATIVA

A Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Pecuária Sul, em conjunto com a Sulpasto, desenvolveram uma forrageira anual de verão em 2013, com base no processo de seleção de material genético de capim-sudão comum usado no Estado do Rio Grande do Sul, resultando em um material mais produtivo, rústico e com alto perfilhamento: o Capim-Sudão BRS Estribo, que pode ser observado na Figura 1. Outro diferencial desta cultivar é ser mais precoce para o plantio, produzindo um ciclo produtivo mais longo, apresentando uma melhor produtividade entre os meses de abril e maio (EMBRAPA, 2014). Outra vantagem em comparação a outras plantas forrageiras, é apresentar maior tolerância ao pastejo e ao pisoteio. Além disso, em comparação ao sorgo forrageiro, o campim-sudão BRS Estribo não apresenta toxicidade aos animais (SILVEIRA; SANT'ANNA *et al.*, 2015).

A denominação "BRS" origina-se através de uma deliberação interna da EM-BRAPA de maio de 2000, onde foi decidido que a cultivar oriunda de programas de melhoramento da empresa devem receber a denominação BRS seguida de nome fantasia, de acordo com a Unidade obtentora da cultivar. Desde o ano de 2010, as cultivares começaram a receber nomes regionais das localidades do país ondem foram desenvolvidas e, por este motivo, o Capim-Sudão recebeu a denominação de Estribo, item de selaria fundamental, pertencente no dia a dia do produtor rural gaúcho (MOURA, 2018).

De acordo com as condições agroclimáticas, o capim sudão diminui sua germinação, em pelo menos 30%, quando em excesso hídrico por um período superior a quatro dias. Em escassez de água, atrasa sua germinação. Por este motivo, a dis-

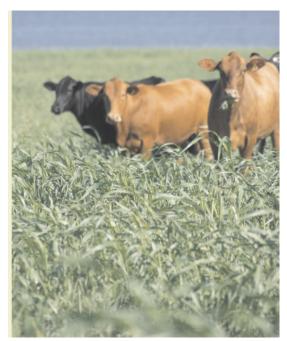


FIGURA 1 - Capim-Sudão BRS Estribo

Fonte: - Silveira, Sant'Anna e Montardo (2013), adaptado

ponibilidade de água é importante para o correto desenvolvimento desta forrageira. Mesmo em temperaturas elevadas associada a boa quantidade de água, as condições brasileiras não impedem o seu crescimento, uma vez que esta forrageira é oriunda do Sudão. Entretanto, quando a retenção de líquido no solo é inferior a 20% ocorre a redução de crescimento desta cultivar (SILVEIRA; SANT'ANNA *et al.*, 2015).

A quantidade hídrica no solo é um dos componentes necessários para a produção de qualquer espécie forrageira, sendo nativa ou cultivada. Desde a antiguidade, o homem busca alternativas para superar as deficiências de água, seja por armazenamento hídrico ou manipulação genética de cultivares (PIMENTEL, 2004).

Nesse sentido, o conhecimento do balanço hídrico de uma determinada região, originalmente proposto por Thornthwaite e Mather (1955), tem como objetivo determinar as potencialidades e fragilidades para a utilização de uma região agrícola, considerando o volume de água no solo, o fluxo de entrada (precipitação) e saída de água (evapotranspiração), permitindo predizer tanto o excedente hídrico quanto a deficiência hídrica (PEREIRA; SENTELHAS; ANGELOCCI, 2007). A aplicação desta técnica em conjunto a uma determinada espécie forrageira, possibilita determinar quais regiões serão mais propicias para o seu desenvolvimento.

Os principais componentes para o cálculo do balanço hídrico, de acordo com Pereira, Sentelhas e Angelocci (2007), são a precipitação (P), que é um dos componentes de entrada de água no sistema, a Evapotranspiração (ET), um dos principais componentes de perda de água, o armazenamento de água no solo (ARM), a deficiência

hídrica (DEF) e excedente hídrico (EXC).

De posse das resultantes dos cálculos do Balanço Hídrico, é possível identificar onde uma região poderá possuir as condições necessárias para a produção de uma determinada cultura com maior eficácia, se a mesma metodologia de cálculo for aplicada para todos os locais de uma mesma região (TOMASELLA; ROSSATO, 2005).

Uma das possíveis formas de apresentar as resultantes do Balanço Hídrico aplicado em uma determinada cultura é através de técnicas que possibilitem estimar o potencial de produção com base nas resultantes do Balanço Hídrico. A espacialização de dados climáticos, a exemplo das resultantes do Balanço Hídrico, busca a melhoria de aspectos metodológicos, aprimorar técnicas, gerando ferramentas para aplicação prática para o planejamento do meio físico (MELLO; SILVA, 2013). A computação apresenta recursos que auxiliam na construção dessas ferramentas que empregam complexos cálculos estatísticos e, através de Sistemas de Informações Geográficas (SIG) a construção desses conjuntos de ferramentas tornou-se viável (MELLO; SILVA, 2013).

Os dados observados na natureza, como a média pluviométrica, podem ser organizados em tabelas ou em um banco de dados. De posse destas informações, é possível a aplicação de técnicas de Geoestatística para a espacialização de dados temporais. Dentre os algoritmos matemáticos existentes na Geoestatística, destacamse os modelos matemáticos de interpolação determinísticos, como o *Inverse Distance Weighting* e o *Radial Basis Functions* e os métodos geoestatísticos, como a krigagem (LUCAS *et al.*, 2014). Mazzini e Schettini (2009) ainda apresentam inúmeros outros métodos de interpolação para dados hidrológicos.

Szentimrey, Bihari e Szalai (2007) afirmam que a matemática de interpolação espacial mais adequada para meteorologia é a geoestatística que apresenta técnicas para a interpolação espacial, como o inverso da distância, o interpolador geoestatístico (krigagem) e a análise do vizinho mais próximo (JAKOB, 2016). A krigagem é o método mais aplicado para dados espaciais, sendo um caso especial de previsão ideal para a aplicação de processos aleatórios no espaço ou em campos aleatórios (STEIN, 2012) e vem apresentando bons resultados com relação à estimativas de dados climáticos, conforme Mello e Silva (2013).

Por meio de soluções computacionais, como a geoespacialização somadas a técnicas de geoestatística, este estudo visa auxiliar na compreensão do balanço hídrico para o cultivo do capim sudão, com a finalidade de adquirir conhecimento em quais áreas da Região Sul do Brasil esta forrageira apresentará um pastejo mais adaptado para o gado de corte. O interesse desse estudo é identificar quais localidades da Região Sul do Brasil que possuam a quantidade hídrica necessária para aprimorar a produção da cultura do Capim Sudão.

1.2 PROBLEMA DE PESQUISA

Devido à recente origem, o capim sudão ainda necessita de estudos que correlacionam sua produção com aspectos que potencializem seu desenvolvimento. Face ao exposto, um dos nichos de estudo para esta forrageira é a sua necessidade hídrica para seu desenvolvimento. Para tanto, é viável implementar uma metodologia que possa estimar os excessos e deficiências hídricas na produção do capim sudão na Região Sul do Brasil?

1.3 OBJETIVOS

O objetivo geral deste estudo é espacializar as estimativas do Balanço Hídrico Climatológico, expressando as deficiências hídricas e excessos hídricos da forrageira capim sudão, na Região Sul do Brasil.

Os objetivos específicos são os seguintes:

- Analisar os dados coletados das estações meteorológicas;
- Aplicar e analisar o Balanço Hídrico Climatológico na Região Sul do Brasil;
- Aplicar e analisar o coeficiente de cultura do capim sudão na área de estudo;
- Espacializar as resultantes do Balanço Hídrico na Região Sul do Brasil;
- Estimar as áreas com excessos hídricos e deficiências hídricas na produção do capim sudão na Região Sul do Brasil

1.4 ORGANIZAÇÃO DO TEXTO

O restante do trabalho está organizado da seguinte forma: No Capítulo 2 é abordada a revisão da literatura e o estado da arte, que estabeleceu a fundamentação teórica para o desenvolvimento do estudo. No Capítulo 3 apresentam-se a definição da pesquisa e a proposta metodológica com a finalidade de atingir os objetivos elencados. No Capítulo 4 são apresentados os resultados até aqui alcançados. E, por fim, o Capítulo 5 apresenta as considerações finais e proposições de trabalhos futuros.

2 REVISÃO DA LITERATURA

Neste Capítulo são abordadas as informações necessárias para o desenvolvimento da pesquisa proposta, iniciando com a Seção 2.1 que expõe uma noção ao leitor a respeito do Balanço Hídrico, seguindo com a apresentação do capim sudão, na Seção 2.2.

A Seção 2.3 versa sobre os Sistemas de Informações Geográficas juntamente com quais métodos serão necessários para este estudo e, por último, na Seção 2.4 são descritos os trabalhos correlatos oriundos de uma revisão sistemática.

2.1 BALANÇO HÍDRICO

A grande e crescente demanda por alimentos e a busca por maior rentabilidade na agricultura dependem, de forma fundamental, das condições climáticas, desde o plantio de uma cultura até a sua colheita. Para o adequado crescimento radicular de uma determinada planta, é necessário a gerência de agentes que afetam a qualidade do solo, como a sua porosidade e a sua capacidade de infiltração e disponibilidade hídrica (WUTKE *et al.*, 2000).

De acordo com Pereira, Sentelhas e Angelocci (2007), a quantificação da disponibilidade hídrica presente no solo pode ser analisada pelo balanço hídrico climatológico (BHC), permitindo a aquisição de dados temporais de períodos com excedente e com deficiência hídrica, capacitando o planejamento das diversas atividades agrícolas. Os pioneiros no estudo do BHC foram Charles Warren Thornthwaite (1948) e JR Thornthwaite CW e Mather (1955). A representação do balanço entre o que entrou e o que saiu de água no solo é a variação de armazenamento de água no volume considerado (ΔARM) (WUTKE *et al.*, 2000) e as suas principais entradas são a precipitação (P), a irrigação (I), orvalho (O), escorrimento superficial (Ri), drenagem lateral (DLi) e a ascensão capilar (AC). Já as principais saídas são a evapotranspiração (ET), escorrimento superficial (Ro), drenagem lateral (Dlo) e drenagem profunda (DP). De acordo com Amorim Neto (1989), a aquisição do BH deve seguir as sequintes etapas:

- Aquisição dos dados da precipitação total mensal (P);
- 2. Aquisição dos dados da evapotranspiração potencial mensal, obtida através de evapotranspirômetros ou calculada por fórmulas empíricas;
- 3. Diferença entre a precipitação e a evapotranspiração potencial (P-ETP);

- 4. Aquisição da negativa acumulada que corresponde ao somatório dos valores de P-ETP < 0.
- 5. Cálculo do Armazenamento (ARM) que representa a quantidade de água que o solo comporta.

O BH pode ser expresso na Equação 2.1.

$$\pm \Delta ARM = P + I - ET + AC - DP \tag{2.1}$$

O conceito de Evapotranspiração foi introduzido por Thornthwaite em 1944 (THORNTHWAITE; MATHER, 1955) e passou a ser considerada, como a chuva, um elemento meteorológico padrão, representando a quantidade necessária de precipitação pluviométrica para atender as demandas de água para uma determinada vegetação (CAMARGO; CAMARGO, 2000). Para Ojo (1969), a ET é a combinação da evaporação da superfície do solo com a transpiração das plantas quando o suprimento de água é ilimitado, sendo altamente importante para pesquisas hidrológicas e agrícolas. Em outras palavras, Wutke *et al.* (2000) definem ET como o processo simultâneo de transferência de água para a atmosfera por evaporação da água do solo e por transpiração das plantas.

2.2 CAPIM-SUDÃO BRS ESTRIBO

O Capim Sudão BRS Estribo é uma espécie de planta de cobertura de solo anual de verão, sendo uma variedade do sorgo gramínea. Possui um porte alto e hábito ereto não apresentando toxicidade alimentar nos animais, em comparação com as forrageiras que com ela concorrem (especialmente, o sorgo, o milheto e o capim-sudão tradicional). Esta forrageira adapta-se a vários tipos de solos, apresenta boa tolerância à deficiência hídrica e boa ambientação aos Estados da região Sul do Brasil, sendo utilizada como pastagem para gado de corte e de leite, produção de feno e silagem. Esta forrageira, que foi desenvolvida com base no processo de seleção no material genético do capim-sudão comum (*Sorghum sudanense*), é consequência de um trabalho de parceria entre a EMBRAPA e a Associação Sulbrasileira para o Fomento de Pesquisa em Forrageiras (Sulpasto), sendo lançada em março de 2013 (EMBRAPA, 2014), com o objetivo de ofertar ao mercado uma planta com sementes certificadas e importantes vantagens em comparação a espécie comum de sorgo, ampliando as possibilidades de uso desta forrageira anual dentro do planejamento de pastagens das propriedades (SILVEIRA; SANT'ANNA *et al.*, 2015).

Uma das contribuições vantajosas desta espécie é a alta produtividade, com plantas mais robustas e alto perfilhamento. Possui também maior resistência ao pisoteio e pastejo em comparação ao sudão comum. Outra característica importante é sua

precocidade ao plantio, resultando um ciclo produtivo mais longo. A época de plantio, nos Estados da Região Sul do Brasil, vai de setembro até fevereiro, entretanto, no Rio Grande do Sul, o período começa em outubro e encerra-se em fevereiro (SILVEIRA; SANT'ANNA *et al.*, 2015). Santos, Silva e Tonini (2019) em seu relatório do impacto desta nova cultivar, concluem que esta nova tecnologia ainda não atingiu todo o seu potencial de geração de impactos, existindo uma forte tendência no aumento de estudos inerentes a esta forrageira. Ainda afirmam que o uso desta cultivar indicam potencial de aumento nos indicadores relacionados a novas práticas metodológicas.

2.3 SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)

Najar e Marques (1998) afirmam que os Sistemas de Informações Geográficas (SIG) são sistemas baseados em computador, usados para armazenar e manipular informações geográficas, sendo composto essencialmente por um sistema gerenciador e um banco de dados georreferenciados permitindo a rápida análise dos complexos dados espaciais, propiciando adequado planejamento e administração do espaço geográfico.

2.3.1 Métodos de Análise de Dados Geográficos

A Geoestatísitca é uma subárea da Estatística que estuda variáveis regionalizadas, fornecendo um conjunto de técnicas capaz de decifrar a aleatoriedade aparente dos dados, estabelecendo uma função de correlação espacial (YAMAMOTO JORGE KAZUO E LANDIM, 2015). Esta subárea apresenta técnicas de estimação de dados, como o Inverso do Quadrado da Distância, análise do vizinho mais próximo e krigagem linear e não-linear (JAKOB, 2016). Para Stein (2012), a krigagem, originalmente proposto por Matheron e Huijbregts (1971), é o método mais popular para interpolar dados espaciais, sendo um caso especial de previsão linear ideal para a aplicação de processos aleatórios no espaço ou em campos aleatórios. Por esse motivo, será visto os conhecimentos da krigagem neste Capítulo.

Outro fator que reforça a aplicação do método de krigagem é devido a varabilidade espacial das estações usadas nesse estudo. WREGE *et al.* (2012) informam que os dados de chuva dos três Estados da Região Sul do Brasil foram interpolados em conjunto com dados da divisa entre os Estados de São Paulo e Paraná, em toda a Região Sul do Brasil, com estações do Uruguai, por causa da dependência dos dados de cada estação com estações circunvizinhas. Os autores deste Atlas, no qual foi extraído as médias pluviométricas para este estudo, também sugerem o emprego de equacionamento por técnicas de geoestatística (krigagem), em SIG, por meio de modelos denominados semivariogramas (WREGE *et al.*, 2012).

Yamamoto Jorge Kazuo e Landim (2015) definem krigagem como um processo geoestatístico de estimativa de valores de variáveis distribuídas no espaço e/ou tempo, com base em valores adjacentes quando considerados interdependentes pela análise variográfica. Stein, Van der Meer e Gorte (2006) afirmam que este método é aplicado para questionamentos do tipo "onde e quando?" e exemplificam o uso da krigagem através de um especialista em sensoriamento remoto, quando este profissional precisa predizer que tipo de uso da terra é provável para um pedaço do solo que foi obscurecido por nuvens quando a radiação refletida do solo foi registrada por algum sensor aéreo.

Hengl (2009) afirma que, uma regressão polinomial nas coordenadas das estações é realizada para modelar a tendência dos dados para os métodos de krigagem ordinária e co-krigagem. A krigagem ordinária é definida na equação 2.2, onde s=(x,y) é um local no espaço geográfico e o Z(s) é algum valor observado definido para esta localização, por exemplo, a leitura da precipitação ou temperatura em uma determinada região. O modelo é baseado em uma média constante μ para os dados (sem tendência) e erros aleatórios $\varepsilon(s)$ com dependência espacial (JOHNSTON et~al., 2001).

$$Z(s) = \mu + \varepsilon(s) \tag{2.2}$$

Suponha que o processo aleatório $\varepsilon(s)$ seja intrinsecamente estacionário. O preditor é formado como uma soma ponderada dos dados (equação 2.3), onde $Z(s_i)$ é o valor medido no i-ésimo local, λ_i é um peso desconhecido para o valor medido no i-ésimo local, s_0 é a localidade da previsão e N é o número dos valores medidos (JOHNSTON *et al.*, 2001).

$$\hat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)$$
(2.3)

Para garantir que o preditor seja imparcial para cada medida desconhecida, a soma do peso λ_i deve ser igual a 1. Usando essa restrição, é necessário verificar se a diferença entre o valor verdadeiro $Z(s_0)$ e o preditor, $\sum \lambda_i Z(s_i)$, é a menor possível, sendo necessário minimizar a expectativa estatística com a fórmula 2.4 a partir do qual as equações foram obtidas (JOHNSTON *et al.*, 2001).

$$\left(Z(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)\right)^2 \tag{2.4}$$

A solução para a minimização, restringida pela imparcialidade, fornece as equações de krigagem 2.5 ou 2.6, onde a matriz Γ contém os valores do semivariograma modelado entre todos os pares de localização a amostra, em que γ_{ij} denota os valores do semivariograma modelado com base na distância entre as duas amostras identificadas como as i^2 e j^2 posições. Já o vetor g contém os valores do semivariograma modelado entre cada local medido e o local da previsão, onde γ_{i0} denota os valores

do semivariograma modelado com base na distância entre a i-ésima localização da amostra e a localização da previsão. O valor desconhecido m do vetor λ também é estimado e surge devido à restrição de imparcialidade. (JOHNSTON *et al.*, 2001).

$$\Gamma * \lambda = g \tag{2.5}$$

$$\begin{pmatrix} \gamma_{11} & \dots & \gamma_{1N} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ \gamma_{N1} & \dots & \gamma_{NN} & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix} * \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_N \\ m \end{pmatrix} = \begin{pmatrix} \gamma_{10} \\ \vdots \\ \gamma_{N0} \\ 1 \end{pmatrix}$$
 (2.6)

Para a aplicação da krigagem, é necessário a determinação da variação espacial que é quantificada por um semivariogarama, conforme a equação 2.7, onde N(h) é o número de pares de valores medidos $Z(x_i), Z(x_i+h)$ e $\gamma^*(h)$ é o semivariograma estimado (MATHERON; HUIJBREGTS, 1971).

$$\gamma^*(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) + h]^2$$
 (2.7)

2.3.1.1 Dependência Espacial dos Dados

Além de uma observação prévia dos dados observados da natureza, é necessário realizar alguma análise, com a finalidade de verificar se os dados, que estão espacialmente arranjados, possuem correlação espacial. Esta noção parte da primeira lei da Geografia, elaborado por Waldo Tobler (1970), afirmando que as coisas mais próximas são mais similares que as coisas mais afastadas, entretanto, todas as coisas são parecidas (MONTEIRO *et al.*, 2004). Oyana (2020) informam que as Estatísticas de autocorrelação espacial podem realizar essa medição do nível de interdependência entre as variáveis. A autocorrelação espacial pode ser classificada como positiva ou negativa. Quando o valor é igual a zero, não apresenta padrão espacial.

Os testes estatísticos mais comumente aplicadas para autocorrelação espacial em estudos ambientais e geológicos são a Estatística I de Moran e a Estatísstica C de Geary (KALKHAN, 2011). O que foi aplicado nesse estudo é o teste de Moran I, no qual comporta-se como um coeficiente de correlação de Pearson, permanecendo entre -1 e 1. Valores positivos indicam autocorrelação positiva e vice versa. Conforme Kalkhan (2011), o teste de Moran é calculado conforme a equação 2.8, onde I(d) é o coeficiente de Moran para a classe de distância d, z_i são os valores da variável i e j, quando variam de 1 a n. W_{ij} é igual a 1 quando a localização (i,j) está na classe de distância d e, caso contrário, será igual a 0. W é a soma dos valores de W_{ij} .

$$I(d) = \frac{\frac{1}{W} \sum_{i} \sum_{i \neq i} w_{ij} (z_i - \overline{z}).(z_j - \overline{z})}{\frac{1}{n} \sum_{i} (z_i - \overline{z})^2}$$
(2.8)

2.4 TRABALHOS CORRELATOS

Nesta Seção segue a descrição de alguns estudos realizados que fornecem um referencial teórico, bem como conhecimentos inerentes para o desenvolvimento de todas as etapas deste estudo. A pesquisa foi realizada por meio de uma revisão sistemática que é uma forma de pesquisa sobre um determinado tema em base de dados, disponibilizando como resultado um resumo das evidências relacionadas a uma estratégia de intervenção específica, mediante a aplicação de métodos explícitos e sistematizados de busca (LINDE; WILLICH, 2003).

Como estratégica de busca, realizou-se a identificação das bases de dados on-line a serem consultadas. Os principais repositórios utilizados foram: *Scientific Electronic Library Online* (SciELO) que é uma biblioteca eletrônica que abrange uma coleção selecionada de periódicos científicos brasileiros, sendo desde 2002 apoiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Outra base de dados de pesquisa é o Repositório de Informação Tecnológica da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (Infoteca-e).

O terceiro repositório empregado neste estudo é o Acesso Livre à Informação Científica da EMBRAPA (ALICE), que é composto por informações científicas produzidas por pesquisadores da EMBRAPA que contribui para o aumento do impacto dos resultados de pesquisa, dando maior visibilidade aos trabalhos realizados pela EMBRAPA.

Foram utilizados as seguintes palavras-chave para busca: "balanço hídrico", "capim sudão", "evapotranspiração", "SIG"e suas versões na língua inglesa. Com a finalidade de refinamento da pesquisa, construiu-se as seguintes expressões ("*strings*") de busca contendo as palavras-chave:

- balanço hídrico AND capim sudão
- balanço hídrico AND SIG
- capim sudão AND evapotranspiração
- evapotranspiração AND SIG

Os critérios de inclusão e exclusão dos trabalhos foram definidos e discriminados abaixo:

- Os documentos devem estar presentes na Web;
- As publicações apresentam palavras da string de busca no seu título ou em seu resumo:

- Publicações escritas em inglês ou em português;
- Publicações feitas nos últimos 20 anos. (2000 até 2020).

2.4.1 Detalhamento dos Trabalhos Reportados

O objetivo do trabalho de Da Silva et al. (2013) foi de avaliar os impactos das alterações climáticas de temperatura do ar e precipitação sobre o zoneamento agrícola de risco climático da cana-de-açúcar, baseado nos relatórios do Intergovernmental Panel on Climate Change (IPCC), combinado com técnicas de SIG. A região de estudo foi a região Nordeste do Brasil e os dados utilizados foram as séries históricas de precipitação com no mínimo 30 anos de dados diários. Neste estudo utilizou-se o modelo Systeme d'Analyse Regionale des Risques Agroclimatiques (SARRA) com o objetivo de avaliação dos riscos de seca e seus impactos na agricultura. SARRA contém um módulo que executa o balanço hídrico no solo, usado para obtenção das necessidades hídricas e o Índice de Satisfação da Necessidade de Água para a Cultura (ISNA), uma relação entre a evapotranspiração real e a evapotranspiração máxima. Neste estudo também foram utilizados mais dois softwares, o Estima-T, responsável por estimar a temperatura do ar e o Sevap, responsável por estimar a evapotranspiração potencial. Da Silva et al. (2013) concluem que as alterações climáticas provocam reduções significativas nas áreas agrícolas para a cultura de cana-de-açúcar e que a redução de chuvas sem aumento na temperatura produzem um aumento significativo nas áreas com baixo e médio risco climatológico em comparação com aquelas com acréscimo de temperatura. Ainda concluem que o período simulado mais sensível ao cultivo da cultura compreende os meses de março a maio e os meses de julho a setembro são os meses mais apropriados para o cultivo da cultura em sistema de sequeiro na Região Nordeste do Brasil.

Faria et al. (2000) espacializaram, para o Estado de Minas Gerais, a demanda máxima diária de irrigação suplementar real necessária à cultura do milho com o objetivo de identificar a melhor época de plantio para esta cultura. Foram usados os dados cedidos pelo INMET e pela Agência Nacional de Energia Elétrica (ANEEL), com uma série histórica mínima de 10 anos para precipitação e cinco anos para evapotranspiração. Para a simulação do balanço de água no solo, os autores desenvolveram um software desenvolvido na linguagem Delphi, utilizando o modelo computacional aplicado ao manejo e planejamento de irrigação apresentada por Souza (1993). Os autores também estimaram a evapotranspiração por referência usando o modelo de Penman-Monteith (SMITH et al., 1991) e a evapotranspiração da cultura foi calculada, em cada período, empregando-se o coeficiente da cultura proposto por Doorenbos (1975) e o coeficiente de umidade do solo proposto por Bernardo (1995). Dentre as conclusões que os autores apontam, as de maior destaque é a constatação da melhor

época de plantio do milho de sequeiro no Estado de Minas Gerais são os meses de setembro a outubro e o gerenciamento dos recursos hídricos daquele Estado deve ser regionalmente discutido, uma vez que constata-se uma homogeneidade mau distribuída espacialmente relativa à demanda de irrigação suplementar, independente do tipo de solo aplicado na simulação feita pelos autores.

Com o objetivo de determinar a aptidão agrícola para o cultivo do café arábica no Estado de Minas Gerais, os autores Sediyama et al. (2001) realizaram o zoneamento agroclimático do Estado, por meio de mapas temáticos. Os dados climáticos do Estado e das regiões limítrofes dos Estados circunvizinhos, foram obtidos do Instituto Nacional de Meteorologia e o registro da precipitação diária da Agência Nacional de Energia Elétrica. Com os dados obtidos, foi elaborado o banco de dados para todas as estações do Estado de Minas Gerais e demais estações limítrofes, utilizando as normais de temperaturas médias mensais e os totais de precipitações médias mensais. Depois da elaboração do banco de dados, iniciou-se o cálculo do balanço hídrico seriado segundo Thornthwaite e Mather (1955), para todas as estações climatológicas disponíveis. Os mapas temáticos foram construídos pelo SIG "ArcView 3.2", contendo a elaboração de um banco de dados dos valores calculados do balanço hídrico, para a capacidade de água disponível de 125mm, os valores das temperatura médias anuais normais e as probabilidades de ocorrências de temperaturas inferiores ou iguais à 2ºC. Sediyama et al. (2001) concluem que as temperaturas médias anuais entre 18 a 23,5°C são responsáveis por grande parte da área apta para o cultivo do café arábica. Outra constatação do trabalho é que, por meio do cruzamento dos mapas temáticos de deficiência hídrica anual e temperatura média anual, metade da área do Estado está apta para a produção cafeeira comercial de alta sustentabilidade.

Gondim et al. (2010) realizaram um estudo sobre a adequação do método para estimar a evapotranspiração de referência, que utilizam o método de FAO Perman-Monteith (ET_oPM) utilizando-se dados mínimos integrados a um Sistema de Informação Geográfica, na bacia do Rio Jaguaribe, CE. Embora este trabalho não aborde uma cultura específica, é notória a aquisição de conhecimento proveniente deste estudo que enriquece o presente referencial teórico, uma vez que aborda uma aplicabilidade de evapotranspiração, balanço hídrico, geoestatística, por meio de um SIG. Os autores utilizaram o sistema integrado de modelagem regional PRECIS (*Providing Regional Climates for Impacts Studies*) e o conjunto de dados foi adquirido através do Instituto Nacional de Pesquisas Espaciais (INPE-CPTEC), composto de dados climatológicos de base do modelo de 1961-1990. Esses dados foram analisados quanto à sua variabilidade espacial (latitude/longitude), utilizando-se geoestatística (krigagem) associada a um SIG. Para a validação do modelo, foi aplicada a regressão linear entre ET_oPM estimada com dados mínimos e com dados de uma estação de referência em Limoeiro do Norte, CE. Os autores concluem que a metodologia aplicada funcionou satisfatoria-

mente, considerando os resultados da análise de regressão e que o balanço hídrico médio (precipitação - ET_o médias) apresenta-se negativo na maioria dos meses, quando se detecta a necessidade de irrigação da culturas.

Outra aplicabilidade em conjunto de SIG, balanço hídrico e geoestatística pode ser encontrada no trabalho de De Silva et al. (2007) que analisaram a variação espacial dos impactos das mudanças climáticas, considerando a necessidade hídrica da cultura do arroz durante a estação chuvosa no Sri Lanka, alimento básico daquele país, para ajudar os agricultores no planejamento de gerenciamento dos recursos hídricos. Os dados para o estudo foram obtidos através do Centro Hadley de Previsão e Pesquisa Climática do Reino Unido (HadCM3) e do Relatório Especial Intergovernamental sobre Cenário sobre Cenário de Emissões (SRES) sobre Mudança Climática (IPCC). Um modelo de balanço hídrico e um SIG foram usados para modelar e mapear os impactos esperados nos requisitos totais de irrigação para a cultura de arroz em casca na estação chuvosa. Para cada conjunto de dados, foi extraído a temperatura média mensal, radiação, velocidade do vento e umidade e estimado o ETo médio mensal para cada pixel de 16 a 16 km. Para estimar a Evapotranspiração por referência (ETo) foi utilizado a equação de Penman-Monteith da Organização das Nações Unidas para Alimentação e a Agricultura (FAO). Os dados compreendidos entre 1961 a 1990 são a temperatura média mensal, radiação, velocidade do vento e umidade. Esses dados foram interpolados usando krigagem esférica e, em seguida, aplicadas aos dados de linha de base. Os autores concluem que os impactos das mudanças climáticas na estação chuvosa são positivos no extremo sul, no entanto, os impactos são negativos na maior parte do Sri Lanka para a produção do arroz em casca.

Ainda foram selecionados trabalhos que apresentam um enriquecimento para a compreensão das etapas do método definido em busca dos objetivos elencados nessa pesquisa, ainda que não apresentem todas as palavras-chave. Dentre eles, o trabalho de Rovani e Wollmann (2019) realizou a análise do Balanço Hídrico do cultivo da nogueira pecã, no Rio Grande do Sul, com dados coletados de precipitação pluviométrica e temperatura média do ar, de 23 estações gaúchas no período de 1998 a 2013. Os dados foram organizados em planilhas do Microsoft Office Excel, contendo médias aritméticas diárias e mensais. O Balanço Hídrico foi elaborado conforme metodologia proposta por Thornthwaite e Mather (1955) e a capacidade de água no solo no valor de 100mm. Foram selecionadas oito estações meteorológicas para a elaboração do balanço hídrico. De acordo com os autores, existem anos com precipitações elevadas, muito provavelmente em decorrência do El Niño - Oscilação Sul. O estudo apresentou como conclusões que no ano de 2002 apresentou excesso hídrico no período de afloração dos frutos e no ano de 2004 apresentou deficiência hídrica no crescimento das nozes e na colheita, ambos períodos prejudiciais na produção da nogueira pecã.

Coutinho *et al.* (2015) apresentaram uma pesquisa analisando o Balanço Hídrico Climatológico em dois municípios da Paraíba, usando a metodologia de Thornthwaite e Mather (1955) com modificações de Krishnan *et al.* (1980). Os dados de precipitação analisados são oriundos da Universidade de Ciências Atmosféricas em um período de 1966 até 2003. A EMBRAPA de Recife cedeu os dados de máxima capacidade de retenção de água disponível pelo solo. O cálculo de evapotranspiração potencial foi realizado conforme método de Charles Warren Thornthwaite (1948). Os resultados mostraram que o período chuvoso concentra-se nos meses de maio a julho, nos municípios de Alhandra e Prata. O Balanço Hídrico demonstraram limitação hídrica principalmente no município de Prata.

A análise do Balanço Hídrico Climatológico do Sistema Aquífero Guarani foi realizado por Santos, Chang e Kiang (2012), no Estado de São Paulo, utilizando a metodologia de Thornthwaite e Mather (1955) e dados das cinco estações meteorológicas sem informar o período da coleta. O resultado da pesquisa demonstrou que as temperaturas médias nos meses quentes permaneceram acima dos 22ºC e médias superiores a 30mm de chuva nos meses mais secos. As médias são da ordem de 1400 a 1600mm ao ano, apresentando um excedente hídrico médio de 604 mm ao ano.

3 METODOLOGIA

Neste capítulo são descritos os materiais e métodos adotados no decorrer deste trabalho. Na Seção 3.1 são abordados as etapas de todo o desenvolvimento dessa presente pesquisa, na Seção 3.2 é apresentado a fase de Concepção do Projeto. O arcabouço teórico, constituído pelo Referencial Teórico e Trabalhos Correlatos, estavam contidos no Capítulo 2.

3.1 DEFINIÇÃO DAS ETAPAS DE DESENVOLVIMENTO DA PESQUISA

A Figura 2 apresenta a sequência de etapas de desenvolvimento do trabalho, desde a fase de concepção do projeto até a apresentação dos resultados. Nessa sequência, caso haja algum problema em etapas anteriores, poderão ocorrer soluções para o correto desenvolvimento da metodologia. A construção do Referencial Teórico e os Trabalhos Correlatos estão no Capítulo 2.

Concepção Espacialização Resultados Tratamento do projeto dos dados dos dados Análise da Delimitação do tema Espacialização dos Aquisição dos dados Espacialização dados coletados de pesquisa Obtenção das Construção do Organização Espacialização do imagens Referencial Teórico dos dados BHC espacializadas Análise dos Aplicação do Espacialização da Análise das imagens Trabalhos Correlatos BHC ETc espacializadas Delimitação Aplicação ETc da área de estudo

FIGURA 2 – Etapas do desenvolvimento do trabalho

Fonte: - Próprio autor.

3.2 CONCEPÇÃO DO TRABALHO

3.2.1 Definição do tipo de pesquisa

Para desenvolvimento de uma metodologia, é necessário compreender qual a definição de pesquisa que, para Ander-Egg (1978), em linhas gerais, é a investigação de um procedimento reflexivo, sistemático e crítico dentro de um controle, permitindo o descobrimento de novos dados, fatos, relações em qualquer campo do conhecimento. Uma das consequências da pesquisa é a aquisição de conhecimento. De acordo com Ferrari (1974), existem quatro tipos de conhecimento, a saber, o conhecimento popular, conhecimento científico, conhecimento filosófico e, por fim, o conhecimento religioso. Este estudo está classificado como conhecimento científico, pois lida com ocorrências ou fatos, com toda forma de existência que se manifesta de algum modo (FERRARI, 1974).

A linha de pesquisa deste trabalho está relacionada com Tecnologias para Produção Agropecuária, sendo classificada como "modelagem computacional do Sistema Solo-Planta-Animal", conforme definido no Programa de Pós-Graduação em Computação Aplicada da Universidade Federal do Pampa, uma vez que esta pesquisa está interessada na interação dos processos existentes no sistema solo-planta-animal. Outra classificação é quanto à sua natureza, sendo caracterizada como pesquisa aplicada, pois está interessada em aquisição de conhecimentos para aplicação na prática, proporcionando solução de problemas específicos (GERHARDT; SILVEIRA, 2009).

3.2.2 Delimitação da área de estudo

A área de estudo compreende as unidades federativas do Paraná, Santa Catarina e do Rio Grande do Sul que compõe a Região Sul do Brasil com 577.700 km², sendo a menor das cinco regiões brasileiras. É limitada ao norte pelos Estados de São Paulo e Mato Grosso do Sul, ao sul pelo Uruguai, a oeste pelo Paraguai e pela Argentina e a leste pelo Oceano Atlântico (IBGE, 1977).

IBGE (1977) informa que o clima desta região caracteriza-se por ser homogêneo, no que se refere à pluviometria e ao ritmo estacional de seu regime. A Região Sul do Brasil é bem regada por chuvas, apresentando boa distribuição espacial de chuvas durante o ano. A média de precipitação anual varia de 1250 a 2000mm(IBGE, 1977). IBGE (1977) caracteriza a área de estudo, quanto a circulação atmosférica, como uma região de passagem da frente polar em frontogênese. Desta forma, a Região Sul do Brasil torna-se sujeita às sucessivas invasões de correntes perturbadoras de Sul. A área de estudo pode ser observada por meio da Figura 3.

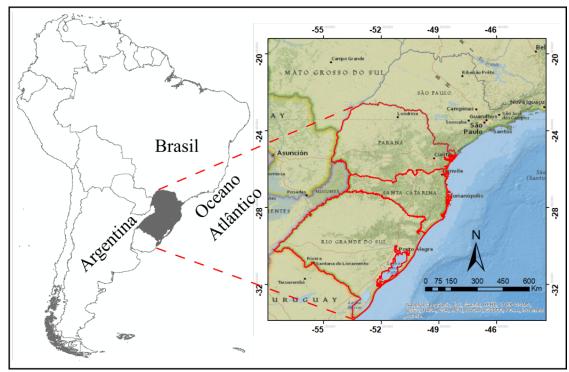


FIGURA 3 – Localização da Área de Estudo

3.3 TRATAMENTO DOS DADOS

3.3.1 Aquisição dos dados

Foram adquiridos os dados do Atlas Climatológico da Região Sul do Brasil (WREGE *et al.*, 2012) que compõe as variáveis climáticas utilizadas neste estudo, provenientes das 566 estações meteorológicas do Instituto Agronômico do Paraná (IAPAR), da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), da Fundação Estadual de Pesquisa Agropecuária (FEPAGRO) e do 8º Instituto Nacional de Meteorologia (DISME/INMET), das estações da EMBRAPA Clima Temperado e da EMBRAPA Trigo, da rede de estações da Agência Nacional de Águas (ANA).

As médias da precipitação pluviométrica acumulada mensal, estacional e anual na Região Sul do Brasil, estão em um período histórico de 30 anos, compreendidos entre 1976 até o ano de 2005. Devido a errônea localização geográfica de uma grande parte das estações elencadas no Atlas de WREGE *et al.* (2012), foi necessário corrigir as coordenadas geográficas das estações através do Inventário das Estações Pluviométricas fornecido pela ANA (ANA, 2009).

A representação cartográfica dos contornos dos estados da Região Sul do Brasil (*shapefiles*) foi obtido através da Divisão do Processamento de Imagens (DPI)

do Instituto Nacional de Pesquisas Espaciais (INPE)¹. O Sistema de Coordenadas Geográficas utilizado neste *shape* é o World Geodetic System of 1984 (WGS 84). Os dados pluviométricos foram interpolados incluindo os dados da divisa entre os estados de São Paulo e Paraná, em toda a Região Sul do Brasil e com dados de estações do Uruguai, considerando sua dependência espacial e a forma como um dado influencia no seu vizinho. O *shape* do Uruguai foi obtido através do seu Instituo Nacional de Estatística², com o mesmo sistema de coordenadas WGS 84.

3.3.2 Edição dos dados

Primeiramente, os dados das médias mensais de precipitação e evapotranspiração foram organizados em formato de tabela, contendo o nome da estação, nome da localidade da estação, latitude e longitude e as resultantes das médias mensais de janeiro a dezembro. Como as coordenadas (x e y) precisam estar em graus decimais, no sistema Universal Transverse Mercator (UTM), para a criação de um shapefile de pontos, foi realizada a transformação das coordenadas para o UTM.

3.3.3 O Método do Balanço Hídrico

O Balanço Hídrico, apresentado na Seção 2.1, genericamente, pode apresentar as entradas e saídas descritas na Tabela 1 (PEREIRA; SENTELHAS; ANGELOCCI, 2007):

TABELA 1 – Entradas e Saídas do cálculo do Balanço Hídrico

Entradas	Saídas
P = Precipitação	ET = Evapotranspiração
O = Orvalho	DLo = Drenagem lateral
I = Irrigação	Ro = Escorrimento Superficial
Ro = Escorrimento Superficial	DP = Drenagem profunda
DLi = Drenagem lateral	
AC = Ascensão Capilar	

A contribuição do orvalho é considerada desprezível em termos de suprimento de água para a cultura. O escorrimento superficial e a drenagem lateral tendem a se compensar. Desta maneira, seus valores são suprimidos do cálculo. Desta forma, o balanço hídrico pode ser expresso na equação 3.1.

$$\pm \Delta ARM = P + I - ET + AC - DP \tag{3.1}$$

Os dados da precipitação (P) e de evapotranspiração (ET) foram adquiridos pelo Atlas de WREGE *et al.* (2012) e os valores de irrigação (I) não serão aplicados nesse

http://www.dpi.inpe.br/DPI/

http://www.ine.gub.uy/mapas-vectoriales

estudo, em virtude da extensa área de estudo. Os dados da ascensão capilar (AC) e a drenagem profunda (DP) podem ser determinados pela física de solos (REICHARDT, 1990). Desta forma, falta determinar a disponibilidade hídrica do solo (ARM).

Para determinar o balanço hídrico sem a presença da irrigação (I = 0), foi aplicado o cálculo do Balanço Hídrico Climatológico desenvolvido por Thornthwaite e Mather (1955). Outra simplificação, para fins práticos, é desprezar os valores de ascensão capilar (AC = 0) e com isso, é possível determinar a Alteração do Armazenamento (ALT), a evapotranspiração real (ETR) e a drenagem profunda, agora denominada excedente hídrico (EXC), resultando na equação 3.2. Com os valores de ETP e ETR foi possível determinar o deficit hídrico (DEF) (equação 3.3).

$$\pm ALT = P - ETR - EXC \tag{3.2}$$

$$DEF = ETP - ETR (3.3)$$

Para Thornthwaite e Mather (1955), o primeiro passo do roteiro para a elaboração do balanço hídrico climatológico é a seleção do valor da Capacidade de Água Disponível (CAD), ou seja, a lâmina de água correspondente a umidade armazenada pelo solo. No presente estudo, foram adotados os valores de CAD sugeridos por Pereira, Sentelhas e Angelocci (2007) de 50, 75, 100, 125 e 150mm. Abaixo seguem a sequência de passos para o cálculo do balanço hídrico (PEREIRA; SENTELHAS; ANGELOCCI, 2007).

- 1. ETP: Preencher com os valores mensais da evapotranspiração;
- 2. P: Preencher com as médias pluviométricas mensais;
- 3. P ETP: Diferença entre as colunas P e ETP;
- 4. NEG.ACUM: Somatório da sequência dos valores negativos de P ETP;
- 5. ARM: Armazenamento de água do solo, calculado pela equação 3.4;

$$ARM = CADe^{\left[\frac{NEG.ACUM}{CAD}\right]}$$
 (3.4)

- 6. ALT: Alteração no armazenamento que é obtida pela diferença entre o ARM do mês atual e o ARM do mês anterior.
- 7. ETR: Evapotranspiração real. Podem existir duas formas de cálculo, as equações 3.5 e 3.6:

• quando
$$P - ETP \ge 0$$
:
$$ETR = ETP \tag{3.5}$$

• quando ALT < 0:

$$ETR = P + |ALT| \tag{3.6}$$

8. DEF: Deficiência hídrica, obtida pela equação 3.7:

$$DEF = ETP - ETR (3.7)$$

9. EXC: Excedente hídrico, podendo ser obtido por duas situações, equações 3.8 e 3.9:

• quando
$$ARM < CAD$$
:

$$EXC = 0 (3.8)$$

• quando ARM = CAD:

$$EXC = (P - ETP) - ALT (3.9)$$

3.3.4 Evapotranspiração de Cultura (ETc)

Para a determinação das áreas com excedente hídrico e deficiência hídrica para a produção da cultura do capim sudão, é necessária a determinação da Evapotranspiração de Cultura (ETc). A ETc foi definida, conforme Pereira, Sentelhas e Angelocci (2007) como a quantidade de água necessária para o desenvolvimento de uma cultura, em qualquer fase de seu crescimento, sendo obtida através da ETP pela relação da equação 3.10, substituindo, no cálculo do BHC, a Evapotranspiração Real (ETR) pela ETc, em que Kc é o Coeficiente de Cultura.

$$ETc = Kc \cdot ETP \tag{3.10}$$

O Valor de Kc varia com os subperíodos de desenvolvimento e entre as espécies e variedades (cultivares) (PEREIRA; SENTELHAS; ANGELOCCI, 2007). De acordo com Camargo e Pereira (1990), o valor de Kc varia de 0 a 1,2 e pode ser estimado pela relação expressa na equação 3.11, onde CT é a cobertura do terreno.

$$Kc = 1, 2(\frac{\%CT}{100})$$
 (3.11)

3.4 ESPACIALIZAÇÃO DOS DADOS

O Sistema de Informação Geográfica (GIS), utilizado para a espacialização dos dados vetoriais, foi o *ArcMap*[®] (licença da UNIPAMPA Laboratório de Modelagem e Simulação Computacional) que é o principal componente do conjunto de programas de processamento geoespacial do *ArcGIS*[®], software para criação e edição de dados

geográficos aplicado nesse estudo (SHANER JEFF E WRIGHTSELL, 2000). O *Arc-Map*[®] possui um conjunto de ferramentas de análise exploratória de dados espaciais denominado de Analista Geoestatístico. Dentre as ferramentas, o analista possui o interpolador aplicado nesse estudo, a Krigagem linear, que é abordado na subseção 2.3.1 do presente documento.

Dentre os modelos semivariogramas ajustados apresentados por Johnston *et al.* (2001), os indicados para os mais variados tipos de situações são o o esférico, o exponencial e o gaussiano, conforme McBratney e Webster (1986).O modelo de semivariograma aplicado neste estudo foi o esférico uma vez que, conforme Grego, Oliveira e Vieira (2014) engloba 95% dos casos ambientais. O semivariograma esférico é definido conforme a equação 3.12 (JOHNSTON *et al.*, 2001).

$$\gamma(h) = \begin{cases} \theta_s \left[\frac{3}{2} \frac{h}{\theta_r} - \frac{1}{2} \left(\frac{h}{\theta_r} \right)^3 \right] & \text{se} \quad 0 \le h \le \theta_r \\ \theta_s & \text{se} \quad \theta_r < h \end{cases}$$
 (3.12)

A figura 4 apresenta um exemplo de um semivariograma, onde o efeito de pepita (nugget) é o ponto inicial da curva, onde a curva intercepta o eixo γ , quando h=0. θ_s é o valor de patamar (sill). θ_r é o alcance, sendo a distância h até a semivariância γh atingir um valor aproximadamente constante. No intervalo [0,h] demonstram as amostras com dependência espacial (BASTOS, 2017).

Alcance (θr)

2,5

1,5

1,5

Patamar (θs)

Fonte: — Adaptado de Bastos (2017)

FIGURA 4 – Modelo de um semivariograma

Para a realização do teste estatístico I de Moran, uma observação prévia para analisar se, de fato, os dados apresentam correlação espacial, foi usado o software R, um ambiente de programação para computação estatística e gráficos³, que possui uma gama de funções matemáticas. A aplicada nesse estudo, é o pacote *spdep*, que contém diversas funções para aplicações espaciais, contendo diversas formas de se calcular

³ https://www.r-project.org/

os valores dos coeficientes de autocorrelação. Como já mencionado, foi aplicado o teste de Índice Global de Moran (I), que está contido no pacote $spdep^4$.

⁴ https://www.rdocumentation.org/packages/spdep/versions/1.1-5/topics/moran.test

4 RESULTADOS

Nesse Capítulo são abordados os resultados alcançados. Inicialmente, apresentase a análise dos dados de precipitação, evapotranspiração, deficiência e excesso hídrico.
Após é apresentado a espacialização da precipitação e evapotranspiração das médias
mensais de precipitação e evapotranspiração para a Região Sul do Brasil. Em seguida,
apresenta-se a espacialização do Balanço Hídrico Climatológico com os mapas resultantes do excedente hídrico e estresse hídrico. Por fim, consta a espacialização das
resultantes da aplicação do coeficiente de cultura no cálculo do balanço hídrico climatológico, demonstrando os excedentes hídricos e deficiências hídricas na produção do
capim sudão, em toda a Região Sul do Brasil.

4.1 ANÁLISE DOS DADOS DE PRECIPITAÇÃO E EVAPOTRANSPIRAÇÃO

As estações usadas para a espacialização dos dados foram representadas no mapa na Figura 5, demonstrando a localização corrigida das estações.

A estatística descritiva dos dados pluviométricos mensais pode ser observados na Tabela 2, contento os valores das precipitações mínimas e máximas, a mediana, a média de chuvas e o desvio padrão dos 12 meses nos Estados da Região Sul do Brasil. O desvio padrão demonstra o tamanho da dispersão das médias de precipitação anual,

TABELA 2 – Estatística descritiva dados pluviométricos na Região Sul do Brasil para o período entre 1976 até 2005 (mm)

Mês	Mínima	Máxima	Mediana	Média	Desvio Padrão
Janeiro	79,3	478,1	178,6	183,9	53,4
Fevereiro	63,9	385,2	166,2	173,1	46.2
Março	76,5	437,3	135,7	145,4	47.5
Abril	31,5	305,5	113,8	122,3	38,4
Maio	48,7	235,1	121,9	128,9	33,2
Junho	53,3	205,0	115,5	115,8	30,7
Julho	33,8	194,7	118,4	113,9	39,1
Agosto	31,8	197,3	101,2	97,3	32,6
Setembro	67,0	303,8	135,7	136,7	29,7
Outubro	71,6	375,2	150,7	157,0	36,4
Novembro	47,4	312,9	136,8	138,3	28,8
Dezembro	50,2	374,5	159,7	159,5	40,5

gerando uma maior amplitude de 398 mm em Janeiro e uma menor amplitude de 265 mm em Novembro, informando o quanto as médias das chuvas podem variar.

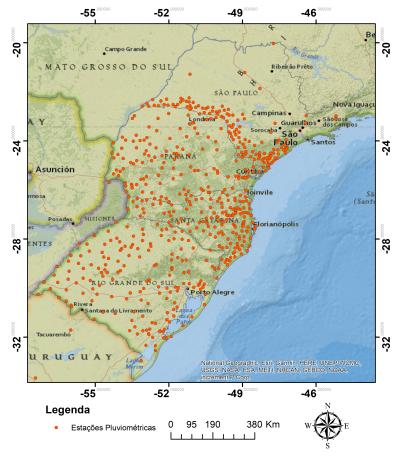


FIGURA 5 – Estações pluviométricas espacializadas na Região Sul do Brasil

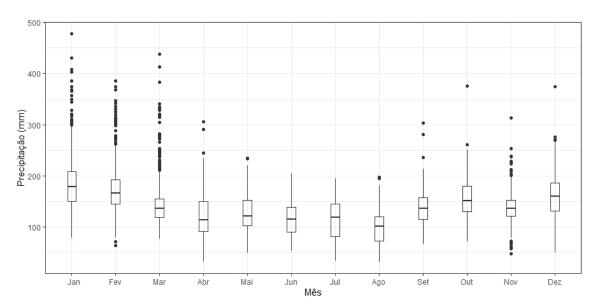
A Tabela 3 contém os valores de Evapotranspiração usadas no cálculo do Balanço Hídrico. De acordo com Pereira, Sentelhas e Angelocci (2007), a Evapotranspiração (ET) é a soma do processo de transferência de água para a atmosfera através da evaporação, onde o líquido passa para o estado físico gasoso e da perda de água na forma de vapor pelas plantas, denominado de transpiração.

Os valores da Tabela 3 foram estimados por fórmulas teóricos-empíricas testadas para várias condições climáticas, retiradas do WREGE *et al.* (2012). Esses dados são conceitualmente denominados por Evapotranspiração Potencial (ETP), que é a quantidade de água necessária para atender uma superfície vegetada por alguma cultura de baixa estatura, com altura entre 8 e 15cm. A ETP é o valor de referência quando o objetivo é conhecer a evapotranspiração de uma determinada cultura (PEREIRA; SENTELHAS; ANGELOCCI, 2007).

Observando os dados das estações, é possível notar que a médias mensais de precipitação pluviométrica é bastante variável, alcançando valores de 1055 até 3502mm, o menor acúmulo de chuva anual ocorreu na localidade gaúcha de Barra do Quaraí e o maior acúmulo na localidade de Morretes, no Estado do Paraná. As maiores

TABELA 3 - Est	atística descritiva dados de evapotra	anspiração na Região Sul do Brasil para o
per	íodo entre 1976 até 2005 (mm)	

Mês	Mínima	Máxima	Mediana	Média	Desvio Padrão
Janeiro	89	158	124	122	16
Fevereiro	77	128	105	103	12
Março	73	127	98	98	12
Abril	52	102	68	69	10
Maio	34	63	45	46	6
Junho	24	48	34	34	5
Julho	24	51	35	36	5
Agosto	31	67	44	45	7
Setembro	41	105	51	55	11
Outubro	49	92	63	64	9
Novembro	68	117	90	91	11
Dezembro	77	205	116	126	17


médias concentram-se no litoral e oeste do Paraná e no oeste do estado de Santa Catarina. Já as médias mais baixas estão localizadas nas regiões Norte e Noroeste do Paraná, na região Sul do Rio Grande do Sul e no extremo oeste da Região da Campanha gaúcha.

A Figura 6 apresenta um diagrama de caixa, *boxplot*, usado para sumarizar e analisar dados quantitativos e que apresentam, de maneira geral, a distribuição dos dados mensais de precipitação. Entre os meses de janeiro e março percebe-se muitos valores atípicos (*outliers*) fora da simetria da amostra, demonstrando que as chuvas concentram-se de maneira diferente nos meses do ano. Entre os meses de abril a agosto as médias pluviométricas comportam-se de maneira similar, voltando a apresentar alguma disparidade no mês de novembro, apresentando fases com pouca chuva e épocas com médias maiores com relação a própria média histórica do mês de novembro.

A discrepância entre as médias é fruto dos anos em que a região sofre interferências de eventos climáticos como El Niño e La Niña. Nessas condições, no período sazonal da primavera, com a influência do El Niño, percebe-se um período com volumes maiores de chuva, ao contrário em períodos de La Niña, onde chove menos, principalmente na primavera (MATZENAUER; RADIN; MALUF, 2018).

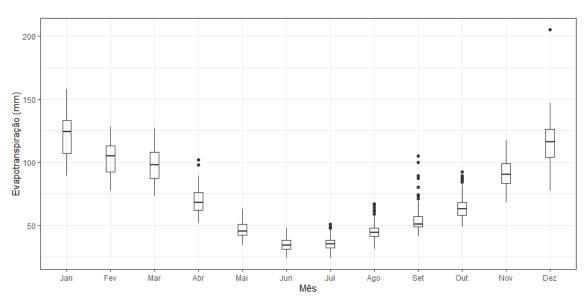

O extrato dos dados da evapotranspiração potencial (ETP) podem ser observados na Figura 7. A ETP representa a quantidade de perda hídrica do solo. Os meses que apresentam as menores médias de ETP estão contidos entre Maio e Agosto, períodos onde a Região Sul apresenta a maior demanda hídrica durante os 12 meses do ano. Nota-se que no período de sazonal de verão, entre dezembro a janeiro, as médias de perda hídrica são as maiores registradas durante o ano. Diferentemente da

FIGURA 6 – Médias mensais de precipitação na Região Sul do Brasil para o período entre 1976 até 2005

precipitação, os dados da evapotranspiração não apresentam um volume considerável de valores atípicos, caracterizando uma perda hídrica homogênea durante os 12 meses.

FIGURA 7 – Médias mensais de evapotranspiração na Região Sul do Brasil para o período entre 1976 até 2005

Fonte: - Próprio autor.

Os resultados para o teste I de Moran estão agrupados na Tabela 4. A primeira coluna contém o valor observado de I e a segunda coluna é o desvio padrão σ . Para os dados de evapotranspiração, o valor da expectativa, que é -1/(n-1) para os

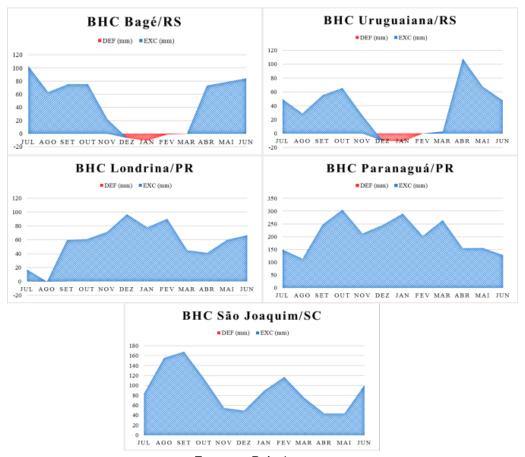
casos centrados na média, os doze meses apresentaram o valor muito próximos de $-8,0x10^{-3}$ e a variância, valores próximos a $1,0x10^{-4}$. Para os dados e precipitação. o valor da expectativa, para os doze meses, permaneceram em $-1,77x10^{-3}$ e a variância, próximos a $5,86x10^{-5}$. Em todas as análises, o p-valor permaneceu em $2,2ex10^{-16}$, valor abaixo de 0,05, caracterizando-se como valor significativo.

TABELA 4 – Estatística Moran / para os valores de precipitação e evapotranspiração da Região Sul do Brasil para o período entre 1976 até 2005

Mês	ETP		Precipitação	
IVIES	1	σ	1	σ
Janeiro	0,17	15,21	0,59	77,55
Fevereiro	0,11	10,23	0,47	62,19
Março	0,10	9,170	0,53	70,89
Abril	0,15	13,91	0,51	66,84
Maio	0,29	11,54	0,55	72,36
Junho	0,28	24,73	0,62	81,73
Julho	0,30	26,14	0,68	89,45
Agosto	0,29	25,49	0,65	85,76
Setembro	0,28	24,79	0,41	54,54
Outubro	0,25	22,31	0,58	66,67
Novembro	0,16	14,33	0,33	43,91
Dezembro	0,12	11,43	0,54	71,36

Tanto para os valores de precipitação quanto para os de evapotranspiração, o índice I é positivo, caracterizando-se como autocorrelação positiva e, conforme Moran (1950), significa que os dados são similares em localização e também são similares em atributos.

4.2 APLICAÇÃO DO BALANÇO HÍDRICO CLIMATOLÓGICO


Os cálculos do BHC de alguns municípios selecionadas, cujas resultantes estão expressas nas Tabelas de 7 até 11 contidas no Apêndice A, foram realizados, neste primeiro momento, com uma CAD de 50mm e, posteriormente, serão analisados nas CAD subsequentes.

Com a finalidade de demonstrar os resultados da aplicação do BHC, foram selecionados as estações dos municípios de Paranaguá/PR, estação que apresenta o maior excedente hídrico e que não apresenta deficiência hídrica, as estações dos municípios de Londrina/PR e São Joaquim/SC, municípios que não apresentam deficiência hídrica e os municípios gaúchos de Bagé e Uruguaiana que apresentam deficiência e excesso hídrico, podendo ser observadas na Figura 8. Pereira, Sentelhas e Angelocci (2007) sugerem o uso de números inteiros fazendo aproximações nos cálculos e, por este motivo, os valores resultantes serão expressos desta maneira. Para a aquisição

do BHC, foi utilizado o *script* contido no Apêndice C, com a finalidade de cálculo de todas as estações mencionadas nesse estudo.

A estimativa do BHC teve início no período sazonal de inverno, uma vez que a capacidade hídrica em regiões do Rio Grande do Sul apresenta-se de maneira negativa no período sazonal de verão (DJF).

FIGURA 8 – Extrato do balanço hídrico climatológico em alguns municípios da Região Sul do Brasil para o período entre 1976 até 2005. Valores expressos em mm

Fonte: - Próprio autor.

As estações localizadas no Leste do Estado do Paraná, na região litorânea do município de Paranaguá, apresentaram as maiores médias de excedente hídrico, chegando perto de 3000 mm de acúmulo hídrico durante o ano, sendo o mês de outubro com a maior média e o mês de junho a menor.

O Estado do Paraná praticamente não apresenta deficiência hídrica, exceto em localidades da região Norte do Estado, a exemplo do município de Londrina, apresentando uma pequena janela de tempo onde o acúmulo hídrico é negativo, no mês de agosto.

O Estado de Santa Catarina aparenta ser uma região de transição de maior para a menor localidade com excedente hídrico, a exemplo do município de São

Joaquim, com um acúmulo de 1097 mm de EXC durante o ano e apresentando médias mensais em torno de 100 mm e ultrapassando os 160 mm, podendo ser observado na Figura 8.

Já o Estado do Rio Grande do Sul apresenta as regiões onde encontram-se as menores capacidades de armazenamento de água no solo, a exemplo de Bagé e Uruguaiana, médias expostas na Figura 8. Entretanto, o município que apresentou a maior deficiência hídrica, na resultante do BHC, foi o município de Cachoeirinha, com um déficit hídrico anual de 95mm.

4.3 ESPACIALIZAÇÃO DOS DADOS COLETADOS

A Figura 9, corresponde ao fluxograma onde é demostrado cada fase de processamento das etapas das imagens espacializadas, através do software *ArcMap* (SHANER JEFF E WRIGHTSELL, 2000). Inserido no *ArcMap*, existe a ferramenta *ModelBuilder*, um ambiente de programação visual usado para análise de modelagem e criação de modelos, que podem ser utilizadas repetidamente, permitindo a exportação de scripts em linguagem *Python*, possibilitando a criação de algoritmos e a inserção na modelagem em estudo (TOMS, 2015).

O *ModelBuilder* configura seus fluxogramas com diferenciação de cores, caracterizando as entradas de dados, as ferramentas aplicadas no modelo e as resultantes. A cor azul, significa os parâmetros de entrada do modelo, a cor amarela corresponde as ferramentas aplicadas, que podem ser nativas do software ou inseridas através de um script em *Python* e, a cor verde, são as resultantes da aplicação das ferramentas ou de todo o modelo (TOMS, 2015).

O modelo da Figura 9 inicia-se com a inserção dos parâmetros de entrada Estações de monitoramento e das Médias Mensais calculadas pelos registros de dados das Estações de Monitoramento na Região Sul do Brasil. As Estações de Monitoramento são inseridas em uma ferramenta nativa do *ModelBuilder* para a criação de um *shapefile* contendo os pontos com suas respectivas coordenadas geográficas (x e y). Em seguida, é realizada a união dos pontos referentes as estações de monitoramento. A resultante será um *shapefile* contendo, como atributos, o nome da estação, a localização geográfica de cada estação e as médias mensais de evapotranspiração ou precipitação em cada mês do ano.

As fases anteriores possibilitam a interpolação das médias mensais de precipitação ou evapotranspiração com krigagem, através de outra ferramenta nativa do software, resultando a espacialização das médias mensais. O último arquivo de entrada, é um *shapefile* que delimita a área de estudo, usado na ferramenta de extração por contorno. Desta forma, será gerada a espacialização das médias mensais de precipitação

ou evapotranspiração com os contornos da Região Sul do Brasil. Para cada análise, é necessário a inserção das médias mensais de precipitação ou evapotranspiração, em cada mês de estudo, e repetir o processo do fluxograma. O Apêndice B contém o *scripty* em *Python* resultante do fluxograma da Figura 9.

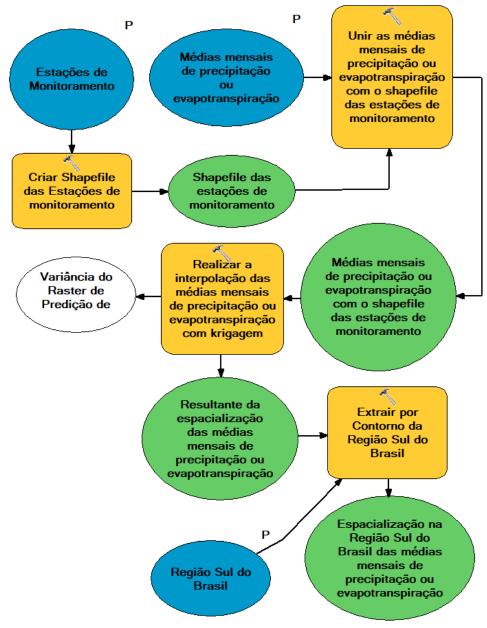
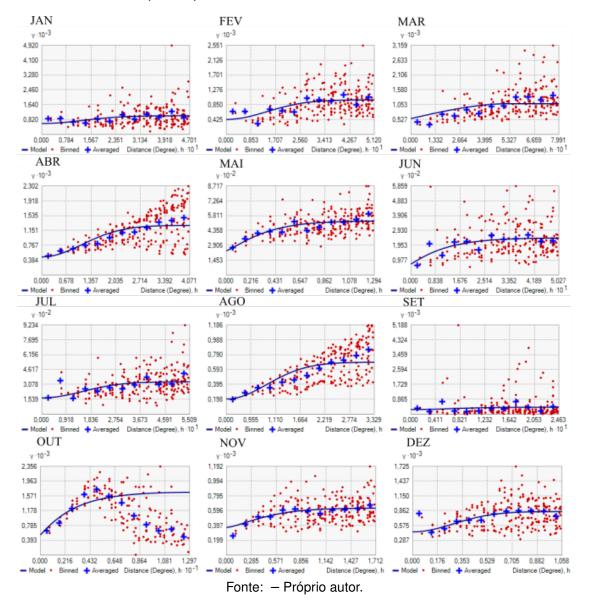


FIGURA 9 - Fluxograma para a produção das imagens espacializadas

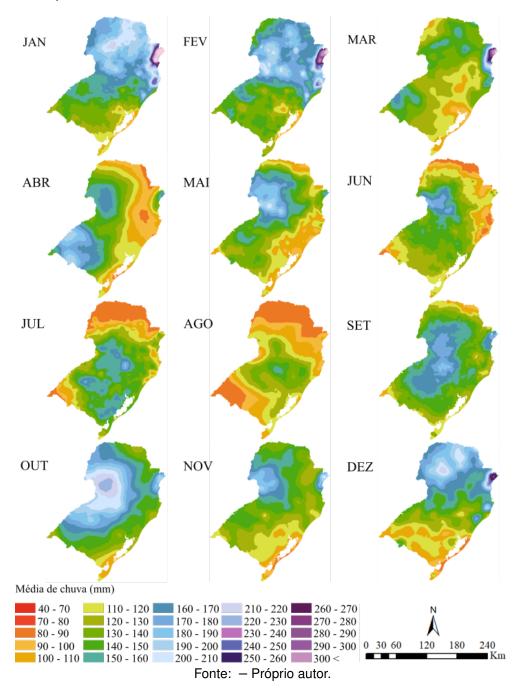

Fonte: - Próprio autor.

Na figura 10 são apresentados os 12 gráficos dos semivariogramas de cada mês de precipitação. No geral, o semivariograma comportou-se de maneira semelhante nos 12 meses. Como exemplo, pode ser observado o modelo esférico do mês de janeiro, com um valor de patamar de 506,54, um intervalo de 0,47012 e efeito de pepita 568,3. Portanto, os valores calculados do semivariograma, usando o modelo esférico

selecionado, estão dispostos conforme a equação 4.1.

$$\gamma(h) = \begin{cases} 506, 54 * (1, 5 * (h/0, 47012) - 0, 5(h/0, 47012)^3) & \text{se} \quad h \le 0, 47012 \\ 506, 54 & \text{se} \quad h > 0, 47012 \end{cases}$$
 (4.1)

FIGURA 10 – Semivariogramas plotados para médias mensais de precipitação na Região Sul do Brasil para o período entre 1976 até 2005



Nos gráficos da Figura 10, os pontos azuis representam a curvatura ideal para a interpolação e a curva azul é o resultado da interpolação. Desta maneira, pode ser observado que para o mês de outubro o modelo esférico não apresenta-se de maneira satisfatória, devendo ser realizado um melhor ajuste para o modelo ou a aplicabilidade de outro modelo de semivariograma.

Nas Figuras 11 e 12 estão apresentados os mapas temáticos de precipitação e de evapotranspiração gerados através da interpolação por krigagem. Foram gerados

mapas das médias históricas de 30 anos, compreendidos entre 1976 até 2005, para cada mês do ano. Nesses mapas é possível visualizar a variabilidade espacial e temporal da precipitação e evapotranspiração média mensal.

FIGURA 11 – Médias mensais de precipitação espacializadas na Região Sul do Brasil para o período entre 1976 até 2005

O município que apresentou a maior média mensal de chuva foi a de Morretes, localizada na região Leste do Estado do Paraná, ultrapassando os 3502mm acumulados durante todo o ano. Já a estação de Passo da Cruz, localizado no município gaúcho de Barra do Quaraí, região da Fronteira Oeste, com uma média mensal de 88 mm e 1055 mm durante o ano.

Observando os mapas da Figura 11, a região Norte do Paraná expõem as maiores médias de precipitação durante o período sazonal de verão, apresentando médias entre 160 mm até ultrapassar os 300 mm mensais, diferentemente nos meses compreendidos entre Abril a Setembro, com médias, em algumas localidades, 40 mm.

O estado de Santa Catarina, no período em análise, apresentou médias entre 98 mm, no município de Meleiro, na Região Sul Catarinense e chegando aos 231 mm no município de Garuva, na Região Norte Catarinense. Já a maior média gaúcha está localizada no município de Santiago, na Região Central gaúcha e as menores na região da Fronteira Oeste.

A resultante da espacialização da evapotranspiração, perda hídrica do sistema, ou seja, perda de água do solo por evaporação e a perda de água das plantas por transpiração, pode ser observada na Figura 12. De maneira geral, as maiores perdas hídricas estão concentradas no verão, entre dezembro e janeiro e o período de menor perda hídrica está concentrado no período sazonal do inverno até o mês de setembro.

A maior média de evapotranspiração localiza-se na região chamada de Entre Rios, na estação localizada no município de Umuarama, no Estado do Paraná, chegando aos 1107 mm durante os 12 meses. Já o município que apresenta a menor média de ETP é a de São Joaquim, município localizado na região serrana de Santa Catarina, sendo o município com maior altitude do estado, apresentando um montante de 676 mm de EPT durante o ano.

4.4 ESPACIALIZAÇÃO DO BALANÇO HÍDRICO CLIMATOLÓGICO

A Figura 13 contém as fases para a espacialização das resultantes do balanço hídrico climatológico, na Região Sul do Brasil, fluxograma semelhante ao da Figura 9, entretanto, difere-se nos parâmetros de entrada. Anteriormente, um dos parâmetros de entrada, eram as médias de precipitação ou evapotranspiração que, para o balanço hídrico, é necessário a inserção das duas informações. Com a inclusão da precipitação e da evapotranspiração em conjunto do valor da capacidade de água disponível no solo (CAD), outro parâmetro de entrada, pode-se realizar o cálculo do Balanço Hídrico Climatológico.

A ferramenta Cálculo do Balanço Hídrico Climatológico foi inserido no *Model-Builder*, e calculado através de um script em *Python*, criado para este estudo, podendo ser observado no Apêndice C. O próximo passo, é a inserção das resultantes do cálculo do balanço hídrico com as respectivas estações de monitoramento que captaram as médias de precipitação e evapotranspiração, realizando, no passo seguinte, a interpolação e, posteriormente, surgindo a espacialização na Região Sul do Brasil.

Entre as Figuras 14 até 23 são apresentadas as resultantes do cálculo do

MAR FEV JAN JUN ABR MAI JUL AGO SET OUT NOV DEZ ETP (mm) 27 - 30 61 - 70 111 - 120 31 - 35 71 - 80 121 - 130

FIGURA 12 – Médias mensais de evapotranspiração espacializadas na Região Sul do Brasil para o período entre 1976 até 2005

131 - 140

141 - 150

Balanço Hídrico Climatológico nos 12 meses do ano, com uma Capacidade de Água Disponível (CAD) de 50mm, 75mm, 100mm, 125mm e 150mm. A Figura 14 representa os valores de excedente hídrico (EXC) com uma CAD de 50mm, ou seja, o volume hídrico que sobrou após o período chuvoso somado a perda por drenagem profunda e escorrimento superficial, podendo apresentar duas situações (Equações 4.2 e 4.3):

• quando ARM < CAD:

36 - 40

41 - 50

51 - 60

81 - 90

91 - 100

101 - 110

$$EXC = 0 ag{4.2}$$

0 30 60

120

180

240

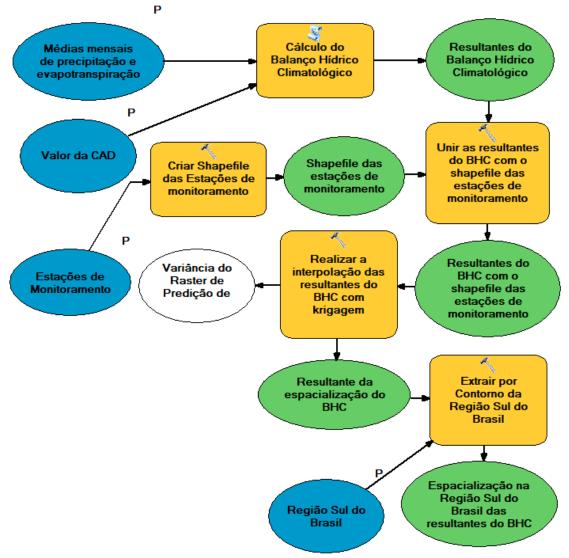
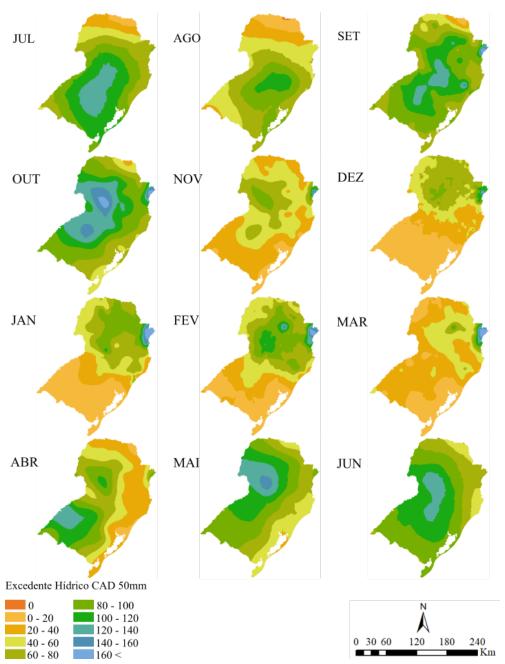


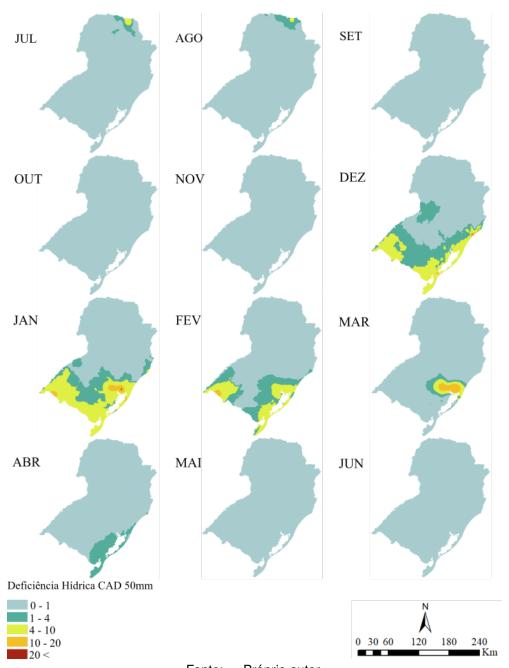
FIGURA 13 – Fluxograma para a produção das imagens espacializadas da resultantes do BHC


• quando ARM = CAD:

$$EXC = (P - ETP) - ALT (4.3)$$

A análise iniciou-se pelo período sazonal do inverno, com a finalidade de evitar valores negativos de CAD na região do Rio Grande do Sul, sendo perceptível os baixos valores de EXC no período sazonal de verão, apresentando médias entre 0mm a 40mm de EXC, expondo uma melhora a partir do mês de Abril.

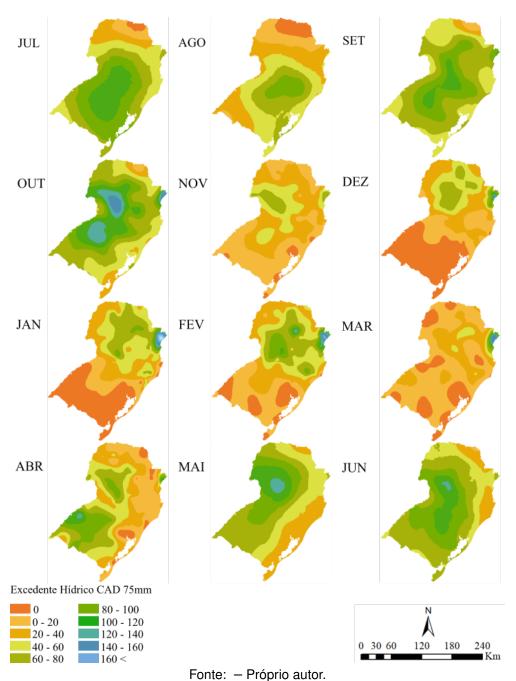
A Estação que apresentou o menor acúmulo durante o ano está localizada no município de Santa Mariana, na região Norte do Estado do Paraná, com um montante de 274mm durante os 12 meses e a estação com maior EXC é a do município de Paranaguá, na região Litorânea paranaense, com 2471mm durante o ano.


FIGURA 14 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005

O resultado da espacialização da deficiência hídrica (DEF), com uma CAD de 50mm, está apresentado na Figura 15, resultante da subtração do valor da evapotranspiração potencial com o valor de evapotranspiração real (ETR) que realmente ocorre em função da disponibilidade de água no solo.

As médias resultantes estão entre 0mm e chegando a mais de 36mm de perda hídrica, no mês de dezembro, no município de Araranguá, município na região litorânea no extremo sul catarinense. O mês de dezembro apresenta a maior amplitude nos

FIGURA 15 – Deficiência Hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005



valores das médias de DEF e a menor amplitude está no mês de julho, localizadas nos municípios paranaenses de Bandeirantes e de Bela vista do Paraíso, na região norte da área de estudo.

Nos meses compreendidos entre setembro a novembro e de maio a junho, a Região Sul do Brasil não apresenta deficiência hídrica, com uma CAD de 50mm. As maiores deficiências localizam-se na região Sul do estado gaúcho, apresentando perdas, em torno de 10mm de média ao mês.

A Figura 16 representa a espacialização dos valores com uma CAD de 75mm. De igual forma a CAD de 50mm, a estação de Santa Mariana apresentou a menor média, durante os 12 meses do ano e a estação de Paranaguá apresentou a maior média de Excedente Hídrico. A CAD de 75mm começa a apresentar áreas com ausência de EXC, podendo ser observado nos meses de julho e agosto e entre novembro a abril. No estado do Rio Grande do Sul, concentrando-se na Região da Campanha Gaúcha, as médias de EXC permanecem zeradas no período sazonal de verão.

FIGURA 16 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

A deficiência hídrica, com uma CAD de 75mm, pode ser observado na Figura 17. As médias, nos doze meses, permaneceram entre 0mm, chegando a 78mm de DEF, em toda a Região Sul do Brasil. Praticamente não apresentou áreas com DEF, salvo os meses entre dezembro a abril, localizados em áreas do Rio Grande do Sul, no litoral de Santa Catarina e em Agosto, no norte do estado paranaense.

Observam-se pequenas áreas com um volume superior a 20mm de perda hídrica, a exemplo do litoral de Santa Catarina e áreas com perdas hídricas entre 10 a 20mm, em áreas localizadas no estado gaúcho.

A Figura 18 apresenta as imagens geradas para Excedente Hídrico, com uma CAD de 100mm. Analisando visualmente a figura, verifica-se que praticamente não houve diferenças com relação ao CAD de 75mm, salvo pequenas regiões entre os meses de abril e maio. Novamente, a menor média anual de EXC está localizada na Estação de Santa Mariana, com 272mm e a maior média está na estação de Morretes, com 2472mm.

As resultantes da deficiência hídrica, com uma CAD de 100mm, podem ser observados na Figura 19. Os meses do ano que apresentaram as deficiências hídricas são os mesmos que na CAD 75mm, com pequenas diferenças nos meses de janeiro e abril.

As Figuras 20 e 22 representam os excedentes hídricos com CAD de 125mm e 150mm, respectivamente. As imagens resultantes apresentam-se de forma semelhante, com pequenas diferenças localizadas no litoral do Estado do Rio Grande do Sul, com uma CAD de 100mm.

A menor soma das médias permaneceu na estação de São Jerônimo, município localizado na Região Metropolitana de Porto Alegre, com 263mm de médias anuais, tanto na CAD de 125mm e 150mm. De igual forma na análise das outras CAD, a estação localizada no município de Morretes apresentou a maior soma das médias mensais, tanto na CAD de 125 e 150mm.

As últimas análises de deficiência hídrica podem ser observadas na Figura 21, com uma CAD de 125mm e na Figura 23, para uma CAD de 150mm.

As imagens apresentam poucas mudanças entre as CAD, a exemplo das estações localizadas no município gaúcho de Encruzilhada do Sul, no Vale do Rio Pardo, e na estação localizada no município de Uruguaiana, situado no extremo ocidental do estado do Rio Grande do Sul, junto à fronteira fluvial com a Argentina e Uruguai. Estes dois municípios apresentaram um maior índice de deficiência hídrica, no mês de dezembro na CAD de 125mm em comparação com a CAD de 150mm.

FIGURA 17 – Deficiência Hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

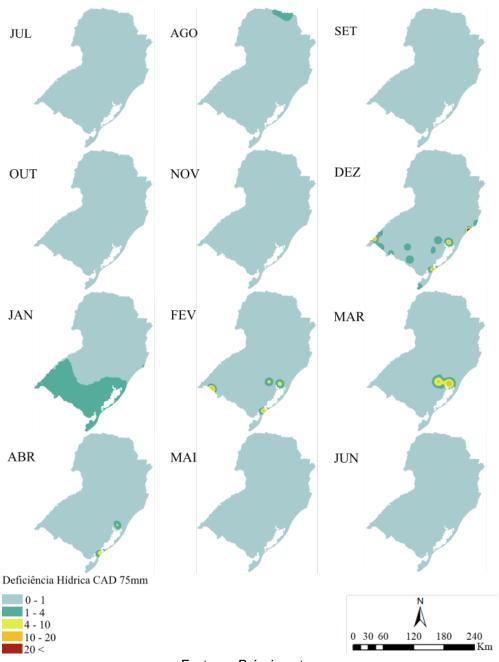


FIGURA 18 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 100mm na Região Sul do Brasil para o período entre 1976 até 2005

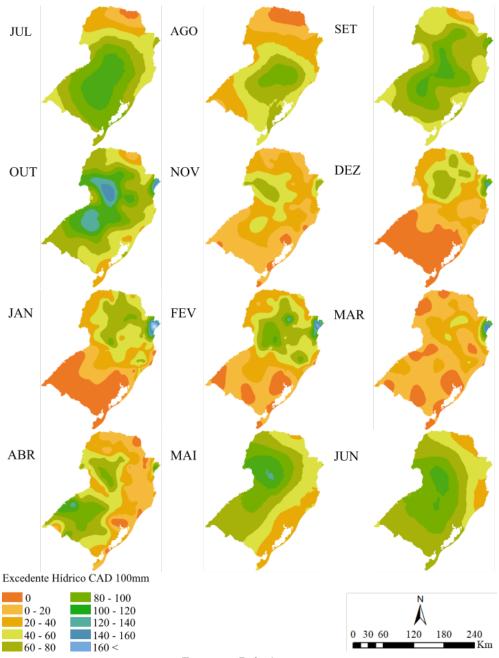


FIGURA 19 – Deficiência Hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 100mm na Região Sul do Brasil para o período entre 1976 até 2005

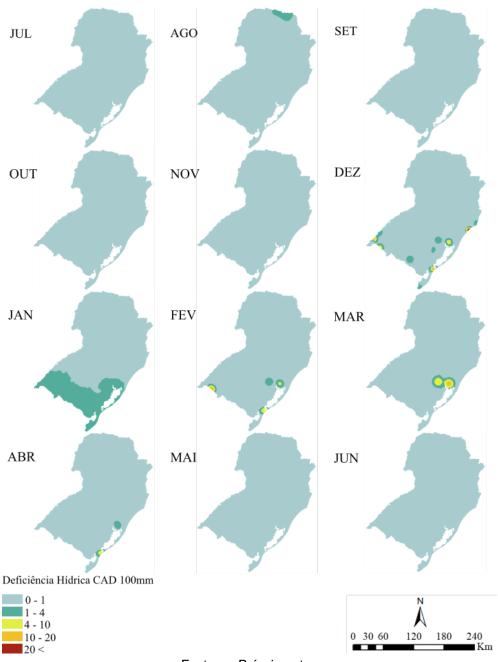


FIGURA 20 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 125mm na Região Sul do Brasil para o período entre 1976 até 2005

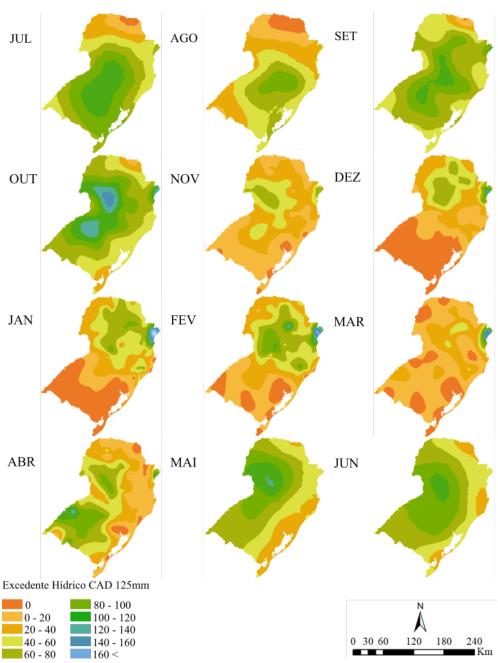


FIGURA 21 – Deficiência hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 125mm na Região Sul do Brasil para o período entre 1976 até 2005

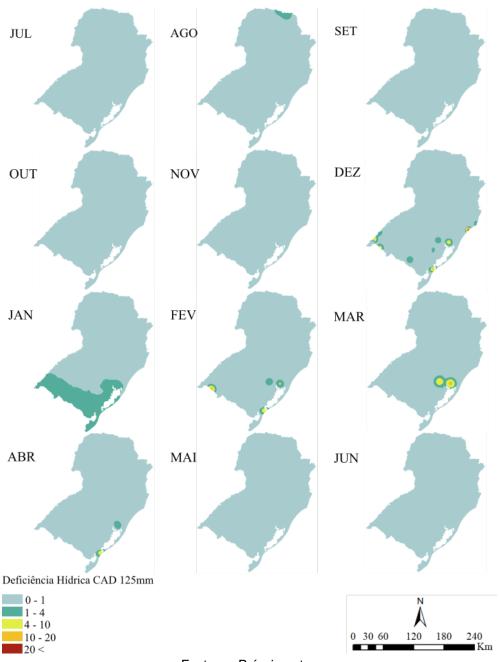


FIGURA 22 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 150mm na Região Sul do Brasil para o período entre 1976 até 2005

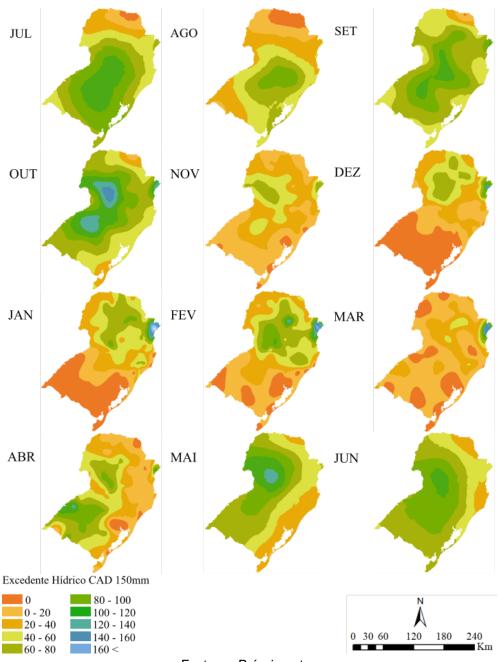
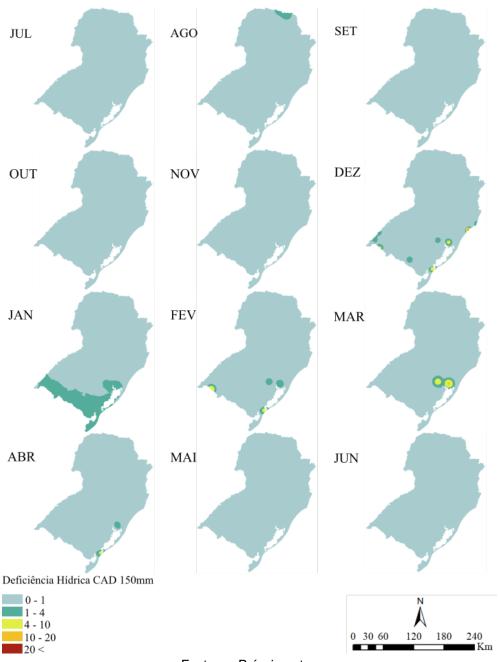



FIGURA 23 – Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 150mm na Região Sul do Brasil para o período entre 1976 até 2005

4.5 ESPACIALIZAÇÃO DAS SEMEADURAS DO CAPIM SUDÃO

Observando as resultantes dos solos analisados, existem poucas diferenças entre as CAD de 100mm, 125mm e 150mm. Por conta disso, a delimitação das áreas com maior excedente hídrico e deficiência hídrica para a cultura do capim sudão foram analisados em solos com CAD de 50mm e 75mm. Para o prosseguimento desse estudo, é necessária a determinação da ETc, que pode ser obtida através da Equação 4.4 (PEREIRA; SENTELHAS; ANGELOCCI, 2007), substituindo, no cálculo do BHC, a ETR pela ETc, em que o Kc é o coeficiente de cultura.

$$ETc = Kc \cdot ETP \tag{4.4}$$

Os valores de coeficiente de cultura foram retirados do estudo da evapotranspiração do cultivo (ALLEN et~al., 2006), levando-se em consideração, dados meteorológicos e coeficientes de cultivo. De acordo com Allen et~al. (2006), para descrever e construir a curva do coeficiente do cultivo, são necessários três valores de Kc: o primeiro é o valor corresponde a etapa inicial (Kc_{ini}) , o segundo, o estágio de meia temporada (Kc_{med}) e, por último, o valor da etapa final (Kc_{fin}) . Os valores descritos neste estudo estão expressos na tabela 5.

TABELA 5 – Valores de Kc

Cultivo	(Kc_{ini})	(Kc_{med})	$\overline{(Kc_{fin})}$
Pasto de Sudão	0,50	0,90	0,85

A espacialização das semeaduras do capim sudão será analisada em períodos conforme Silveira, Sant'anna *et al.* (2015) definem. Silveira, Sant'anna *et al.* (2015) informam que a época de plantio do capim sudão é bastante ampla, preferencialmente ocorre entre os meses de setembro até fevereiro. Silveira, Montardo e Sant'Anna (2019) também sugerem estratégias de manejo, com o uso de mesclas forrageiras de verão e inverno. O capim sudão foi uma das espécies cultivadas para o estudo, na forma de pastos monoespecíficos, realizando a transição das pastagens de inverno para primavera, com dois períodos de utilização, aqui denominados de primeira e segunda semeaduras:

- Primeira Semeadura: outubro à março;
- Segunda Semeadura: dezembro à março.

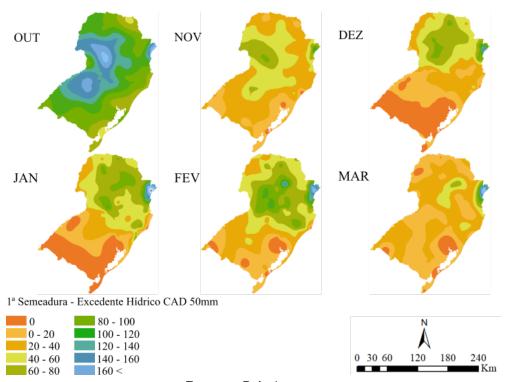
A Tabela 6 apresenta os valores aplicados de Kc, por semeadura e por mês. De acordo com Allen *et al.* (2006), os valores de Kc_{med} e Kc_{fin} para o capim sudão são bastante similares, como pode ser observado na Tabela 5, motivo pelo qual serão

aplicados os valores de Kc_{ini} para o primeiro mês de cada semeadura e Kc_{med} para os meses restantes.

TABELA 6 – Valores de Kc aplicados nas duas semeaduras para o capim sudão

Mês	1ª Semeadura	2ª Semeadura
Outubro	0,50	-
Novembro	0,90	-
Dezembro	0,90	0,50
Janeiro	0,90	0,90
Fevereiro	0,90	0,90
Março	0,90	0,90

4.5.1 Primeira Semeadura


As Figuras 24 e 25, representam a espacialização da primeira semeadura de excedente hídrico com CAD de 50mm e 75mm, respectivamente. Realizando uma análise de forma visual, é praticamente imperceptível observar alguma diferença entre as CAD's. A primeira semeadura apresentou a menor soma das médias de excedente hídrico no município de Cachoeirinha, localizado na Região Metropolitana da capital gaúcha, apresentando o valor de 57mm. Já a maior soma das médias está localizada no município litorâneo paranaense de Paranaguá, apresentando um valor de 1618mm.

Apenas em 14 estações, podem ser observadas diferenças entre as médias nas CAD's de 50mm e 75mm, a exemplo do município de Salto com um valor de 44,9mm, localizada no Uruguai, município fronteiriço com a Argentina, situado a 178km da fronteira com o Brasil. A estação localizada neste município, a exemplo de outras no estado de São Paulo, são necessários para este estudo para a correta interpolação dos dados observados. A menor diferença entre as CAD's, está localizado no município de Encruzilhada do Sul, município gaúcho localizado no Vale do Rio Pardo, com um pequeno valor de 0,0016mm. Em geral, as diferenças permanecem abaixo dos 6mm.

O mês de outubro apresentou as maiores médias de excedente hídrico, na primeira semeadura, com valores entre 57mm no município de Cachoeirinha, e 341mm na estação localizada no município de Paranaguá. A partir do mês de novembro, começam as ocorrências de estações sem apresentar excedente hídrico, com a semeadura do capim sudão, a exemplo, novamente, do município de Cachoeirinha e em outros municípios, a saber: Rio Grande, localizada na região sul do Rio Grande do Sul, Quaraí, município fronteiriço com o Uruguai e a estação no município litorâneo de Araranguá, no extremo sul de Santa Catarina.

A primeira semeadura do capim sudão, nos meses de dezembro e janeiro, apresenta grandes áreas sem excedente hídrico, a exemplo da Campanha Gaúcha,

FIGURA 24 – 1ª Semeadura do capim sudão - Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005

região localizada no Extremo Sul do Brasil e municípios na Região Sul do Rio Grande do Sul, a exemplo de Pelotas e Rio Grande. O Rio Grande do Sul, nesses dois meses, não apresenta regiões com excedentes hídricos acima dos 40mm, situação diferente nos outros dois estados da Região estudada. O estado do Paraná apresenta regiões com volumes mais altos, em comparação aos outros dois estados.

Nos meses de fevereiro e março, as regiões sem excedente hídrico permanecem localizadas em áreas isoladas no Rio Grande do Sul, na Região Metropolitana, na Região dos municípios de Rio Grande e Pelotas e no extremo oeste gaúcho. As estações do município gaúcha de Bagé também apresentam uma pequena área de excedente hídrico nulo. A região de Paranaguá, município litorâneo do Estado do Paraná, apresentou as maiores médias de excedente hídrico na primeira semeadura, chegando aos 341mm no mês de outubro e, na menor média de 216mm, no mês de fevereiro.

As Figuras 26 e 27, representam a espacialização da primeira semeadura de deficiência hídrica com CAD de 50mm e 75mm, respectivamente. Nas duas CAD's, praticamente não apresentam estações com médias de deficiência hídrica, a exemplo dos meses de outubro e novembro, expressando um índice muito baixo de deficiência hídrica, permanecendo entre 0mm e 1mm de média. No mês de dezembro, a primeira semeadura, com uma CAD de 50mm, apresenta três regiões com deficiência hídrica,

OUT NOV DEZ

JAN FEV MAR

FIGURA 25 – 1ª Semeadura do capim sudão - Excedente Hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

120

180

240

0 30 60

localizadas na estação de Cachoeirinha, município metropolitano gaúcho, com média superior a 10mm, no município gaúcho de Rio Grande, com média em torno de 8mm e na Região do município de Bagé, com média superior a 2mm. A CAD de 75mm, com relação a CAD de 50mm, não apresenta deficiência hídrica na região de Bagé.

O mês de janeiro, nessa primeira semeadura, a única região que apresentou deficiência hídrica foi o município de Cachoeirinha. Já no mês de fevereiro, as duas regiões estão nos municípios de Quaraí, no extremo oeste gaúcho, com média de 14mm e no município litorâneo de Rio Grande, com média de 9mm. O último mês de análise, março apresenta uma única região com deficiência hídrica, no município de Cachoeirinha.

4.5.2 Segunda Semeadura

1ª Semeadura - Excedente Hídrico CAD 75mm

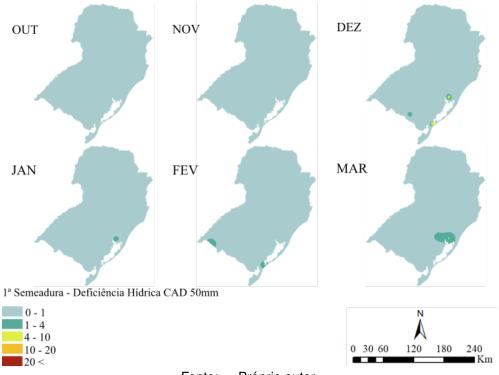
0 80 - 100

100 - 120 120 - 140

140 - 160

160 <

0 - 20

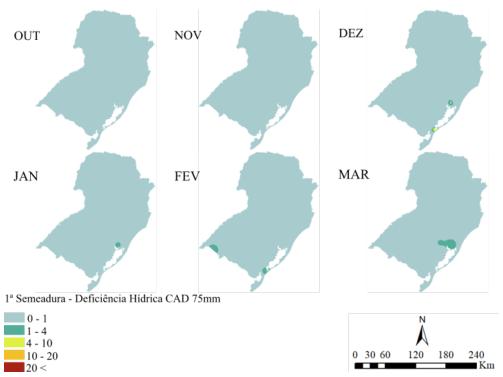

20 - 40

40 - 60

60 - 80

As Figuras 28 e 29, representam as espacialização da segunda semeadura de excedente hídrico com CAD de 50mm e 75mm, respectivamente, entre os meses de dezembro à março. De igual forma a primeira semeadura, as CAD's não apresentam, aparentemente, mudanças nas médias mensais de excedente hídrico, quando comparam-se as CAD de 50mm e 75mm. O município que apresentou a maior soma das médias, durante a segunda semeadura, foi a de Paranaguá, na região litorânea

FIGURA 26 – 1ª Semeadura do capim sudão - Deficiência hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005



paranaense, com 1107mm. Já o município com a menor soma das médias, permanece o município de Cachoeirinha, com 20mm, durante toda a segunda semeadura.

As pequenas diferenças entre as médias nas CAD's, estão localizadas em 10 estações, todas abaixo de 0,9mm, concentradas no litoral gaúcho e catarinense e na região da campanha gaúcha. A localidade que apresentou a maior diferença entre as CAD, foi o município de Araranguá, no extremo sul litorâneo catarinense, com 0,86mm e a menor diferença está na estação de Santa Vitória do Palmar, no extremo sul do Brasil, na fronteira com o Uruguai, com 0,03mm de diferença, entre as CAD's de 50mm e 75mm.

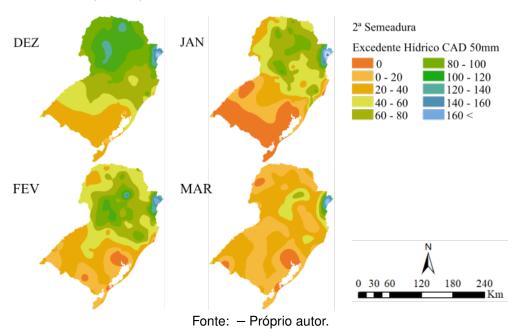

O mês de dezembro apresentou uma média de 95mm de excedente hídrico, durante a segunda semeadura. De igual forma as análises anteriores, o município de Paranaguá apresentou a maior média, em torno de 310mm e a menor média está concentrada no município de Araranguá, com 2mm de excedente hídrico. A metade Sul do Rio Grande do Sul apresentou, no máximo, 20mm de excedente, sendo a região com menor média. Realidade diferente do estado paranaense, que apresentou médias superiores a 160mm. Já o estado catarinense, computou médias entre 40mm e 80mm de excedente hídrico, comportando-se como uma zona de transição, de uma região de menor média para outra com maior média de excedente hídrico.

FIGURA 27 – 1ª Semeadura do capim sudão - Deficiência hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

O período do mês janeiro computou grandes áreas sem excedente hídrico, na metade sul do estado gaúcho, podendo ser observado nas figuras 28 e 29. Outras localidades que apresentam esta característica, são as regiões do município de Itaqui, localizado às margens do Rio Uruguai, no extremo oeste gaúcho e a região metropolitana gaúcha. A região central gaúcha apresenta regiões com, no máximo, 20mm de excedente, diferentemente da região norte gaúcha que começa a apresentar médias entre 20mm a 40mm. O estado do Paraná apresentou as maiores médias e, novamente, a região de Parnaguá permanece com os índices de excedente hídrico superiores ao restante dos municípios da Região Sul.

FIGURA 28 – 2ª Semeadura do capim sudão - Excedente hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005

Novamente, no mês de fevereiro, o Rio Grande do Sul apresentou as menores médias, entretanto, com poucas regiões sem excedente hídrico, a exemplo do município de Bagé, na Região da Campanha, no município de Rio Grande e na Região Metropolitana Gaúcha. O estado de Santa Catarina caracteriza-se como uma região de transição, de menores médias para localidades com as maiores médias na área de estudo. Permanece com regiões com índices baixos de excedente hídrico, a exemplo do Município de Laguna, com 3,53mm, chegando aos 129mm no município de Ponte Serrada.

O mês de março foi o período em que a segunda semeadura apresentou as menores médias, com CAD de 50mm e 75mm. Praticamente, em toda a extensão da área em estudo, as médias permanecem entre 0mm e 40mm, salvo em regiões do município catarinense de São Joaquim, com 86mm, no município de Ivaí, localizado no estado do Paraná, com média de 133,9mm e na região litorânea paranaense, com médias superiores a 160mm, chegando aos 277mm de excedente hídrico em Paranaguá.

As Figuras 30 e 31 expressam a deficiência hídrica, na Região Sul do Brasil, com CAD de 50mm e 75mm respectivamente, na segunda semeadura, compreendido entre os meses de dezembro a março. A exemplo da primeira semeadura, a região em estudo, praticamente, não apresentou deficiência hídrica na produção do capim sudão.

Apenas a região metropolitana gaúcha apresentou duas localidades com índices baixos, na segunda semeadura,com uma CAD de 50mm, a exemplo do município

FIGURA 29 – 2ª Semeadura do capim sudão - Excedente hídrico mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

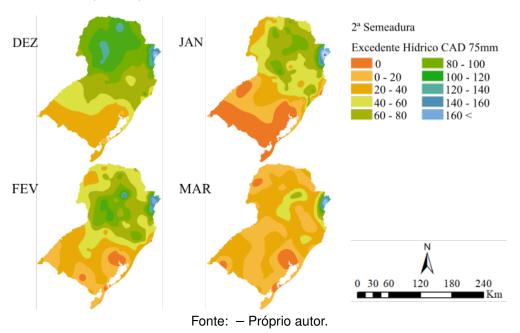
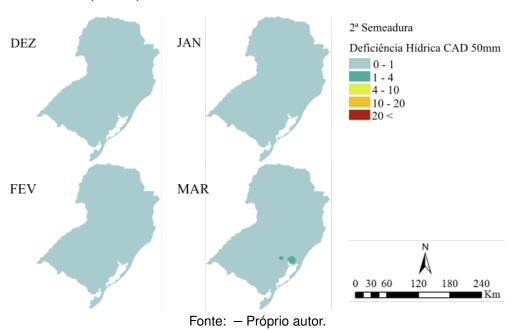
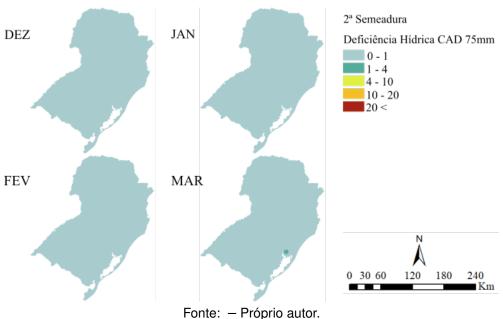




FIGURA 30 – 2ª Semeadura do capim sudão - Deficiência hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 50mm na Região Sul do Brasil para o período entre 1976 até 2005

de Cachoeirinha e Viamão, e na Mesorregião do Centro Oriental Rio-Grandense, no município de Taquari, no mês de março. O restante dos meses apresentaram médias inferiores a 1mm de deficiência. Com a CAD de 75mm, a segunda semeadura apresentou somente uma localidade com deficiência hídrica, na região de Cachoeirinha, com

FIGURA 31 – 2ª Semeadura do capim sudão - Deficiência hídrica mensal com o uso do balanço hídrico climatológico para solos com capacidade de 75mm na Região Sul do Brasil para o período entre 1976 até 2005

aproximadamente, 4mm de média de perca hídrica.

A aplicação da evapotranspiração de cultura (ETc) para o capim sudão, nas resultantes do BHC, apresentou, para o município de Paranaguá, no litoral paranaense, as maiores médias de excedente hídrico, nas duas semeaduras analisadas, computando em média, 277mm nos meses analisados. Já as menores médias de excedentes hídricos estão localizados no município de Cachoeirinha, na Região Metropolitana do Rio Grande do Sul, com um volume perto dos 9mm na primeira semeadura e 5mm na segunda semeadura.

O município de Quaraí, localizado na fronteira com o Uruguai, no extremo oeste gaúcho, apresentou as maiores médias de deficiência hídrica, nas duas semeaduras, computando 7mm na primeira semeadura e 5 na segunda semeadura. Observando as imagens geradas, as médias tendem a permanecer entre 0mm e 1mm em toda a Região do Brasil, caracterizando uma região que, praticamente, não apresenta deficiência hídrica para a produção do capim sudão.

5 CONSIDERAÇÕES FINAIS

Através deste trabalho, foi possível observar que a precipitação pluviométrica comportou-se de forma variável, onde as maiores médias foram localizadas nas regiões oeste e litoral do Paraná e na região oeste de Santa Catarina. Já nas regiões sul do estado gaúcho e norte e noroeste do Paraná concentram-se as médias mais baixas nos dados analisados.

As menores perdas hídricas (evapotranspiração) concentraram-se entre os meses de maio a agosto. Notou-se que no período sazonal de verão são as maiores perdas de água e, diferentemente da precipitação, praticamente não apresentam valores atípicos. Com os valores da precipitação e evapotranspiração, a quantidade da disponibilidade hídrica no solo na Região Sul do Brasil pode ser equacionado pelo método de Thornthwaite e Mather (1955).

Em primeiro momento, foi realizado a análise hídrica da área de estudo com uma Capacidade de Armazenamento (CAD) de 50mm, 75mm, 100mm e 125mm, gerando os mapas resultantes. Analisando as resultantes da espacialização da Deficiência Hídrica (DEF) e Excedente Hídrico (EXC), a Região Sul do Brasil não apresentou deficiência hídrica nos meses de setembro a novembro e entre maio e junho e apenas 31,2% das estações em estudo demonstraram DEF.

O próximo passo foi a espacialização das semeaduras do Capim-Sudão BRS Estribo, em dois períodos, sendo a primeira etapa iniciando no mês de outubro e terminando no mês de março e, a segunda semeadura, nos meses entre dezembro à março. As deficiências excessos hídricos foram computados em solos com CAD de 50mm e 75mm, com a determinação da Evapotranspiração de Cultura do Capim-Sudão BRS Estribo.

O estudo proporcionou a visualização das áreas com excessos e deficiências hídricas, em toda a Região Sul do Brasil, em diferentes capacidades de água disponível no solo, nos doze meses do ano e para a cultura do Capim-Sudão BRS Estribo. Embora que os dados estejam entre 1976 até 2005, este estudo pode ser replicado para dados mais atualizados e para outras regiões.

Nos dois períodos de semeadura, a produção do Capim-Sudão BRS Estribo praticamente não apresentou regiões com deficiência hídrica, salvo em pequenas localidades na Região Metropolitana de Porto Alegre e no Sudoeste Rio-Grandense, permanecendo até os 4mm de perda hídrica.

Propõe-se como trabalhos futuros integrar, ao construtor de modelos do *Arc-Map*, um módulo de consulta a situação do balanço hídrico em cada estação, realizando

a busca pelo nome ou código da estação, retornando as médias de excedente e deficiência hídrica computadas no período de estudo.

Propõe-se também aplicar este estudo para outras culturas, em diferentes períodos de estudo, aplicando outros interpoladores e comparando com as resultantes deste trabalho.

REFERÊNCIAS

ABIEC. **Beef Report - Perfil da Pecuária no Brasil**. [*s.l.*: s.n.], 2020. Endereço: http://abiec.com.br/publicacoes/beef-report-2020/. Acesso em: 22 abr. 2020.

ALLEN, Richard G *et al.* Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. **Roma: FAO**, n. 0, 300pp. 2006.

AMORIM NETO, M da S. Balanço hídrico segundo Thornthwaite & Mather (1955). **Embrapa Semiárido-Comunicado Técnico (INFOTECA-E)**, Petrolina: EMBRAPA-CPATSA, 1989., 1989.

ANA. **Inventário das Estações Pluviométricas**. [*s.l.*]: Brasília: Agência Nacional de Águas, 2009. 495p. Endereço:

https://arquivos.ana.gov.br/infohidrologicas/InventariodasEstacoesPluviometricas.pdf. Acesso em: 2 abr. 2020.

ANDER-EGG, Ezequiel. Introducción a las Técnicas de Investigación social para Trabajadores Sociales. [s.l.], 1978.

BARRETO, PN *et al.* Análise do balanço hídrico durante eventos extremos para áreas de floresta tropical de terra firme da Amazônia Oriental. In: XVI Congresso Brasileiro de Agrometeorologia. [*s.l.*: s.n.], 2009.

BASTOS, Rafael Lemos. **Métodos para Seleção de Modelos de Semivariograma em Campos Aleatórios Gaussianos**. 2017. 169p. Tese (Doutorado) — Programa de Pós-Graduação em Estatística e Experimentação Agropecuária — Universidade Federal de Lavras, MG.

BERNARDO, S. Manual de irrigação. rev. e ampl. Viçosa: UFV, Imprensa Universitária, 1995.

CAMARGO, ÂNGELO PAES DE; CAMARGO, MARCELO BENTO PAES DE. Uma Revisão Analítica da Evapotranspiração Potencial. **Bragantia**, SciELO Brasil, v. 59, n. 2, p. 125–137, 2000.

CAMARGO, AP de; PEREIRA, AR. Prescrição de rega por modelo climatológico. **Campinas: Fundação Cargill**, 1990.

COUTINHO, Maytê Duarte Leal *et al.* Balanço hídrico mensal para dois municípios do estado da Paraíba. **Ciência e Natura**, Universidade Federal de Santa Maria, v. 37, n. 3, p. 160–170, 2015.

DA SILVA, Vicente de PR *et al.* Risco climático da cana-de-açúcar cultivada na região Nordeste do Brasil. **Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi**, v. 17, n. 2, 2013.

DE SILVA, CS *et al.* Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. **Agricultural water management**, Elsevier, v. 93, n. 1-2, p. 19–29, 2007.

DIGITAL, Diário. **Agricultura avança sobre a pecuária**. [*s.l.*: s.n.], 2019. Endereço: https://www.diariodigital.com.br/economia/economia/186386/. Acesso em: 11 mai. 2020.

DOORENBOS, Jan. Guidelines for predicting crop water requirements. **Food and Agriculture organization. Rome, Irrig. Drainage pap.**, v. 24, 1975.

EMBRAPA. Saiba Manejar o Novo Capim-Sudão BRS Estribo. **Revista do Produtor. Embrapa Pecuária Sul-Documentos (INFOTECA-E)**, Bagé: Embrapa Pecuária Sul, v. 6, n. 7, p. 18–19, 2014.

FARIA, Roberto Araújo de *et al.* Demanda de irrigação suplementar para a cultura do milho no estado de Minas Gerais. **Revista Brasileira de Engenharia Agrícola e Ambiental**, SciELO Brasil, v. 4, n. 1, p. 46–50, 2000.

FERRARI, Alfonso Trujillo. **Metodologia da Ciência**. [*s.l.*]: Kennedy Editora, 1974.

GERHARDT, TE; SILVEIRA, DT. Métodos de Pesquisa. Porto Alegre: Ed. da UFRGS.(Educação a Distância, 5). Recuperado em 23 fevereiro, 2017 de. [s.l.: s.n.], 2009.

GONDIM, Rubens Sonsol *et al.* Balanço hídrico na bacia do Jaguaribe, Ceará, utilizando evapotranspiração de referência Penman-Monteith FAO estimada com dados mínimos. **Embrapa Informática Agropecuária-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E)**, Fortaleza: Embrapa Agroindústria Tropical, 2010., 2010.

GREGO, Célia Regina; OLIVEIRA, Ronaldo Pereira de; VIEIRA, Sidney Rosa. Geoestatística aplicada a Agricultura de Precisão. **Embrapa Territorial-Capítulo em livro científico (ALICE)**, In: BERNARDI, AC de C.; NAIME, J. de M.; RESENDE, AV de; BASSOI, LH; INAMASU 2014.

HENGL, Tomislav. A Practical Guide to Geostatistical Mapping. Hengl Amsterdam, 2009.

IBGE. **Geografia do Brasil. Região Sul**. [*s.l.*]: Rio de Janeiro: SERGRAF-IBGE, 1977. v. 5.

JAKOB, Alberto Augusto Eichman. A krigagem como Método de Análise de Dados Demográficos. **Anais do XIII Encontro Nacional de Estudos Populacionais**, p. 1–21, 2016.

JOHNSTON, Kevin *et al.* **Using ArcGIS geostatistical analyst**. [*s.l.*]: Esri Redlands, 2001. v. 380.

KALKHAN, Mohammed A. **Spatial statistics: geospatial information modeling and thematic mapping**. [s.l.]: CRC Press, 2011.

KRISHNAN, A *et al.* Agroclimatic classification methods and their application to India. In: INTERNATIONAL Crops Research Institute for the Semi-Arid Tropics: Climatic classification: a consultants' meeting, 14-16 April 1980. [*s.l.*: s.n.], 1980. P. 59–88.

LINDE, Klaus; WILLICH, Stefan N. How Objective are Systematic Reviews. Differences Between Reviews on Complementary Medicine. **Journal of the Royal Society of Medicine**, SAGE Publications Sage UK: London, England, v. 96, n. 1, p. 17–22, 2003.

LUCAS, Taíza Pinho Barroso *et al.* Identificação de interpoladores adequados a dados de chuva a partir de parâmetros estatísticos. **Revista Brasileira de Climatologia**, v. 13, 2014.

MARCHEZINI, Amanda Rezzieri *et al.* Desempenho do Comércio Internacional da Carne Bovina Brasileira nos Anos 2000/Performance of The International Trade of Brazilian Beef in The Years 2000. **Brazilian Journal of Development**, v. 5, n. 8, p. 12478–12501, 2019.

MATHERON, G; HUIJBREGTS, C. Universal Kriging (an optimal method for estimating and contouring in trend surface analysis), decision making in the mineral industry. **CIM Special Volume**, n. 12, p. 159–169, 1971.

MATZENAUER, Ronaldo; RADIN, Bernadete; MALUF, Jaime Ricardo Tavares. O fenômeno ENOS e o regime de chuvas no Rio Grande do Sul. **Agrometeoros**, v. 25, n. 2. 2018.

MAZZINI, PLF; SCHETTINI, Carlos Augusto França. Avaliação de metodologias de interpolação espacial aplicadas a dados hidrográficos costeiros quase-sinóticos. **Brazilian Journal of Aquatic Science and Technology**, v. 13, n. 1, p. 53–64, 2009.

MCBRATNEY, AB; WEBSTER, R. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. **Journal of soil Science**, Wiley Online Library, v. 37, n. 4, p. 617–639, 1986.

MEDEIROS, Sérgio Raposo de. Valor Nutricional da Carne Bovina e Suas Implicações Para a Saúde Humana. **Embrapa Gado de Corte-Documentos (INFOTECA-E)**, In: SÉRIES Embrapa:[coletânea de publicações seriadas da Embrapa Gado de ..., 2008.

MELLO, CR de; SILVA, AM da. Hidrologia: princípios e aplicações em sistemas agrícolas. **Lavras: UFLA**, 2013.

MONTEIRO, Antônio Miguel Vieira *et al.* Análise espacial de dados geográficos. **Brasília: Embrapa**, 2004.

MORAN, Patrick AP. Notes on continuous stochastic phenomena. **Biometrika**, JSTOR, v. 37, n. 1/2, p. 17–23, 1950.

MOURA, Maria Francisca Canovas de. **Uso da sigla BRS na comercialização das cultivares de videira lançadas pela Embrapa**. [s.l.: s.n.], 2018. Endereço: https://www.embrapa.br/busca-de-noticias/-/noticia/36080705/uso-da-sigla-brs-na-comercializacao-das-cultivares-de-videira-lancadas-pela-embrapa. Acesso em: 10 jun. 2020.

NAJAR, Alberto Lopes; MARQUES, Eduardo César. **Saúde e Espaço: Estudos Metodológicos e Técnicas de Análise**. [*s.l.*]: Editora Fiocruz, 1998.

OJO, Oyediran. Potential Evapotranspiration and The Water Balance in West Africa. **Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B**, Springer, v. 17, n. 2-3, p. 239–260, 1969.

OYANA, Tonny J. **Spatial Analysis with R: Statistics, Visualization, and Computational Methods**. [s.l.]: CRC Press, 2020.

PATRONI, Luiz. **Soja invade área tradicionalmente destinada à pecuária em Soledade**. [*s.l.*: s.n.], 2013. Endereço:

https://www.canalrural.com.br/sites-e-especiais/soja-invade-area-tradicionalmente-destinada-pecuaria-rio-grande-sul-31615/. Acesso em: 11 mai. 2020.

PEREIRA, Antônio Roberto; SENTELHAS, Paulo César; ANGELOCCI, Luiz Roberto. Agrometeorologia: Fundamentos e Aplicações Práticas. Notas de Aula: USP - Departamento de Ciências Exatas, 2007.

PEREZ, N. B.; SILVEIRA, M. C. T. da. Recuperação e melhoramento de pastagens na a região Sul do Brasil. **Embrapa Pecuária Sul-Outras publicações técnicas** (INFOTECA-E), Porto Alegre: Secretaria de Agricultura e Pecuária,[2015]., 2015.

PIMENTEL, Carlos. A relação da planta com a água. Seropédica: Edur, 2004.

PIRES, Allan Sampaio. **Espacialização do manejo do capim-sudão com base na soma térmica na região sul do Brasil**. 2020. Diss. (Mestrado) – Programa de Pós-Graduação Mestrado Acadêmico em Computação Aplicada – Universidade Federal do Pampa, Campus Bagé.

REGERT, FC *et al.* Produção Intensiva de Carne Bovina em Pasto de Capim-Sudão Cultivar BRS Estribo: um Estudo de Caso. In: IN: JORNADA [DO] NÚCLEO DE ESTUDOS EM SISTEMAS DE PRODUÇÃO DE BOVINOS DE ... EMBRAPA Pecuária Sul-Artigo em anais de congresso (ALICE). [s.l.: s.n.], 2015.

REICHARDT, Klaus. A água em sistemas agrícolas. [s.l.]: Manole São Paulo, 1990.

ROVANI, Franciele Francisca Marmentini; WOLLMANN, Cássio Arthur. BALANÇO HÍDRICO DO CULTIVO DA NOGUEIRA PECÃ NOS ANOS PADRÃO HABITUAL, CHUVOSO E SECO PARA O RIO GRANDE DO SUL. **Revista Brasileira de Climatologia**, v. 25, 2019.

SANTOS, Gilmar Oliveira; HERNANDEZ, Fernando Braz Tangerino; ROSSETTI, José Carlos. Balanço hídrico como ferramenta ao planejamento agropecuário para a região de Marinópolis, noroeste do estado de São Paulo. **Revista Brasileira de Agricultura Irrigada-RBAI**, v. 4, n. 3, 2013.

SANTOS, Jorge Luiz Sant'Anna dos; SILVA, Renata Wolf Martins da; TONINI, Helio. Relatório de Avaliação dos Impactos das Tecnologias Geradas pela Embrapa. Nome da tecnologia: Cultivar de capim-sudão BRS Estribo. **Embrapa Pecuária Sul**, Bagé: Embrapa Pecuária Sul, 2019., 2019.

SANTOS, Maurício Moreira; CHANG, Maria Rita Caetano; KIANG, Chang Hung. Análise do balanço hídrico climatológico do sistema Aquífero Guarani, em sua área de afloramentos no Estado de São Paulo. **Revista Brasileira de Climatologia**, v. 10, n. 1, 2012.

SEDIYAMA, Gilberto Chohaku *et al.* Zoneamento agroclimático do cafeeiro (Coffea arabica L.) para o Estado de Minas Gerais. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 9, n. 3, p. 501–509, 2001.

SHANER JEFF E WRIGHTSELL, Jennifer. **Editing in arcMap**. [s.l.]: Esri, 2000.

SILVEIRA, MCT da; MONTARDO, DP; SANT'ANNA, DM. Pasto sobre pasto: estratégias de manejo para uso de mesclas forrageiras de inverno e verão visando melhor distribuição de forragem. **Embrapa Pecuária Sul-Circular Técnica** (**INFOTECA-E**), Bagé: Embrapa Pecuária Sul, 2019., 2019.

SILVEIRA, MCT da; SANT'ANNA, DM; MONTARDO, DP. Capim-sudão BRS Estribo: cultivar de capim-sudão para pastejo. **Embrapa Pecuária**

Sul-Fôlder/Folheto/Cartilha (INFOTECA-E), Bagé: Embrapa Pecuária Sul; Passo Fundo: Sulpasto, 2013., 2013.

SILVEIRA, MCT da; SANT'ANNA, DM *et al.* Aspectos Relativos à Implantação e Manejo de Capim-Sudão BRS Estribo. **Embrapa Pecuária Sul-Documentos** (INFOTECA-E), Bagé: Embrapa Pecuária Sul, 2015., 2015.

SMITH, M1 *et al.* Report on the expert consultation on revision of FAO methodologies for crop water requeriments, 1991.

SOUZA, EF. Modelo computacional aplicado ao manejo e planejamento da irrigação. Viçosa, MG: UFV, Imprensa Universitária, 1993. 65p. 1993. Tese (Doutorado) — Dissertação Mestrado.

STEIN, Alfred; VAN DER MEER, Freek D; GORTE, Ben. **Spatial Statistics for Remote Sensing**. [s.l.]: Springer Science & Business Media, 2006. v. 1.

STEIN, Michael L. Interpolation of Spatial Data: Some Theory for Kriging. [s.l.]: Springer Science & Business Media, 2012.

SZENTIMREY, Tamás; BIHARI, Zita; SZALAI, Sándor. Comparison of geostatistical and meteorological interpolation methods (what is what?) **Spatial interpolation for climate data: the use of GIS in climatology and meteorology**, Wiley Online Library, p. 45–56, 2007.

THORNTHWAITE, Charles Warren. An Approach Toward a Rational Classification of Climate. **Geographical review**, JSTOR, v. 38, n. 1, p. 55–94, 1948.

THORNTHWAITE, CW; MATHER, JR. Publications in Climatology. **The water balance**, v. 8, p. 1–104, 1955.

THORNTHWAITE CW E MATHER, JR. The Water Balance. New Jersey: Drexel Institute of Technology, 1955. 104p. **Publications in Climatology**, 1955.

TOMASELLA, JTG; ROSSATO, L. Tópicos em Meio Ambiente e Ciências Atmosféricas—Balanço Hídrico. **INPE, São José dos Campos**, 2005.

TOMS, Silas. **ArcPy and ArcGIS–Geospatial Analysis with Python**. [*s.l.*]: Packt Publishing Ltd, 2015.

UNITED NATIONS, Department of Economic; SOCIAL AFFAIRS, Population Division. **World Population Prospects 2019: Highlights**. [s.l.: s.n.], 2019.

WREGE, Marcos Silveira *et al.* **Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul.** [*s.l.*]: Pelotas: Embrapa Clima Temperado; Colombo: Embrapa Florestas, 2012., 2012.

WUTKE, EB *et al.* Propriedades do Solo e Sistema Radicular do Feijoeiro Irrigado em Rotação de Culturas. **Revista Brasileira de Ciência do Solo**, SciELO Brasil, v. 24, n. 3, p. 621–633, 2000.

YAMAMOTO JORGE KAZUO E LANDIM, Paulo M Barbosa. **Geoestatística: Conceitos e Aplicações**. [*s.l.*]: Oficina de Textos, 2015.

APÊNDICE A - TABELAS DO BALANÇO HÍDRICO CLIMATOLÓGICO EM ALGUMAS ESTAÇÕES DE MONITORAMENTO NA REGIÃO SUL DO BRASIL

TABELA 7 – Extrato do BHC da cidade de Bagé/RS (mm)

Mês	ETP	Р	P-ETP	NEG ACUM	ARM	ALT	ETR	DEF	EXC
Julho	28	131	103	0	50	0	28	0	103
Agosto	39	103	64	0	50	0	39	0	64
Setembro	45	121	76	0	50	0	45	0	76
Outubro	58	134	76	0	50	0	58	0	76
Novembro	90	112	22	0	50	0	90	0	22
Dezembro	121	93	-28	-28	29	-21	115	6	0
Janeiro	132	112	-20	-48	19	-10	121	11	0
Fevereiro	107	105	-2	-50	18	-1	106	1	0
Março	97	117	20	-13	38	20	97	0	0
Abril	62	147	85	0	50	12	62	0	73
Maio	40	119	79	0	50	0	40	0	79
Junho	28	112	84	0	50	0	28	0	84
Total	847	1405	558		505	0	829	18	576
Média	130	216	86		78	0	127	3	89

TABELA 8 – Extrato do BHC da cidade de Londrina/PR (mm)

Mês	ETP	Р	P-ETP	NEG ACUM	ARM	ALT	ETR	DEF	EXC
Julho	44	61	17	0	50	0	44	0	17
Agosto	61	55	-6	-6	45	-5	61	0	0
Setembro	65	130	65	0	50	5	65	0	60
Outubro	84	145	61	0	50	0	84	0	61
Novembro	101	173	72	0	50	0	101	0	72
Dezembro	126	223	97	0	50	0	126	0	97
Janeiro	127	205	78	0	50	0	127	0	78
Fevereiro	111	202	91	0	50	0	111	0	91
Março	109	154	45	0	50	0	109	0	45
Abril	82	123	41	0	50	0	82	0	41
Maio	57	117	60	0	50	0	57	0	60
Junho	43	110	67	0	50	0	43	0	67
Total	1010	1698	688		595	0	1010	0	688
Média	155	261	106		91	0	155	0	106

TABELA 9 – Extrato do BHC da cidade de Uruguaiana/RS (mm)

Mês	ETP	Р	P-ETP	NEG ACUM	ARM	ALT	ETR	DEF	EXC
Julho	29	79	50	0	50	0	29	0	50
Agosto	40	69	29	0	50	0	40	0	29
Setembro	50	105	55	0	50	0	50	0	55
Outubro	65	131	66	0	50	0	65	0	66
Novembro	103	129	26	0	50	0	103	0	26
Dezembro	140	104	-36	-36	24	-26	130	10	0
Janeiro	152	133	-19	-55	17	-8	141	11	0
Fevereiro	118	132	14	-25	30	14	118	0	0
Março	108	131	23	0	50	20	108	0	3
Abril	67	175	108	0	50	0	67	0	108
Maio	44	112	68	0	50	0	44	0	68
Junho	29	77	48	0	50	0	29	0	48
Total	945	1376	431		521	0	924	21	452
Média	145	212	66		80	0	142	3	70

TABELA 10 – Extrato do BHC da cidade de Paranaguá/PR (mm)

Mês	ETP	Р	P-ETP	NEG ACUM	ARM	ALT	ETR	DEF	EXC
Julho	45	195	150	0	50	0	45	0	150
Agosto	52	166	114	0	50	0	52	0	114
Setembro	57	304	247	0	50	0	57	0	247
Outubro	69	375	306	0	50	0	69	0	306
Novembro	101	313	212	0	50	0	101	0	212
Dezembro	129	375	246	0	50	0	129	0	246
Janeiro	140	430	290	0	50	0	140	0	290
Fevereiro	122	326	204	0	50	0	122	0	204
Março	118	383	265	0	50	0	118	0	265
Abril	89	244	155	0	50	0	89	0	155
Maio	63	219	156	0	50	0	63	0	156
Junho	46	173	127	0	50	0	46	0	127
Total	1031	3503	2472		600	0	1031	0	2472
Média	159	539	380		92	0	159	0	380

TABELA 11 – Extrato do BHC da cidade de São Joaquim/PR (mm)

Mês	ETP	Р	P-ETP	NEG ACUM	ARM	ALT	ETR	DEF	EXC
Julho	31	115	84	0	50	0	31	0	84
Agosto	39	195	156	0	50	0	39	0	156
Setembro	44	212	168	0	50	0	44	0	168
Outubro	49	163	114	0	50	0	49	0	114
Novembro	68	123	55	0	50	0	68	0	55
Dezembro	85	134	49	0	50	0	85	0	49
Janeiro	89	178	89	0	50	0	89	0	89
Fevereiro	77	194	117	0	50	0	77	0	117
Março	73	148	75	0	50	0	73	0	75
Abril	52	96	44	0	50	0	52	0	44
Maio	39	83	44	0	50	0	39	0	44
Junho	30	131	101	0	50	0	30	0	101
Total	676	1771	1095		600	0	676	0	1095
Média	104	272	168		92	0	104	0	168

APÊNDICE B - SCRIPTY EM PYTHON PARA O FLUXOGRAMA DE ESPACIALIZAÇÃO DAS MÉDIAS MENSAIS

```
# Importanto a biblioteca arcpy
import arcpy
arcpy.CheckOutExtension("spatial")
# Argumentos
medias_prec_ou_etp = arcpy.GetParameterAsText(0)
if medias_prec_ou_etp == '#' or not medias_prec_ou_etp:
    medias_prec_ou_etp = "C:\\Users\\gleds\\Documents\\ArcGIS\\medias_estacoes.xlsx\\medias$"
Estacoes_de_Monitoramento = arcpy.GetParameterAsText(1)
if Estacoes_de_Monitoramento == '#' or not Estacoes_de_Monitoramento:
    Estacoes_de_Monitoramento = "C:\\Users\\gleds\\Documents\\ArcGIS\\
                                                    coordenadas_estacoes.xlsx\\'BHC CAD 50$'"
Regiao_Sul_do_Brasil = arcpy.GetParameterAsText(2)
if Regiao_Sul_do_Brasil == '#' or not Regiao_Sul_do_Brasil:
    Regiao_Sul_do_Brasil = "C:\\Users\\gleds\\Documents\\ArcGIS\\Região_Sul_Brasil.shp"
# Variáveis Locais:
Shapefile_estacoes = Estacoes_de_Monitoramento
medias_com_shapefile = Shapefile_estacoes
resultante_espacializacao = medias_com_shapefile
espacializacao_RS = resultante_espacializacao
variancia_raster = medias_com_shapefile
# Processo: Criar Shapefile das Estações de monitoramento
arcpy.MakeXYEventLayer_management(Estacoes_de_Monitoramento, "LAT_SUL", "LONG_OESTE",
                                                        Shapefile_estacoes, "", "")
# Processo: Unir as médias mensais de precipitação ou evapotranspiração com o shapefile
# das estações de monitoramento
arcpy.JoinField_management(Shapefile_estacoes, "ID_NUM", Medias_mensais_de_prec_ou_etp,
                                                                 "ID_NUM", "ETP_7;P_7")
```

APÊNDICE C - SCRIPTY EM PYTHON PARA O CÁLCULO DO BALANÇO HÍDRICO CLIMATOLÓGICO

```
import sys
import pandas as pd
import numpy as np
from pandas import DataFrame
import funcoes_calculo_bh as fn
#variável prec recebe a planilha com as médias de precipitação
#variável etp recebe a planilha com as médias de evapotranspiração
prec = pd.read_excel('C:/Users/gleds/Documents/ArcGIS/tabelas_bh/prec.xlsx')
etp = pd.read_excel('C:/Users/gleds/Documents/ArcGIS/tabelas_bh/etp.xlsx')
ARM = int(input('Digite um valor de CAD (50 ou 75 ou 100 ou 125 ou 150): '))
if (ARM != 50) and (ARM != 75) and (ARM != 100) and (ARM != 125) and (ARM != 150):
    print('Valor de CAD errado!')
    sys.exit()
#variável P: valor da precipitação
#variável ETP: valor da evapotranspiração
#variável P_ETP :valor de precipitação menos a evapotranspiração
#variável ARM: valor da CAD, capacidade de armazenamento
#variável NEG_ACUM: valor do negativo acumulado
#variável ALT: valor da alteração do armazenamento
#cria a tabela com todas as variáveis para o cálculo
fn.criar_tabela_bh(prec, etp)
mes_atual = 1
while mes_atual <= 12:</pre>
    for i in range(len(bh.P_ETP_mes_atual)):
        bh.P_ETP_mes_atual[i] = bh.P_mes_atual[i] - bh.ETP_mes_atual[i]
    for i in range(len(bh.ARM_mes_atual)):
        bh.ARM_mes_atual[i] = ARM*np.exp(bh.NEG_ACUM_mes_atual[i]/ARM)
```

```
for i in range(len(bh.NEG_ACUM_mes_atual)):
      if (bh.P_ETP_mes_anterior[i] > 0) and (bh.P_ETP_mes_atual[i] < 0):</pre>
        bh.NEG_ACUM_mes_atual[i] = bh.P_ETP_mes_atual[i]
        bh.ARM_mes_atual[i] = ARM*np.exp(bh.NEG_ACUM_mes_atual[i]/ARM)
      elif ((bh.P_ETP_mes_anterior[i] < 0) and (bh.P_ETP_mes_atual[i] < 0)):</pre>
        bh.NEG_ACUM_mes_atual[i] = bh.P_ETP_mes_anterior[i] + bh.P_ETP_mes_atual[i]
        bh.ARM_mes_atual[i] = ARM*np.exp(bh.NEG_ACUM_mes_atual[i]/ARM)
      elif (bh.P_ETP_mes_atual[i] > 0) and (bh.P_ETP_mes_atual[i] < 0):</pre>
        bh.ARM_mes_atual[i] = bh.P_ETP_mes_atual[i] + bh.ARM_mes_atual[i]
        if bh.ARM_mes_atual[i] > ARM: bh.ARM_mes_atual[i] = ARM
        bh.NEG_ACUM_mes_atual[i] = ARM*(np.long(bh.ARM_mes_atual[i]/ARM))
      if bh.NEG_ACUM_mes_atual[i] < 0: bh.NEG_ACUM_mes_atual[i] = 0</pre>
    for i in range(len(bh.ALT_mes_atual)):
      bh.ALT_mes_atual[i] = bh.ARM_mes_atual[i] - bh.ARM_mes_anterior[i]
    for i in range(len(bh.ETR_mes_atual)):
      if bh.P_ETP_mes_atual[i] >= 0:
          bh.ETR_mes_atual[i] = bh.ETP_mes_atual[i]
      elif bh.ALT_mes_atual[i] <= 0:</pre>
          bh.ETR_mes_atual[i] = bh.P_mes_atual[i] + np.absolute(bh.ALT_mes_atual[i])
    for i in range(len(bh.DEF_mes_atual)):
      bh.DEF_mes_atual[i] = bh.ETP_mes_atual[i] - bh.ETR_mes_atual[i]
    for i in range(len(bh.EXC_mes_atual)):
      if bh.ARM_mes_atual[i] < ARM:</pre>
          bh.EXC_mes_atual[i] = 0
      elif bh.ARM_mes_atual[i] == ARM:
          bh.EXC_mes_atual[i] = bh.P_ETP_mes_atual[i] - bh.ALT_mes_atual[i]
    #define qual o mês atual
    fn.definir_mes_atual(mes_atual, bh)
#cria a planilha, em xls, com as deficiências e excessos hídricos
fn.criar_planilha(bh, ARM)
```


ANEXO A - LOCALIZAÇÃO DAS ESTAÇÕES DE MONITORAMENTO NA REGIÃO SUL DO BRASIL USADAS NESTE ESTUDO

TABELA 12 - Localização das estações de monitoramento na Região Sul do Brasil usadas neste estudo

H	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	ħ	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
SP	IGARAPAVA	USINA JUNQUEIRA (SEDE)	-20,03333333	-47,7333333	SP	SANTA CRUZ DO RIO PARDO	SODRÉLIA	-22,95	-49,5333333
SP	PINDORAMA	ESTAÇÃO EXPERIMENTAL	-21,21666667	-48,9	SP	PIRACAIA	CANTAREIRA	-22,96694444	-46,39416667
SP	LAVÍNIA	TABAJARA	-21,28333333	-51,13333333	PR	QUERÊNCIA DO NORTE	ICATU	-22,97472222	-53,39638889
SP	ARARAQUARA	FAZENDA PALMEIRAS	-21,8644444	-48,28166667	SP	GUARATINGUETÁ	FAZENDINHA	-22,98333333	-45,18333333
SP	MARTINÓPOLIS	USINA LARANJA DOCE	-22,25	-51,16666667	SP	OURINHOS	FAZENDA LAJEADINHO	-22,99972222	-49,8333333
SP	PIRAPOZINHO	PIRAPOZINHO	-22,26666667	-51,5	PR	CAMBARÁ	CAMBARÁ	-23,04194444	-50,07
SP	MIRANTE DO PARANAPANEMA	CUIABÁ PAULISTA	-22,3	-52,08333333	SP	CHAVANTES	FAZENDA MARCONDINHA	-23,05	-49,76666667
SP	TEODORO SAMPAIO	FAZENDA GUANA	-22,31666667	-52,65	PR	QUERÊNCIA DO NORTE	QUERÊNCIA DO NORTE	-23,08166667	-53,48111111
H.	CIANORTE	CIANORTE	-22,33333333	-51,41666667	PR	PARANAVAI	PARANAVAI	-23,08333333	-52,4333333
SP	TEODORO SAMPAIO	BAIRRO SANTA IDA	-22,36666667	-52,31666667	PR	ANDIRÁ	ANDIRÁ	-23,08611111	-50,28611111
SP	TACIBA	TACIBA	-22,38333333	-51,28333333	SP	AVARÉ	AVARÉ	-23,1	-48,91666667
SP	MARTINÓPOLIS	FAZENDA FORMOSA	-22,41666667	-51,16666667	SP	LAGOINHA	FAXINAL	-23,11666667	-45,2
SP	NARANDIBA	NARANDIBA	-22,41666667	-51,51666667	PR	SANTA MARIANA	UHE CAPIVARA PORTO SANTA TEREZINHA	-23,12861111	-50,45972222
SP	RANCHARIA	TRONCÃO RANCHARIA	-22,43333333	-50,99972222	SP	CERQUEIRA CESAR	MACUCO	-23,15	-49,18333333
SP	TEODORO SAMPAIO	FAZENDA ITAPORA	-22,46666667	-52,88333333	SP	TIMBURI	TIMBURI	-23,2	-49,61666667
SP	ESTRELA DO NORTE	BAIRRO GUARUJA	-22,51666667	-51,63333333	H I	JATAIZINHO	UHE CAPIVARA JATAIZINHO	-23,25833333	-50,9844444
SP	SANDOVALINA	FAZENDA VISTA BONITA	-22,51666667	-51,81666667	H H	IBIPORA	IBIPORA	-23,26666667	-51,01666667
SP	TEODORO SAMPAIO	TEODORO SAMPAIO	-22,51666667	-52, 18333333	SP	NAZARE PAULISTA	MORRO GRANDE	-23,26666667	-46,41666667
S G	MIRANTE DO PARANAPANEMA	MIRANTE DO PARANAPANEMA	-22,54416667	-52,02722222	S G	BOITUVA	BOITUVA	-23,28333333	-47,6666667
בי נ	LECDORO SAMPAIO	EUCLIDES DA CUNHA	-22,55	-52,5833333	Į (LONDHINA	LONDRINA	-23,3166666/	-51,13333333
S G	I EODORO SAMPAIO	FAZENDA ROSANELA	-22,56666667	-52,41666667	SP	IEJUPA	IEJUPA	-23,33333333	-49,36666667
S	IEPE	JAGUARETE	-22,56666667	-51,13333333	SP	FARTURA	FARTURA	-23,38333333	-49,51666667
SP	PARAGUAÇU PAULISTA	SAO MATEUS	-22,56666667	-50,7833333	SP	ITAI	ITAI	-23,41666667	-49,1
SP	SÃO PEDRO DO TURVO	AREIA BRANCA	-22,58333333	-49,81666667	PR	CORBÉLIA	USINA MELISSA	-23,43333333	-52,8
SP	TEODORO SAMPAIO	FAZENDA NOVA DO PONTAL	-22,58333333	-52,81666667	SP	TAGUAÍ	TAGUAÍ (RIBEIRÓPOLIS)	-23,45	-49,41666667
SP	TEODORO SAMPAIO	ROSANA	-22,58333333	-53,06666667	PR	LONDRINA	VOLTA GRANDE	-23,4777778	-50,93694444
SP	PIRAPOZINHO	ITORORÓ DO PARANAPANEMA	-22,6	-51,7333333	PR	APUCARANA	APUCARANA (FAZENDA UBATUBA)	-23,5	-51,5333333
SP	IEPÊ	NANTES	-22,61666667	-51,25	PR	JOAQUIM TÁVORA	JOAQUIM TÁVORA MTE	-23,5	-49,86666667
SP	ASSIS	ASSIS (HORTO FLORESTAL - EFS)	-22,63333333	-50,4	SP	TAQUARITUBA	TAQUARITUBA	-23,53333333	-49,2333333
SP	RANCHARIA	GARDENIA	-22,63333333	-50,9	PR	ASSIS CHATEAUBRIAND	USINA ASSIS CHATEAUBRIAND	-23,58333333	-52,48333333
SP	PLATINA	PLATINA	-22,63333333	-50,2	SP	BARAO DE ANTONINA	BARAO DE ANTONINA	-23,63333333	-49,55
SP	MARACAI	BAIRRO AGUA DO MATAO	-22,66666667	-50,61666667	SP	CORONEL MACEDO	CORONEL MACEDO	-23,63333333	-49,31666667
SP	IEPE	JEPE ,	-22,66666667	-51,08333333	SP	TAQUARITUBA	MEDONHO	-23,65	-49,13333333
SP	ASSIS	AGUA DA FORTUNA	-22,68333333	-50,48333333	SP	SARAPUI	SARAPUI	-23,65	-47,83333333
SP	IEPE	CAPISA	-22,71666667	-51,13333333	SP	ITAPORANGA	MOSTEIRO ITAPORANGA	-23,7	-49,48333333
SP	SANTA CRUZ DO RIO PARDO	CAPORANGA	-22,71666667	-49,56666667	PR	SÃO JERÖNIMO DA SERRA	SALTO SÃO PEDRO	-23,7	-50,81666667
SP	SAO PEDRO DO TURVO	SAO PEDRO DO TURVO	-22,75	-49,7333333	SP	ITABERA	TORIBA DO SUL	-23,75	-49,2666667
אר מי	PALMIIAL	PALMITAL DIBTIDE DO D	-22,78333333	-50,21666667	T (UMUARAMA	UMUARAMIA_Jardim kennedy	-23,76888889	-53,32111111
ה	RIBEIRAO DO SUL	RIBEIRAO DO SUL	-22,78333333	-49,9333333	T (MARILANDIA DO SUL (ARAHUVA)	SAOJOSE	-23,82694444	-51,26638889
א מ ה	IBIKAKEMA	IBIRAKEMA	7999991877-	79,0666666	ה	KIBEIKAO DO SUL	AIVERSOL *: H\$*:: \$	-23,83333333	-49,43333333
2 0	CANDIDO MOIA	FAZENDA KEUNIDAS SANTA KOSA	58,22-	50,555	ב נ	ALIONIA	ALIONIA	-23,85	-53,8830555
y (CANDIDO MOIA	USINA PARI	-22,88333333	-50,333333	ב מ	HGUEIRA	USINA FIGUEIRA	-23,85027778	-50,39111111
ב מ	FLORIDA	FOR IO FLORIDA	-22,88333333	20-	ה ה	IIABERA TINEIDAS DO CESTE	IIABERA TINGGAS DO OESTE	73,86666667	-49, 13333333
ה מ מ	SANTA CRITZ DO BIO BABDO	SANITA CELIZ DO BABDO	6,22	40.6166667	ב מ		I ONE INAS DO CESTE	/99999990,52-	-02,000,000,00
ם מ	SAINT CHUZ DO NIO FAINT	SAN E PONZO OF IA A MON	6,22-	49,01000001	ב מ	TEININ		50,05	10.000000
ם מ	SACIO GLANDE	COUNTY SALIO GRAINDE (LING)	677-	49,999/2222	ם מ	שראראוו	ACHORDA VIGINA	25,93	43,30000001
5 0	RELA VISTA DO PABAÍSO	BEI A VISTA DO BABAÍSO	22,000000	0.0000000000000000000000000000000000000	5 0	TAPEVA	TA DEVA	23,53	18 8833333.
- d	ÓI EO	EAZENDA NOVA NIAGABA	-22 95	2,10-	- a	MOBEIRA SALES	MOBEIRA SALES	23 9666667	91
S S	SANTA CRUZ DO RIO PARDO	SODRÉLIA	-22,95	-49,5333333	SP	TAPIRAÍ	TAPIRAÍ	-23,96666667	-47,5

H.	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	占	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
PR	IPORÃ	IPORÃ	-23,96944444	-53,7525	SP	RIBEIRA	GRITADOR	-24,56666667	-48,95
PR	MARILUZ	MARILUZ	-23,98305556	-53,16666667	SP	ITAPIRAPUĂ PAULISTA	ITAPIRAPUA	-24,56666667	-49,16666667
R	ALTO PIQUIRI	ALTO PIQUIRI	-24,01472222	-53,43972222	PR	RESERVA	BARRA BONITA	-24,56944444	-51,15305556
SP	ITAPEVA	USINA SANTA MARIA	-24,01666667	-48,71666667	R	CAMPINA DA LAGOA	CAMPINA DA LAGOA	-24,59972222	-52,80416667
P.B	ARAPOŢI	CARATUVA	-24,03333333	-50,08333333	SP	PARIQUERA-AÇU	BARRA DO CAPINZAL	-24,6	-47,88333333
SP	TAPIRAİ	CABEÇA DA ANTA	-24,05	-47,58333333	A.	LARANJEIRAS DO SUL	LARANJEIRAS DO SUL	-24,6	-51,58333333
SP	ITABERÁ	ENGENHEIRO MAIA	-24,05	-49,1	SP	ELDORADO	OURO LEVE	-24,6	-48,3
PB	LAPA	SÃO BENTO	-24,0544444	-48,20861111	R	RONCADOR	RONCADOR	-24,6	-52,26666667
PR	GUAIRA	GUAIRA	-24,08333333	-54,25	SP	PARIQUERA-AÇU	PARIQUERA ABAIXO	-24,61666667	-47,8333333
PR	JANIÓPOLIS	JANIÓPOLIS	-24,13333333	-52,76666667	SP	ELDORADO	BARRA DO BRAÇO	-24,63333333	-48,2833333
SP	ITAPEVA	USINA SÃO JOSÉ	-24,13333333	-48,96666667	SP	IPORANGA	DESCALVADO	-24,65	-48,65
SP	MIRACATU	PEDRA DO LARGO	-24,15	-47,2833333	SP	RIBEIRA	RIBEIRA	-24,65	-48,99972222
SP	GUAPIARA	BAIRRO DO PINHEIRO	-24,18333333	-48,5	R	ADRIANÓPOLIS	CAPELA DA RIBEIRA	-24,65555556	-48,99972222
PR	IVAIPORÃ	IVAIPORÃ	-24,25	-51,65	R	NOVA CANTU	NOVA CANTU	-24,66666667	-52,56666667
SP	MIRACATU	FAZENDA PETTENA	-24,26666667	4,74-	H.	NOVA CANTU	NOVA CANTU	-24,66666667	-52,56666667
SP	ITARARE	FAZENDA SAO NICOLAU	-24,26666667	-49,16666667	S G	JACUPIRANGA	JACUPIRANGA	-24,68944444	-48,00138889
2 6	HAKIKI DIRTIDÃO DOMICO	GUANHANHA	-24,26666667	-4/,1666666/	Į d	ENITE RIOS DO OESTE	ENITE RIOS DO OESTE	-24,6925	-54,2325
2 0	KIBEIKAO BRANCO	FINARA EOBMOSA DO OESTE	-24,2000000/ 24,20006666	-48,9	ָה מ ה	GUAPE	MOMINA	7,4%	-47,50505050 -47,55555557
ב מ	MAMBOBÊ	MAMBORÊ	-24,28303330	-52,5166667	ם מ	ELDORADO	RABBA DO ABEADO	7,42-	78 3333333
ב מ	PENPONE TO EDO		24,20303333	72,31000007	5 0	TO T		24,7166667	20000000000000000000000000000000000000
5 0	TABIBI	ITABIBI	24,2033333	47.1700000	2 0	PABIOLIEBA-ACLI	PABIOLIERA-ACLI	74,71000007	50,00
5 8	PALOTINA	PALOTINA	-24.3	-53.91666667	S 0.	CAJATI	SERBANA DO SUL	-24.71666667	-48.11666667
E E	PALOTINA	PALOTINA	-24.3	-53.91666667	B	PITANGA	PITANGA	-24.75	-51,7666667
SP	ITARIRI	BAIRRO IGREJINHA	-24,33333333	-47,2	SP	BARRA DO TURVO	BARRA DO TURVO Centro	-24,7577778	-48,5055556
PR	TELÊMACO BORBA	TELÊMACO BORBA	-24,33333333	-50,61666667	SP	CAJATI	BARRA DO AZEITE	-24,78333333	-48,18333333
PR	GRANDES RIOS	PORTO ESPANHOL	-24,3444444	-51,42388889	PR	ALTAMIRA DO PARANÁ	ALTAMIRA DO PARANÁ	-24,8	-52,7
SP	JUQUIÁ	ESCALVADO	-24,35	-47,71666667	SP	JACUPIRANGA	CANHA	-24,8	-47,96666667
PR	GUARAPUAVA	SANTA CLARA	-24,36277778	-50,0344444	R	CORBÉLIA	CORBELIA	-24,8	-53,3
SP	IGUAPE	DIVISOR	-24,36666667	-47,31666667	H.	CERRO AZUL	CERRO AZUL	-24,81666667	-49,25
SP	JUQUIÁ	SALTO DO CEDRO	-24,36666667	-47,55	SP	IGUAPE	SUBAUMA	-24,81666667	-47,73333333
E 1	CRUZEIRO DO IGUAÇU	UHE FOZ CHOPIM - (Ex. Julio Mesquita)	-24,4	-52,91666667	E 1	CAMPO BONITO	PONTE TOURINHO - BRAGANEY	-24,88305556	-53,06666667
T 6	IREIAMA	IREIAMA	-24,41666667	-52,1	T (CASCAVEL	CASCAVEL	-24,88333333	-53,55
y 0.	APIAI IPOBANGA	AHACAIBA (CAPOEIRAS) CABOCIOS	-24,43333333	-48,58333333	, E	JACOPIRAINGA PAI MITAI	SALIO GRAINDE DO GUARAO PAI MITAI	-24,88333333	-48,1 -52 20277778
S	BARRA DO CHAPÉU	BARRA DO CHAPÉU Centro	-24,47277778	-49.02527778	SP	ILHA COMPRIDA	PEDRINHAS	-24.9	-47.8
SP	IGUAPE	CACHOEIRA DO GUILHERME	-24,48333333	-47,25	R	CASCAVEL	CASCAVEL - OCEPAR	-24,9333333	-53,4333333
RS	ELDORADO	PEDRO CUBAS	-24,48333333	-48,3	SP	CANANÉIA	ITAPITANGUI	-24,93333333	-47,95
PR	MARECHAL CÂNDIDO RONDON	UHE ITAIPU PORTO MENDES GONÇALVES	-24,49138889	-54,30944444	SP	CANANÉIA	PORTO CUBATÃO	-24,96666667	-47,95
SP	REGISTRO	JURUMIRIM	-24,5	-47,7333333	SP	BARRA DO TURVO	RIO PARDINHO	-25,06083333	-48,55833333
SP	REGISTRO	REGISTRO	-24,5	-47,85	RS	NOVA ERECHIM	Passo Nova Erechim	-25,06666667	-51,1
		CAVERNOSO I RESERV MONT.	-24,51611111	-51,78166667	SP	CANANÈIA	MORRO REDONDO	-25,06666667	-48,13333333
g g	APIAI	APIAI	-24,51666667	-48,85	S C	CANANEIA	ITACURUCA	-25,1	-47,91666667
בנ	MAINOEL RIBAS	MANOEL RIBAS	79999916,47-	/9999999,16-	ב נ			1,02-	/9999997,76-
2 2		ELDORADO SÍTIO OBANIDE	-24,51694444	-48,1	ב ב	GUARAPUAVA	CAMPINA DO SIMAO	-25,10916667	-51,80638889
ב מ	IGUAPE	SITIO GRANDE	-24,53333333	-47,53333333	ב מ	CEU AZUL	CEU AZUL SANTA CBII7	-25,13305556	-53,83
ב מ	IPOBANGA	BABBA DOS PII ÕES	24,33333333	-32,90333333	במ	CAMPINA GRANDE DO SUI	SANTA CHOZ	-23,13333333	61,06- -48 87944444
5 8	MARKET OF CALCULATION	MARECHAL CÂNDIDO BONDON	26,43-	140,400,000				753,1037,2525	140,07,044444
T	MARECHAL CANDIDO RONDON MORRETES	MARECHAL CANDIDO RONDON VEU DE NOIVA	-24,33	-54,00000007	E E	SAU MIGUEL DU IGUAÇU GUARAPUAVA	SAO MIGUEL DO IGUAÇO GUAMIRANGA	-25, 18333333	-54,13333333

占	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	占	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
							,		
H.	PRUDENTÓPOLIS	RIO DOS PATOS	-25,20527778	-50,94277778	H.	BITURUNA	COLÔNIA AUGUSTO LOUREIRO	-26,19055556	-51,29777778
SP	CANANÉIA	ARIRI	-25,21666667	-48,0333333	SC	PALHOÇA	TERESÓPOLIS (QUECABA)	-27,48	-48,46
A.	PONTA GROSSA	PONTA GROSSA - VILA VELHA	-25,21666667	-50,01666667	SC	MAFRA	RIO PRETO DO SUL	-26,21555556	-49,60361111
PB	ANTONINA	COLONIA DO CACHOEIRA	-25,2333333	-48,75	SC	JOINVILLE	PRIMEIRO SALTO DO CUBATÃO	-26,21583333	-49,08055556
PR	MATELÂNDIA	MATELÂNDIA	-25,24	-53,97527778	H	UNIÃO DA VITÓRIA	UNIÃO DA VITÓRIA	-26,22805556	-51,08027778
PR	GUARAQUEÇABA	GUARAQUEÇABA	-25,26666667	-48,3	SC	DIONÍSIO CERQUEIRA	DIONÍSIO CERQUEIRA	-26,26916667	-53,6275
PR	PALMEIRA	USINA MANOEL RIBAS	-25,31666667	-20	H	CLEVELÂNDIA	SALTO CLAUDELINO	-26,27805556	-52,29611111
PR	SÃO MIGUEL DO IGUAÇU	SÃO MIGUEL DO IGUAÇU	-25,34583333	-54,24416667	SC	JOINVILLE	JOINVILLE_Costa e Silva	-26,27888889	-48,865
PR	GUARAPUAVA	GUARAPUAVA - COLÉGIO AGRICOLA	-25,36472222	-51,49694444	SC	ITAIÓPOLIS	ITAIÓPOLIS	-26,33277778	-49,9272222
PR	TEIXEIRA SOARES	TEIXEIRA SOARES	-25,36666667	-50,46666667	SC	SÃO BENTO DO SUL	RIO NATAL (RVPSC)	-26,33333333	-49,3
PR	LARANJEIRAS DO SUL	LARANJEIRAS DO SUL	-25,4	-52,41666667	SC	PALMA SOLA	PALMA SOLA	-26,34555556	-53,27166667
PR	SERRANÓPOLIS DO IGUACU	JARDINÓPOLIS	-25,41333333	-54,03722222	H	MARIÓPOLIS	MARIÓPOLIS	-26,35	-52,56666667
H	PIRAQUARA	PIRAQUARA - FACULDADE AGRONOMIA UFP	-25,41666667	-49,13333333	SC		Passo Socorro (SC)	-26,35	-52,1
PR	ANTONINA	ANTONINA	-25,43333333	-48,76666667	SC	CANOINHAS	PINHEIROS	-26,35138889	-50,64555556
PR	CURITIBA	CURITIBA	-25,43333333	-49,26666667	SC	MAJOR VIEIRA	SALTO CANOINHAS	-26,37055556	-50,29083333
PR	QUEDAS DO IGUAÇU	QUEDAS DO IGUAÇU (CAMPO NOVO)	-25,44833333	-52,9044444	SC	IRINEÓPOLIS	SANTA CRUZ DO TIMBÓ	-26,38388889	-50,8783333
PR	CAMPO LARGO	ITAQUI - SANTA CECÍLIA	-25,46222222	-49,57027778	R	GENERAL CARNEIRO	JANGADA DO SUL	-26,38694444	-51,27194444
R	PIRAQUARA	MANANCIAIS DA SERRA	-25,4925	-48,99388889	SC	SÃO LOURENÇO DO OESTE	SÃO LOURENÇO DO OESTE	-26,40027778	-52,89555556
H.	MORRETES	MORRETES (EST.EXP.FRUTAS TROP)	-25,5	-48,81666667	H	CLEVELÂNDIA	CLEVELÂNDIA	-26,41666667	-52,35
SC	JARAGUÁ DO SUL	Rio Jaraguá	-25,50555556	-48,9125	SC	RIO NEGRINHO	CORREDEIRA	-26,4194444	-49,57305556
PR	MORRETES	MORRETES	-25,51361111	-48,88416667	SC	CORUPÁ	CORUPÁ	-26,42388889	-49,2925
R	SÃO JOSÉ DOS PINHAIS	FAZENDINHA	-25,51916667	-49,14666667	SC	CAMPO ERÊ	CAMPO ERÊ	-26,44333333	-53,08138889
H.	CANDÓI	US. SANTA MARIA - SALTO CURUCACA	-25,5333333	-51,81666667	SC	ARAQUARI	JACU	-26,44805556	-48,83111111
PR	QUEDAS DO IGUAÇU	USINA SALTO OSÓRIO (DEFLUENTE)	-25,55	-53,01666667	SC	JOINVILLE	PONTE SC-301	-26,44833333	-48,83027778
PR	CRUZEIRO DO IGUAÇU	CRUZEIRO DO IGUAÇU I	-25,56666667	-53,1333333	SC	ITAIÓPOLIS	IRACEMA	-26,45861111	-50,00305556
PR	FOZ DO IGUAÇU	SALTO CATARATAS	-25,68305556	-54,43305556	SC	JARAGUÁ DO SUL	JARAGUÁ DO SUL	-26,46416667	-49,08666667
PR	FOZ DO IGUAÇU	SALTO CATARATAS	-25,68305556	-54,43305556	SC	SÃO JOSÉ DO CEDRO	SÃO JOSÉ DO CEDRO	-26,465	-53,45361111
PR	PLANALTO	PLANALTO	-25,7	-53,76666667	SC	GUARAMIRIM	GUARAMIRIM_Bananal	-26,47277778	-48,95916667
		BARRACÃO	-25,73333333	-52,35	SC	MATOS COSTA	MATOS COSTA	-26,47694444	-51,14861111
PR	VERÊ	ÁGUAS DO VERÊ	-25,76916667	-52,92666667	В	PALMAS	PALMAS	-26,48333333	-51,98333333
H.	REALEZA	REALEZA ETA SANEPAR	-25,76944444	-53,51555556	H.	PALMAS	PALMAS	-26,48333333	-52
PB	SALTO DO LONTRA	SALTO DO LONTRA	-25,77666667	-53,31083333	SC	ITAIÓPOLIS	MOEMA	-26,53055556	-49,84361111
PR	AMPÉRE	SANTA IZABEL DO OESTE	-25,81666667	-53,5	SC	ABELARDO LUZ	ABELARDO LUZ	-26,55611111	-52,33083333
PB	PĒROLA D'OESTE	PĒROLA DO OESTE	-25,83333333	-53,75	SC	ARAQUARI	ITAPOCU	-26,56166667	-48,71916667
PB	SAO MATEUS DO SUL	SAO MATEUS DO SUL	-25,87583333	-50,38972222	သွ	SAO DOMINGOS	MARATA	-26,58361111	-52,64027778
PR	AMPERE	AMPERE	-25,91666667	-53,48333333	SC	MATOS COSTA	CALMON	-26,59888889	-51,11666667
PB	MANDIRITUBA	RIO DA VARZEA DOS LIMA	-25,9344444	-49,39305556	တ္တ	PASSOS MAIA	SANTO AGOSTINHO	-26,60861111	-51,88166667
PB	MALLET	RIO CLARO DO SUL (EUFROZINA)	-25,95222222	-50,67916667	SC	ROMELANDIA	PONTE DO SARGENTO	-26,68277778	-53,28666667
H H	CORONEL VIVIDA	PORTO PALMEIRINHA - 396	-25,97055556	-51,37166667	သွ	SANTA TEREZINHA	BARRA DO PRATA	-26,69833333	-49,83111111
E 1	CAMPO DO TENENTE	BURITI	-25,98305556	-49,71666667	သ လ	MONTE CASTELO	RESIDENCIA FUCK (LAJEADINHO)	-26,71027778	-50,29083333
H (SAO MATEUS DO SUL	FLUVIOPOLIS	-26,01916667	-50,5925	ပ္သ	DOUTOR PEDRINHO	DOUTOR PEDRINHO	-26,71722222	-49,48305556
SC	GARUVA	GARUVA	-26,03555556	-48,85	SS	LUIZ ALVES	LUIZ ALVES	-26,72416667	-48,93166667
E 1	UNIAO DA VITORIA	SALTO DO VAU	-26,05	-51,2	ပ္သ	POMERODE	POMERODE	-26,73666667	-49,17027778
Ĭ	SANIO ANIONIO DO SUDOESIE	SANIO ANI ONIO	-26,0666666/	-53,/3	သ	HIO DOS CEDROS	AHHOZEIKA	-26, /4083333	-49,2/055556
H I	FRANCISCO BELTRAO	FRANCISCO BELTRAO	-26,08333333	-53,06666667	သွ	BALNEARIO PIÇARRAS	PIÇARRAS	-26,755	-48,69944444
H (SAO MATEUS DO SUL	DIVISA	-26,09138889	-50,33388889	ပ္သ	BANDEIRANTE	BANDEIRANTE	-26,77527778	-53,6675
מ מ	CANOINHAS BIO NEO BO	MARCILIO DIAS (RVPSC)	-26,1	-50,3833333	2 0	MODELO	MODELO OLIII OMETBO 30	-26,77527778	-53,04638889
ב נ		DATO NEGATO	9	-49,6	ې ر	MACIELIA PENEDITO NOVO	GOLLOWEL NO 30	-20,7,083333	-51,2621118
S E	PAIO BRANCO BITUBUNA	PAIO BHANGO USINA BITURUNA	-26,116666667	-52,68333333	၃ တ	BENEDITO NOVO BLUMENAU	BENEDITO NOVO ITOUPAVA CENTRAL	-26,79666667	-49,365
					3				

H)	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	占	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
٥	TIMBÓ	OVON ÇAMIT	00007000 90	NNN NO 1750 ON	٥	Odit a Mod	A DATA CLANA S	27 AE	10.21
9 0	Çawi F		2523/629/22-	49,27194444	ם מ	MAPCELING BAMOS	MABCELINO BAMOS	04,12-	51 00305556
) (C	VARGEM BONITA	CAMPINA DA AI EGBIA	-26,823,2222	-51 79638889	2 0	PONTE ALTA	PONTE ALTA DO SLI	-27,404,6222	-50.385
SS	JOSÉ BOITEUX	BARRAGEM NORTE	-26.895	-49.67222222	S	ANGELINA	GARCIA DE ANGELINA	-27.48583333	-48.98694444
S	LEBON REGIS	LEBON REGIS	-26.90166667	-50.65916667	SS	MIRAGUAI	MIRAGUAI	-27,50083333	-53.6925
SC	PONTE SERRADA	PONTE SERRADA	-26,90555556	-51,97166667	SC	LEOBERTO LEAL	LEOBERTO LEAL	-27,5075	-49,2875
SC	INDAIAL	INDAIAL	-26,91361111	-49,2675	SC	OTACÍLIO COSTA	ENCRUZILHADA II	-27,50777778	-50,11277778
SC	ILHOTA	ILHOTA-JUSANTE	-26,92166667	-48,83916667	SC	ANTÔNIO CARLOS	ANTONIO CARLOS	-27,51694444	-48,7694444
SC	WITMARSUM	WITMARSUM	-26,92611111	-49,8025	SC	SÃO JOSÉ DO CERRITO	PASSO CARU	-27,54166667	-50,85694444
SC	GASPAR	GASPAR (MONTANTE ETA)	-26,92638889	-48,96416667	SC	FLORIANÓPOLIS	FLORIANÓPOLIS (Convencional)	-27,58027778	-48,50611111
SC	SAUDADES	SAUDADES	-26,92833333	-53,0075	RS	GAURAMA	GAURAMA	-27,58722222	-52,0933333
SC	RIO DO CAMPO	RIO DO CAMPO	-26,93722222	-50,14555556	RS	LIBERATO SALZANO	LIBERATO SALZANO	-27,59916667	-53,07138889
SC	INDAIAL	WARNOW	-26,94361111	-49,28944444	RS	ERECHIM	ERECHIM - IPAGRO	-27,6294444	-52,27583333
SC	ITAJAÍ	ITAJAÍ	-26,95027778	-48,76138889	SC	SÃO JOSÉ DO CERRITO	SÃO JOSÉ DO CERRITO	-27,66166667	-50,5783333
SC	IPUMIRIM	BONITO	-26,95083333	-52,18166667	SC	RANCHO QUEIMADO	RANCHO QUEIMADO	-27,67194444	-49,01166667
SC	BLUMENAU	GARCIA	-26,96833333	-49,07416667	SC	SÃO LUDGERO	São Ludgero 2	-27,67416667	-48,82083333
SC	PRESIDENTE GETÚLIO	PRESIDENTE GETÚLIO_Rua Caminho Pinheiro	-27,02388889	-49,635	RS	TUCUNDUVA	TUCUNDUVA	-27,67416667	-54,4625
		Criciúma	-27,03333333	-48,6333333	RS	BARRACÃO	BARRACÃO	-27,67861111	-51,45472222
SC	IBIRAMA	NOVA BREMEN DALBERGIA	-27,03416667	-49,58972222	SC	ANITA GARIBALDI	ANITA GARIBALDI	-27,69222222	-51,12944444
SC	APIÚNA	APIÚNA - REGUA NOVA	-27,0375	-49,39194444	SC	BOCAINA DO SUL	RIO BONITO	-27,70388889	-49,84722222
SC	APIÚNA	APIUNA - RÉGUA NOVA	-27,03805556	-49,395	SC	SANTO AMARO DA IMPERATRIZ	POÇO FUNDO	-27,70472222	-48,80361111
SC	APIÚNA	NEISSE CENTRAL	-27,04027778	-49,38138889	RS	PAIM FILHO	PAIM FILHO	-27,7125	-51,7377778
SC	ARARANGUÁ	TAQUARUÇU	-28,57	-49,36	SC	ALFREDO WAGNER	LOMBA ALTA	-27,73055556	-49,38277778
SC	IRANI	IRANI	-27,05111111	-51,91222222	SC	BOCAINA DO SUL	BOCAINA DO SUL	-27,75361111	-49,96388889
SC	IBIRAMA	IBIRAMA	-27,05388889	-49,51666667	RS	VACARIA	Passo Socorro INPE RS	-27,78916667	-49,24138889
SC	IBIRAMA	IBIRAMA	-27,05388889	-49,51666667	SC	BOCAINA DO SUL	VILA CANOAS	-27,80416667	-49,78
SC	PALMITOS	PALMITOS	-27,06444444	-53,15694444	SC	LAGES	LAGES_Coral	-27,80694444	-50,305
SC	TAIÓ	BARRAGEM OESTE	-27,09722222	-50,03388889	RS	SARANDI	LINHA CESCON	-27,81166667	-53,02777778
SC	BRUSQUE	BRUSQUE (PCD)	-27,10055556	-48,91666667	RS	EREBANGO	EREBANGO	-27,85416667	-52,30472222
SC	TAIO	TAIO	-27,11305556	-49,99444444	RS	PORTO LUCENA	PORTO LUCENA	-27,8544444	-55,02361111
SC	MIRIM DOCE	CABECEIRA RIBEIRÃO CAETANO	-27,14111111	-50,2644444	RS	PALMEIRA DAS MISSOES	PALMEIRA DAS MISSÖES	-27,88333333	-53,43333333
SC	PONTE ALTA DO NORTE	PONTE ALTA DO NORTE	-27,16111111	-50,46888889	SC	SÃO BONIFÁCIO	SAO BONIFACIO	-27,90083333	-48,92777778
SC	JOAÇABA	JOAÇABA		-51,50027778	SC	ANITÁPOLIS	ANITAPOLIS	-27,90972222	-49,12972222
SC	RIO DO SUL	RIO DO SUL - NOVO	-27,20777778	-49,62916667	သွ	PAINEL	PAINEL	-27,9222222	-50,09916667
SC	POUSO REDONDO	POUSO REDONDO	-27,25722222	-49,94083333	တ္တ	PAULO LOPES	PAULO LOPES	-27,96222222	-48,66916667
သွင	NOVA TRENTO	NOVA TRENTO	-27,28638889	-48,93305556	S i	INDEPENDENCIA	ESQUINA ARAUJO	-27,96805556	-54,11638889
သွ	CURITIBANOS	CURILIBANOS	-27,2875	-50,60805556	χ Ω	SANANDUVA	SANANDUVA	-27,9827778	-51,78361111
) (HOMBODO CENTRAL	I ROMBODO CENTRAL	8///2062,72-	-49,76888889	2 6	URUBICI	URUBICI	C288, 12-	49,585
2 2	CONTOCRES DO SUL	ALIO URUGUAI	-27,30194444	-54,13944444	ک د	ANTIAPOLIS	DIVISA DE ANTIAPOLIS	-27,99555556	-49,11555556
ر م	CONCORDIA	CONCORDIA CONTRAINT OF STI CO BANDO	95550515,72-	9888816-	2 6	LAGOA VERMELHA	CLEMEN I E ARGOLO	-28,00583333	-51,4544444
သွင	GOVERNADOR CELSO RAMOS	GOVERNADOR CELSO RAMOS	-27,31944444	-48,56361111	X C	GIRUA	GIRUA	-28,05416667	-54,36138889
ວ ເ	CORILIBANOS	PASSO MAHOMBAS	-27,33388889	-50,75388889	χ Ω	IAPEJAHA	APEJAKA CHABADA	-28,05/5	-51,99611111
9 6	SÃO CBISTOVÃO DO SUI	PONTE DO BIO ANTINHAS	27.34527778	-50 49583333	2 2	ESMEBALDA	ESMEBALDA	-28,03801111	-51 18805556
) (CAMPOS NOVOS		7334176676	51,000,000	2 6	SÃO MADINIO	VAPOEM DO CEDEO	70,03910007	40 01044444
מ מ מ	ITATIBA DO SI II	TATIBA DO SUI	927 3888889	5212,16-) u	CATILIPE	NANGEM DO CEDAO BOA VISTA	-28,10301111	-40,91944444
2 6	JON OF THE PANCE	WIND BAMOS	50000000, 12-	40.0655555	2 6	SANITO ANITÔNIO DA BATRI II HA	Cont. Anthonic	20,111111	40.48930333
ט מ	VIDAL KAMOS MAJOR GEBCINO	VIDAL KAMOS FAZENDA BOA ESPERANCA	57.777788 <i>76-</i>	-49,36555556	χ χ.	SANTO ANTONIO DA PALKULHA GARRICHOS	Santo Antonio GARRICHOS	-28,18333333	-49,48333333
) (AGBOI ÂNDIA	AGBOL BOX ESTERAINOS AGBOL ÂNDIA	-27 41138889	-40,300277.0	2 (GRÃO PARÁ	GRÃO PARA Unidade Sapitária Central	-28,187,77,78	-49.21361111
) (C	MALIOR GEBCINO	AGNOLAINDIA MA:IOB GEBCINO	-27 411583333	-48,65111111	S &	COOLEIBOS DO SLII	COI ÔNIA XADREZ	-28 18916667	-49,21361111
;)))			2	500000000000000000000000000000000000000			111111111111111111111111111111111111111

JU	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	₽.	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
6			00000	- 0000000000000000000000000000000000000	6	,i			
2 0	SANIO ANIONIO DAS MISSOES	PASSO DO SARMENTO	-28,2088888	-55,3233333	2 6	BAGE	Passo do Cação	-29,03888888	-52,51138889
S	GRAO PARA	RIO PEQUENO	-28,20944444	-49,195	S	SOMBRIO	SOMBRIO	-29,04583333	-49,60666667
RS	GUARANI DAS MISSOES	PASSO VIOLA	-28,21111111	-54,60305556	SS	UNISTALDA	UNISTALDA	-29,0475	-55,15111111
RS	CONDOR	CONDOR	-28,22555556	-53,47027778	RS	CAPÃO DO CIPÓ	ESQUINA DOS LIMA (STA. BARBARA)	-29,04805556	-54,57083333
SC	ARMAZÉM	ARMAZEM CAPIVARI	-28,26166667	-49,01222222	RS	BARROS CASSAL	BARROS CASSAL	-29,085	-52,5844444
SC	SÃO JOAQUIM	SÃO JOAQUIM	-28,27527778	-49,93416667	RS	TUPANCIRETÃ	TUPANCIRETĂ	-29,08555556	-53,81916667
SC	IMBITUBA	IMBITUBA	-28,27666667	-48,70027778	RS	SANTO ANTÔNIO DA PATRULHA	Banhado Colégio	-29,11666667	-50,21666667
RS	IJUÍ	PASSO FAXINAL	-28,28944444	-53,7794444	RS	ITAQUI	ITAQUI - IPAGRO	-29,11666667	-56,5333333
RS	CARAZINHO	CARAZINHO	-28,29333333	-52,72416667	RS	MUÇUM	MUÇUM	-29,16638889	-51,86805556
SC	SÃO JOAQUIM	SÃO JOAQUIM	-28,3	-49,9333333		•	B. Duro	-29,18333333	-50,13583333
SC	SÃO LUDGERO	SÃO LUDGERO I	-28,32583333	-49,17916667	RS	SANTIAGO	SANTIAGO	-29,18666667	-54,85583333
RS	SÃO VICENTE DO SUL	Pte. Toropi	-28,3333333	-53,5333333	SC	PRAIA GRANDE	PRAIA GRANDE	-29,19583333	-49,96333333
SC	BOM JARDIM DA SERRA	BOM JARDIM DA SERRA	-28,33972222	-49,62138889	RS	ITAQUI	CACHOEIRA SANTA CECÍLIA	-29,19611111	-55,47527778
SC	ORLEANS	ORLEANS - MONTANTE	-28,35888889	-49,295	RS	ENCANTADO	ENCANTADO	-29,2333333	-51,86666667
RS	SAPIRANGA	Toca	-28,36666667	-51	RS	SANTIAGO	FLORIDA	-29,25166667	-54,59833333
SC	BOM JARDIM DA SERRA	DESPRAIADO	-28,36916667	-49,80777778	RS	LAVRAS DO SUL	Peri Souza	-29,28333333	-53,9666667
RS	ıJUÍ	IJUI - IPAGRO	-28,38805556	-53,91388889	RS	ITAQUI	PASSO MARIANO PINTO	-29,30888889	-56,05527778
RS	SANTA BÁRBARA DO SUL	SANTA BÁRBARA DO SUL	-28,38833333	-53,25861111	RS	CAXIAS DO SUL	NOVA PALMIRA	-29,335	-51,19027778
RS	LAGOA VERMELHA	RIO TURVO	-28,40416667	-51,48972222	RS	QUEVEDOS	QUEVEDOS	-29,35138889	-54,06694444
SC	TUBARÃO	RIO DO POUSO	-28,41972222	-49,10694444	RS	JAGUARI	FURNAS DO SEGREDO	-29,35888889	-54,50194444
RS	BOM JESUS	INVERNADA VELHA	-28,4494444	-50,29638889	RS	SANTIAGO	ERNESTO ALVES	-29,36611111	-54,73555556
RS	NÃO-ME-TOQUE (CAMPO REAL)	NÃO-ME-TOQUE	-28,45527778	-52,81583333	RS	SÃO VENDELINO	SÃO VENDELINO	-29,36638889	-51,37111111
RS	IJÚĺ	CONCEIÇÃO	-28,45611111	-53,97166667	RS	LAJEADO	LAJEADO	-29,46972222	-51,9577778
SC	LAGUNA	LAGUNA	-28,48333333	-48,8	RS	URUGUAIANA	JOÃO ARREGUI	-29,4711111	-56,66777778
RS	SANTO ANTÔNIO DAS MISSÕES	SANTO ANTÔNIO DAS MISSÕES	-28,4925	-55,23083333	RS	JAGUARI	JAGUARI	-29,50694444	-54,6775
SC	URUSSANGA	URUSSANGA	-28,53222222	-49,315	RS	TERRA DE AREIA	TERRA DE AREIA	-29,59111111	-50,03361111
RS	SÃO FRANCISCO DE ASSIS	Pte.do Miracatu	-28,54111111	-54,70972222	RS	MANOEL VIANA	MANOEL VIANA	-29,59388889	-55,48583333
SC	JAGUARUNA	JAGUARUNA	-28,60666667	-49,03305556	RS	SÃO PEDRO DO SUL	SÃO PEDRO	-29,63527778	-54,28388889
RS	CASCA	PASSO MIGLIAVACA	-28,6194444	-51,86666667	RS	ALEGRETE	FAZENDA TRÊS CAPÕES	-29,63583333	-56,09472222
RS	SÃO BORJA	PASSO SÃO BORJA	-28,66638889	-55,97972222	RS	CANDELÁRIA	CANDELÁRIA	-29,66944444	-52,79027778
RS	CRUZ ALTA	ANDERSON CLAYTON	-28,66666667	-53,61472222	RS	ALEGRETE	JACAQUA (estação do tigre)	-29,68694444	-55,19583333
RS	SÃO BORJA	PASSO DO NOVO	-28,67805556	-55,58111111			Barra Ribeiro	-29,7025	-50,68583333
SC	IÇARA	IÇARA	-28,72166667	-49,30333333	RS	CANDELÁRIA	BOTUCARAI	-29,71277778	-52,89
RS	QUINZE DE NOVEMBRO	SANTA CLARA DO INGAI	-28,72888889	-53,18527778	RS	URUGUAIANA	URUGUAIANA	-29,75	-57,08333333
RS	SAO MIGUEL DAS MISSOES	PASSO MAJOR ZEFERINO	-28,73361111	-54,64777778	RS	URUGUAIANA	PASSO DO LEÃO	-29,75638889	-57,09361111
သွင်	FORGUILHINHA	FORGUILHINHA	-28,75055556	-49,47305556	X (URUGUAIANA	PLANO ALTO	-29,76527778	-56,52138889
N C	NOVA PRAIA	PRAIA	-28,/5611111	-51,62833333	2 2	ALEGREIE	ALEGREIE	-29,78333333	7,000000
ה ה	MEI EIBO		0/////0//07-	-34,4323 40 eseeee7	2 6			70 04 66 66 7	-51,30094444 FO 742E
9 0	TIMBÉ DO SIII	TIMBÉ DO SUI	22,222220,02-	49,0000000	2 0	SABICALADORII		70000010,62-	51 1611111
מ מ	LIMBE DO SOL	GIAPOBÉ	-28 8AAAAAA	-43,0377770	2 2	SANTO ANTÔNIO DA PATRILI HA	SALOCAIA DO SOL SANTO ANTÔNIO DA PATRI II HA	-23,62	-50,54861111
2 6	ANITÔNIO DE ADO	ANTÔNIO PRADO	44444440,07-	-31,87,910007	2 6			750,001,000,00	10,7400
מ כי	MEI FIBO	FOZ DO MANIJEL ALVES	-28,85361111	-49 58972222	2 8	GEODIE GACIEDIE	CACEOLII	-29,8833333	-54.8166667
S	SÃO FRANCISCO DE PAULA	PASSO TAINHAS	-28.8675	-50.45611111	SS	BIO PABDO	BIO PARDO	-29.94166667	-52.41694444
ı C	VII A FI OBES	PASSO DO PRATA	-28 8775	-51 44833333	S. C.	SÃO,IFBÔNIMO	SÃO JEBÔNIMO	-29 9533333	-51 72388889
SC	MELEIRO	ABABANGUÁ	-28.88333333	-49.51666667	SE	SANTO ANTÔNIO DA PATRULHA	FAZENDA NOSSA SENHORA CONCEICÃO	-29,96083333	-50.59944444
S	MACAMBABÁ	CUNHA	-28.8975	-56.085	SS	GRAVATAÍ	MOBUNGAVA	-29.9644444	-50 9777778
S S	TUPANCIRETĂ	SÃO BERNARDO	-28.90527778	-54.065	82 S2	CHARQUEADAS	CHARQUEADAS	-29,97583333	-51.61194444
SC	TURVO	TURVO	-28,94194444	-49,70194444	!		Colônia Pavão	-30	-52,06666667
RS	SÃO BORJA	FAZENDA SANTA CECÍLIA DO BUTUI	-28,98972222	-55,67416667	RS	CACHOEIRA DO SUL	PASSO SÃO LOURENÇO	-30,00888889	-53,015

H H	Município	Estação	LATITUDE SUL	LONGITUDE OESTE	H.	Município	Estação	LATITUDE SUL	LONGITUDE OESTE
RS	URUGUAIANA	FAZENDA JUNCO	-30,01888889	-56,82138889	SS	PIRATINI	FERRARIA	-31,7375	-53,05388889
RS	CACEQUI	SAICA	-30,02944444	-55,09361111	RS	PELOTAS	PELOTAS	-31,75	-52,35
RS	VIAMÃO	LOMBAS	-30,04666667	-50,70194444	RS	PELOTAS	PELOTAS_Fragata	-31,75222222	-52,3777778
RS	URUGUAIANA	HARMONIA	-30,06861111	-56,17027778	RS	PELOTAS	GRANJA DONA CECÍLIA	-31,7725	-52,22527778
RS	GUAÍBA	GUAÍBA COUNTRY CLUB	-30,10666667	-51,64888889	SS	PEDRO OSÓRIO	PEDRO OSÓRIO	-31,86333333	-52,81611111
RS	CACHOEIRA DO SUL	BARRO VERMELHO	-30,14055556	-53,15888889	RS	HERVAL	CERRO CHATO	-31,86555556	-53,2744444
RS	BUTIÁ	BUTIA	-30,15888889	-51,93111111	RS	PEDRO OSÓRIO	PEDRO OSÓRIO	-31,87972222	-52,81027778
RS	SÃO SEPÉ	SÃO SEPÉ MONTANTE	-30,19361111	-53,5644444			Barra Rio Grande	-31,96666667	-51,9
RS	SÃO SEPÉ	SÃO SEPÉ - MONTANTE	-30,19416667	-53,5633333	RS	ARROIO GRANDE	GRANJA CORONEL PEDRO OSÓRIO	-32,00611111	-52,65277778
RS	PANTANO GRANDE	PANTANO GRANDE	-30,19833333	-52,3725	RS	RIO GRANDE	RIO GRANDE/REGATAS	-32,03	-52,07916667
RS	ROSÁRIO DO SUL	SÃO CARLOS	-30,20416667	-55,49194444	RS	RIO GRANDE	LAGOA DOS PATOS (Rio Grande)	-32,0333333	-52,2
BS	ROSÁBIO DO SUL	ROSÁRIO DO SUL	-30,24694444	-54.9175	BS	ARROIO GRANDE	ARBOIO GRANDE (Arroio Grande)	-32,33055556	-52.925
SS	PALMARES DO SUL	PALMARES DO SUL	-30.25138889	-50.50583333	SS	RIO GRANDE	GRANJA CERRITO	-32,35055556	-52.54
BS	BARRA DO QUARAÍ	PASSO DA CRUZ	-30,25416667	-57,31638889	SE	RIO GRANDE	GRANJA SANTA MARIA	-32,53805556	-52.53861111
. C	SÃO GABBIEI	SÃO GABBIEL - IPAGBO	-30.34083333	-54 31694444	S C	SANTA VITÓBIA DO PAI MAB	GBAN.IA OSÓBIO	-32 95388889	-53 11888889
2 2	Oliver	Oliabaí	-30 3844444	-56 4655556	2 ≥		l a Estanzuela (Hruguai)	-33 66027778	-57 43
2 2	OLIABAÍ	Oliabaí	-30 3844444	-56 4655556	5		בת בסומוז במסומ (כן מפונים)	0,000	5
. C	SÃO JEBÔNIMO	CUITEBIA	-30 4188889	-52 07361111					
SS	SÃO SEPÉ	PASSO DOS FREIBES	-30,43527778	-53.7125					
BS	CACHOEIRA DO SUL	IRAPUAZINHO	-30,48722222	-53.11833333					
RS	SANTANA DO LIVRAMENTO	SANTA RITA	-30,51638889	-55,12666667					
RS	SANTANA DO LIVRAMENTO	CATY	-30,52555556	-56,17222222					
RS	CERRO GRANDE DO SUL	CERRO GRANDE	-30,59388889	-51,75666667					
RS	ENCRUZILHADA DO SUL	SERRA DOS PEDROSAS	-30,62527778	-52,84					
RS	MOSTARDAS	SOLIDÃO	-30,66833333	-50,54083333					
RS	SANTANA DO LIVRAMENTO	FAZENDA ENCERRA	-30,69555556	-55,9744444					
RS	SÃO JOSÉ DO NORTE	Tavares	-31,17	-51,05					
RS	SANTANA DO LIVRAMENTO	ALTO QUARAÍ	-30,75027778	-55,95138889					
RS	CAMAQUÃ	FAZENDA DA BOA VISTA	-30,77194444	-51,66027778					
RS	CAMAQUÃ	CAMAQUÃ	-30,86583333	-51,79583333					
RS	CAÇAPAVA DO SUL	CAÇAPAVA DO SUL	-30,96416667	-53,41722222					
RS	DOM PEDRITO	DOM PEDRITO	-30,97805556	-54,67583333					
RS	CRISTAL	PASSO DO MENDONÇA	-31,00055556	-52,04916667					
RS	DOM PEDRITO	TORQUATO SEVERO	-31,02833333	-54,17888889					
S S	CAMAQUA	PACHECA	-31,13027778	-51,78861111					
S C	PIKAIINI	PASSO DA CAPELA	-31,13416667	-53,05388889					
Σ i	DOM PEDRIIO	I RES VENDAS	-31,2/52/1/8	-55,037,22222					
X C	SAO LOURENÇO DO SUL	BOQUEIRAO	-31,28388889	-52,08305556					
2 0	PINHEIRO MACHADO	IORKINHAS	-31,3141666/	-53,4994444					
S C	SAO LOURENÇO DO SUL	SAO LOURENÇO DO SUL	-31,37722222	-51,96583333					
2 =	SAITO	Salto I krigijav	-31 43889	-57.98102					
5 a	BIO GRANDE	Jaim Taim	-31 5166667	-51.41666667					
S &	PINHEIRO MACHADO	PINHEIRO MACHADO	-31,5775	-53.37694444					
BS	PIRATINI	Pte. do Império	-31.43	-52.54					
RS	CERRITO	VILA FREIRE	-31,66944444	-52,77277778					
RS	PELOTAS	GRANJA SÃO PEDRO	-31,67277778	-52,17777778					
H	URUGUAI	Tacuarembó	-31,70585	-55,99149					
RS	PIRATINI	RIO PIRATINI (Piratini)	-31,71666667	-52,9					
2	PEDRAS ALIAS	PEDRAS ALIAS	-31,/3333333	955088055-					