
UNIVERSIDADE FEDERAL DO PAMPA

Guilherme Legramante Martins

Towards a Performance Testing Body of
Knowledge (PTBOK)

Alegrete
2021

Guilherme Legramante Martins

Towards a Performance Testing Body of Knowledge
(PTBOK)

Master Thesis presented as partial require-
ment for obtaining the degree of Masters of
Software Engineering at Federal University
of Pampa.

Supervisor: Prof. PhD. Maicon Bernardino
da Silveira

Co-supervisor: Prof. PhD. Elder de Macedo
Rodrigues

Alegrete
2021

GUILHERME LEGRAMANTE MARTINS

TOWARDS A PERFORMANCE TESTING BODY OF KNOWLEDGE (PTBOK)

Dissertação apresentada ao
Programa de Pós-Graduação em
Engenharia de So ware da
Universidade Federal do Pampa,
como requisito parcial para
obtenção do Título de Mestre em
Engenharia de Software.

Dissertação defendida e aprovada em: 28 de julho de 2021.

Banca examinadora:

__

Prof. Dr. Maicon Bernardino da Silveira

Orientador

Unipampa

__

Prof. Dr. Elder de Macedo Rodrigues

Coorientador

Unipampa

Prof. Dr. Avelino Francisco Zorzo

 PUCRS

Prof. Dr. Fábio Paulo Basso

Unipampa

Assinado eletronicamente por MAICON BERNARDINO DA SILVEIRA, PROFESSOR DO MAGISTERIO
SUPERIOR, em 28/07/2021, às 16:18, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

Assinado eletronicamente por FABIO PAULO BASSO, PROFESSOR DO MAGISTERIO SUPERIOR, em
28/07/2021, às 17:21, conforme horário oficial de Brasília, de acordo com as normativas legais
aplicáveis.

Assinado eletronicamente por Avelino Francisco Zorzo, Usuário Externo, em 28/07/2021, às
18:34, conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

Assinado eletronicamente por ELDER DE MACEDO RODRIGUES, PROFESSOR DO MAGISTERIO
SUPERIOR, em 04/08/2021, às 20:15, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site
https://sei.unipampa.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
0579530 e o código CRC 78D8E3A3.

ABSTRACT

Due to the growing market demand, web applications need to quickly respond to users’
requests, since their engagement may be inclined to fluidity and agility in interactions.
For this reason, through performance testing, we may map out the scalability of the
application and identify bottlenecks that may affect its performance. There are some
studies in academia and industry that provide information for conducting this type of
test. However, there is no standardization of procedures, and the information is not
organized in a way that facilitates the performance test execution in its complete cycle,
from its conception to the generation of the reports. Hence, our research seeks to identify
the main inputs, outputs, and processing involved in the performance testing, so that
we developed the Performance Testing Body of Knowledge (PTBOK). This body of
knowledge aims to assist the preparation and conduction of the performance test. Then,
we did a Systematic Literature Review (SLR) that, mapped out the performance testing
throughout its life cycle. We found and detailed thirty seven (37) papers, elaborating a
feature model from them. We also carried out another empirical study: a survey, which
sought to identify (as well as the SLR) data related to the performance testing process
from the software industry. After conducting these two studies, we filtered and merged the
results, we started the PTBOK creation. For the modeling of the process, we chose the
Software & Systems Process Engineering Metamodel (SPEM), as we understand that it is
a viable and adequate alternative since it is specifically for modeling software processes.
PTBOK is already available and we evaluated it through a survey of performance testing
experts.
Key-words: Performance Testing. Software Testing. Software Process.

RESUMO

Devido à crescente demanda do mercado, as aplicações Web precisam responder rapi-
damente às requisições dos usuários, uma vez que, o engajamento destes usuários pode
estar condicionado a uma fluidez e agilidade nas interações. Com base nisso, podemos
aplicar um teste de desempenho para mapear a escalabilidade da aplicação e também
identificar gargalos que podem afetar o seu desempenho. Há diversos trabalhos no meio
acadêmico e também na indústria que fornecem informações para a condução deste tipo
de teste. Porém, não há uma padronização de procedimentos e as informações não es-
tão organizadas de forma que facilitem a aplicação de um teste de desempenho em seu
ciclo completo, incluindo desde sua concepção até a geração de relatórios. A partir desta
demanda, nossa pesquisa busca identificar as principais entradas, saídas e processamento
envolvidos no teste de desempenho para que possamos instanciar um processo genérico, o
qual denominamos Performance Testing Body of Knowledge (PTBOK), o qual é um corpo
de conhecimento em teste de desempenho que visa auxiliar na elaboração e condução do
processo de teste de desempenho. Para isso, realizamos uma Revisão Sistemática da
Literatura (RSL) que mapeou o teste de desempenho em todo seu ciclo de vida. Encon-
tramos e detalhamos 37 trabalhos e a partir deles criamos um modelo de características.
Também realizamos outro estudo empírico, um Survey, o qual buscou identificar assim
como a RSL, dados relacionados ao processo de teste de desempenho. Após a condução
destes dois estudos, filtramos e unimos os resultados dos mesmos e com esse embasa-
mento tanto do meio acadêmico como da indústria, começamos a criação do PTBOK.
Para a modelagem do processo escolhemos o meta-modelo SPEM, por entendermos ser
uma alternativa viável e adequada, por ser específico para modelagem de processos de
software. Avaliamos o PTBOK por meio de um survey com especialistas na área de Teste
de Desempenho.

Palavras-chave: Teste de Desempenho. Teste de Software. Processo de Software.

LIST OF FIGURES
Figure 1 – COSMOS architecture. 19
Figure 2 – Research Classification . 21
Figure 3 – Research Design . 22
Figure 4 – System architecture (KIM; KIM; CHUNG, 2015). 24
Figure 5 – SPEM structure (ELVESAETER; BENGURIA; ILIEVA, 2013) 26
Figure 6 – GQM Structure . 31
Figure 7 – Onion diagram showing the number of papers after each step of the

SLR process. 32
Figure 8 – Taxonomy of performance testing tools represented by feature model. . 34
Figure 9 – Relation Activities/Steps/Tasks Quantitative vs Phases. 41
Figure 10 – Performance Testing Activities/Tasks Flow 41
Figure 11 – Survey flow by Kasunic (KASUNIC, 2005) 43
Figure 12 – Job position. 49
Figure 13 – Subjects experience. 49
Figure 14 – Maturity level. 51
Figure 15 – PTBOK framework overview . 54
Figure 16 – PTBOK estimated effort: Performance Domains vs Phases vs Stages . 55
Figure 17 – Performance Analyst Activities . 57
Figure 18 – Performance Architect Activities . 57
Figure 19 – Performance Tester Activities . 58
Figure 20 – Planning Activities . 59
Figure 21 – Design Activities . 60
Figure 22 – Configuration Activities . 60
Figure 23 – Execution Activities . 61
Figure 24 – Monitoring Activities . 61
Figure 25 – Analysis Activities . 62
Figure 26 – Reporting Activities . 62
Figure 27 – Requirements Activities . 63
Figure 28 – Scripts and Scenarios Activities . 65
Figure 29 – Workload Activities . 67
Figure 30 – Environment Activities . 68
Figure 31 – Acceptance Criteria Activities . 70
Figure 32 – Tools and Methods Activities . 71
Figure 33 – Reports Activities . 72
Figure 34 – PTBOK Process Modeling . 75
Figure 35 – Subjects experience. 79
Figure 36 – Technical Questionnaire . 80
Figure 37 – Ease of Use . 81

Figure 38 – Perceived Usefulness . 81

LIST OF TABLES
Table 1 – Objective according to the GQM paradigm (KOZIOLEK, 2008). 27
Table 2 – Generic Search String. 28
Table 3 – Quality Assessment Results . 33
Table 4 – Performance Testing Stages/Phases and Evaluation type. 39
Table 5 – Mapping from the PTBOK to SPEM 76

TABLE OF CONTENTS

1 INTRODUCTION . 17
1.1 Motivation . 17
1.2 Objectives . 19
1.3 Main Contributions . 19
1.4 Organization . 20

2 METHODOLOGY . 21
2.1 Introduction . 21
2.2 Research Classification . 21
2.3 Research Design . 22
2.4 Chapter Summary . 22

3 BACKGROUND . 23
3.1 Performance Testing . 23
3.1.1 System Architecture for Performance Testing 24
3.2 Body of Knowledge . 24
3.3 Software & Systems Process Engineering Metamodel (SPEM) 25
3.4 Chapter Summary . 26

4 SYSTEMATIC LITERATURE REVIEW 27
4.1 Protocol . 27
4.1.1 Research Questions . 27
4.1.2 Question Structure . 27
4.1.3 Search Strategy . 28
4.1.4 Selection Criteria . 28
4.1.5 Quality Assessment Criteria . 29
4.1.6 Data Extraction Strategy . 30
4.1.7 Selection Process . 31
4.2 Results and Discussion . 32
4.2.1 RQ1. What are the performance testing profiles/roles, arti-

facts, methods or approaches? . 35
4.2.2 RQ2. What are the performance testing stages and phases? . 37
4.2.3 RQ3. What are the performance testing activities, steps, or

tasks? . 40
4.2.4 RQ4. What are the activities/tasks flow performed in perfor-

mance testing? . 40
4.3 Chapter Summary . 42

5 SURVEY . 43

5.1 Survey Protocol . 43
5.1.1 Identify the research objectives 43
5.1.2 Identify and characterize the target audience 43
5.1.3 Design the sampling plan . 44
5.1.4 Design and write the questionnaire 44
5.1.5 Pilot Questionnaire . 47
5.1.6 Distribute the Questionnaire . 47
5.1.7 Analyze the Results and Write a Report 47
5.2 Threats to Validity . 47
5.3 Results . 48
5.3.1 Job Position . 48
5.3.2 Subjects Experience . 48
5.3.3 Maturity Level . 49
5.4 Chapter Summary . 51

6 PTBOK . 53
6.1 Framework . 53
6.1.1 Effort Analysis . 55
6.2 Role Set . 56
6.3 Roles . 56
6.3.1 Performance Analyst . 57
6.3.2 Performance Architect . 57
6.3.3 Performance Tester . 57
6.4 Stages . 57
6.4.1 Pre-Test . 58
6.4.2 Test . 58
6.4.3 Post-Test . 58
6.5 Phases . 59
6.5.1 Planning . 59
6.5.2 Design . 59
6.5.3 Configuration . 60
6.5.4 Execution . 60
6.5.5 Monitoring . 61
6.5.6 Analysis . 61
6.5.7 Reporting . 62
6.6 Performance Domains . 62
6.6.1 Requirements . 62
6.6.2 Scripts and Scenarios . 64
6.6.3 Workload . 66
6.6.4 Environment . 68

6.6.5 Acceptance Criteria . 69
6.6.6 Tools and Methods . 70
6.6.7 Reports . 72
6.7 Artifacts . 73
6.7.1 Performance Testing Requirements Specification 73
6.7.2 Performance Testing Plan . 73
6.7.3 Model . 74
6.7.4 Performance Script . 74
6.7.5 Workload . 74
6.7.6 Performance Scenario . 74
6.7.7 Test Data . 74
6.7.8 Performance Testing Report . 74
6.8 Guidelines . 75
6.9 Process Modeling . 75
6.9.1 SPEM x PTBOK Mapping . 76
6.10 Chapter Summary . 76

7 EVALUATION . 77
7.1 Survey Protocol . 77
7.2 Results . 78
7.3 Threats to Validity . 83
7.4 Chapter Summary . 83

8 CONCLUSION . 85

REFERENCES . 87

Index . 93

17

1 INTRODUCTION
Web applications need to quickly respond to users’ actions, since the user’s en-

gagement is conditioned by the speed at which the application responds to their actions.
For instance, a few seconds of waiting in a task may impede a purchase in a virtual
store, since this delay might make the client change his mind. Therefore, knowing the
application breaking point may ensure proper functioning, which allows designing safety
mechanisms to the expected load. Considering the crescent number of Web applications
with a large demand for infrastructure and scalability, we consider that it is necessary to
develop research that foresees activities related to this demand.

It is a matter of huge importance to access the mechanisms for a software per-
formance evaluation. So that, by employing Performance Testing, it is possible to plan,
execute, monitor, and analyze the results of a system under certain conditions, thereby
obtaining the possible expected behaviors of a given software when submitted to those
conditions (BERNARDINO; ZORZO; RODRIGUES, 2016).

In this context, Software Performance Engineering (SPE) (WOODSIDE; FRANKS;
PETRIU, 2007) can be divided into two general approaches. The former focuses on the
early cycle by a predictive model-based, i.e., performance evaluation and modeling. The
latter adopts a measurement-based approach that involves its late cycle, i.e., performance
testing. Considering these assumptions, this research addresses the latter approach, since
it enables us to investigate all phases, stages, and activities of the performance testing.

Performance testing may be performed in several ways, and it has some specific
approaches to certain situations such as Load, Endurance, Spike, and Volume Testing.
Moreover, some techniques have been developed for the sake of automating some perfor-
mance testing tasks. The Capture and Replay (CR) (MEMON; SOFFA, 2003) is one of
the most used and widespread techniques in performance testing automation tools. This
technique consists of writing scripts automatically through some application execution
functionality. Then, the generated script is executed, and the test is performed. Another
technique broadly utilized is the Model-Based Testing (MBT) (DALAL et al., 1999), in
which a model is created using a specific notation, generating test artifacts as planned in
the model.

1.1 Motivation

As we mentioned earlier, a performance test may bring numerous benefits for
organizations that apply this type of test, since they can predict the scalability of their
applications. It provides better control of the application, also avoiding financial losses
because of possible application unavailability due to excessive requests (SUBRAYA, 2006).

Meier et al. (MEIER et al., 2007) list some of the main reasons for conducting
performance testing, for example: assessing release readiness, assessing infrastructure
adequacy, assessing the adequacy of developed software performance, and improving the

18 Chapter 1. Introduction

efficiency of performance tuning.
Some papers offer a basis for those who are interested in performance testing to

guide themselves during its application, such as the works of Subraya (SUBRAYA, 2006)
and the certification material offered by the International Software Testing Qualifications
Board (ISTQB) (BLACK; ROMMENS; AALST, 2017). In addition, there are several
materials available on different websites and blogs spread around the Internet, due to the
constant demand for information related to performance testing. Thus, we believe that
a repository that gathers this information may facilitate applying performance testing in
different organizations’ particularities and workflows. Therefore, an information reposi-
tory as a framework or even a knowledgeable guide, similar to those found in other areas
such as Project Management Body of Knowledge (PMBOK) and Software Engineering
Body of Knowledge (SWEBOK), may bring numerous benefits to those who are interested
in performance testing, whether they are from academia or the software industry.

The Performance Testing Body of Knowledge (PTBOK) comes from one of the
research lines of the research group of the Laboratory of Empirical Studies in Software
Engineering (LESSE)1 being part of a solution called COSMOS. With COSMOS, we seek
to develop a performance testing solution that supports modeling activities, generating
synthetic workloads, monitoring, and analyzing results, to support the performance test-
ing process in Web applications. The PTBOK has the role of providing performance
testing guidelines to COSMOS tools.

Figure 1 shows COSMOS composition details, through a representation of its
architecture. Each node represents specific solutions that contribute to the general COS-
MOS solution. Canopus is an input approach, a domain-specific language for performance
testing. PTBOK provides a process to guide the conduct of the test. The other nodes
present tools for analysis (EarthAnalysis), monitoring (PerfMoon), workload generation
(LoadSun), and a solution for the integration of the process with the tools (PluTool).
PTBOK is directly related to the solutions for Analysis, Monitor, and Workload Gen-
erator, since the concepts mapped in the process provide the basis for these projects.
In addition, there is also a direct relationship with Plug Tool, which will be responsi-
ble for orchestrating and integrating the process with the tools that are under develop-
ment/evolution.

There are some solutions adopted for modeling software processes. Business Pro-
cess Model and Notation (BPMN) (OMG; PARIDA; MAHAPATRA, 2011), Software &
Systems Process Engineering Metamodel (SPEM) (OMG, 2006), and Essence (SUBMIT-
TERS, 2012) are some of the best known and most adopted solutions for this type of
modeling. To model PTBOK, we chose SPEM because it provides a suitable metamodel
for modeling software processes and has tooling support that allows the publication of
the modeled process on a web page, keeping the artifacts and components of the process

1 <www.lesse.com.br>

www.lesse.com.br

1.2. Objectives 19

Figure 1 – COSMOS architecture.

COSMOS: a
Toolchain for
Performance

Testing
Input

Approach

Canopus

Workload
Generator

LoadSun

Monitor

PerfMoon

Analysis

Earthnalysis

Process

PTBOK

PluTool

Source – Author.

organized in a repository as a knowledge management system.
After PTBOK modeling, we evaluated it with performance testing experts, from

an industry perspective. Then, we conducted a survey that allowed us to understand
the positive points, applicability, and improvements to PTBOK. In addition, we initially
conceived a tool that will support the PTBOK activities from a scientific initiation project.

1.2 Objectives

Our main goal is to design the PTBOK. For this reason, we divided the main goal
into the following specific goals:

1) to promote performance testing state of the art and state of practice;

2) to characterize the domain of performance testing;

3) to point out a fundamental knowledge for establishing disciplines of undergraduate
and graduate curricula;

4) to provide core knowledge for certification professional providers.

1.3 Main Contributions

The main contributions of our research are as follows.

20 Chapter 1. Introduction

1) An SLR collecting, analyzing, and discussing thirty seven (37) different works on
performance testing area;

2) A Feature Model with the main concepts related to performance testing;

3) A Survey with relevant information to the performance testing process from an
industry perspective;

4) Modeling of PTBOK in a concise metamodel.

1.4 Organization

We organized this document as follows.

• Chapter 2 details our research design and the schedule;

• Chapter 3 describes the theoretical grounds of our work, addressing the main con-
cepts related to performance testing, body of knowledge, and process modeling;

• Chapter 4 presents an SLR performed for collecting performance testing data from
the literature, which we used for PTBOK definition;

• Chapter 5 presents a Survey that we performed for collecting performance testing
data from the industry, which we used for PTBOK definition;

• Chapter 6 explains and details the PTBOK;

• Chapter 7 discusses PTBOK assessment that we conducted through a survey;

• Chapter 8 presents the conclusion and also our future perspectives regarding this
study.

21

2 METHODOLOGY
In this chapter, we describe the methodology used to support our work. Section 2.1

introduces what it is and why it is important. In Section 2.2 the research is classified
according to Prodanov e Freitas (2013), and the research design is shown in Section 2.3.

2.1 Introduction

Research is the basic activity of Science in its inquiry and construction of reality
(LAUDAN, 1981). Through research, we may acquire knowledge about the reality of the
world and contribute theoretically, promoting thought and action. Moreover, by research
we seek to clarify issues through the scientific method, starting from a problem that does
not yet have satisfactory knowledge.

The application of the scientific method must have an emphasis on the applied
methodology and not only on the obtained results. The factors that influence the classifi-
cation criteria are the approach, objectives, situations, fields, and objects of the provided
study.

2.2 Research Classification

We classify our search according to Prodanov e Freitas (2013) classification scheme.
Figure 2 shows the classification according to its nature, objectives, and procedures, the
highlighted terms classify this research and are described in this section.

Figure 2 – Research Classification

Source – Adapted from Prodanov e Freitas (2013)

From the nature point of view, this is Applied Research, which aims to generate
knowledge for practical application directed to the solution of specific problems.

This research is classified as Exploratory Research since we seek to acquire
information that allows us to better understand a certain subject for a possible transfer
of knowledge. Concerning procedures, our research is classified as Bibliographic and
Experimental Research, because of the SLR and Survey that we carried out.

22 Chapter 2. Methodology

2.3 Research Design

In Figure 3, we show the research design that we followed. We divided this design
into three (3) main phases. In the first phase, conception, we mapped through two
empirical studies the foundation for PTBOK. Then, in the evaluation phase, we intend
to evaluate the modeled process. Thus, we carried out a survey. Finally, phase 3 presents
ways that we intend to act to carry out knowledge transfer, employing paper’s publication,
this master’s thesis, and an artifact repository, where we will make our work outputs
available.

Figure 3 – Research Design

Source – Author.

2.4 Chapter Summary

In this chapter, we presented our research methodology. Through this, it is possible
to have a high-level view of all of our research, since it contemplates the main stages
planned for carrying out the work.

23

3 BACKGROUND
In this chapter, we present the background of our research, which enables some

understanding of the main concepts related to our work. In Section 3.1, we show an
overview of performance testing, followed by an architectural example of this testing
type. In Section 3.2, we introduce a brief explanation of a body of knowledge, as we seek
to instantiate a body of knowledge for an area. Then, Section 3.3 offers process modeling
definition, more specifically about Software & Systems Process Engineering Metamodel
(SPEM), which we use for modeling PTBOK. Finally, we show the lessons from this
chapter in Section 3.4.

3.1 Performance Testing

Performance testing brings the possibility to plan, execute, monitor, and ana-
lyze the results of a system under certain conditions, thereby obtaining the possible ex-
pected behavior of a given software, when subjected to these conditions (BERNARDINO;
ZORZO; RODRIGUES, 2016). According to Freitas e Vieira (2014), performance testing
is a test that aims to evaluate the performance of the system at a given load scenario.
In summary, performance testing provides a load simulation and measurement to detect
bottlenecks and the breaking point in which a system crashes under a certain workload.

Woodside, Franks e Petriu (2007) define Software Performance Engineering (SPE)
as representing the entire collection of software engineering activities and also related
analyses throughout the software development cycle, which are set to meet performance
requirements. Revealing bottlenecks and achieving improvements in scalability and soft-
ware performance are some of the main objectives of SPE. In that sense, SPE is classified
into two general approaches: predictive model-based and measurement-based. The former
focuses on the early cycle and the latter one in the late cycle of the software development
process. Hence, this performance testing is associated with a measurement-based ap-
proach.

According to Meier et al. (2007), performance testing may be divided into two
categories, Load Testing, and Stress Testing. A load testing aims to determine a
System Under Test (SUT) behavior, which in turn, submit an application to a workload.
It should be noticed that the load test is conducted to assess if the given system meets
specified non-functional requirements. A stress testing, on the other hand, checks a system
under normal conditions operation, as well as under normal workload. Through stress
testing, it is also possible to know the behavior of the SUT when submitted to heavy
workloads. Moreover, Molyneaux (2009) includes soak, or scalability, testing, in a way
that soak testing may subject the SUT to a load for a long period, in which some problems
dismissed in other categories may become noticeable.

Workload generation is critical to the performance testing process. It is not pos-
sible to test the system without some load type, whether simulated or not, being applied

24 Chapter 3. Background

to the system. Then, we address that the performance metrics are critically dependent
on the workloads processed by the system under test (FERRARI, 1984).

3.1.1 System Architecture for Performance Testing

Kim, Kim e Chung (2015) propose a system architecture for performance testing
based on virtualization. In Figure 4 the performance testing target is represented for
PTTS (Performance Test Target Server), which will perform the necessary interactions
with the Virtual Users (VU) generated by the Virtual Machines (VM). It has a server
application and responses to the request of a client application. VM generates a load on
PTTS, so it installs the client application and executes the appropriate load for each test
scenario.

This architecture model may reduce computer resource consumption for perfor-
mance testing. Since virtualization may help to reduce the number of physical computers
for performance testing, it can also generate several VMs on physical computers (KIM;
KIM; CHUNG, 2015).

Figure 4 – System architecture (KIM; KIM; CHUNG, 2015).

Source – (KIM; KIM; CHUNG, 2015).

3.2 Body of Knowledge

A Body Of Knowledge (BOK) is defined by a set of teaching, skills, and abilities
necessary to carry out activities in a field. In addition, a BOK must bring together not
only desirable items or characteristics for the execution of the tasks, but also gather in
a self-contained manner what is necessary so that the specified domain is understood by
all interested parties (BOURQUE et al., 1999).

3.3. Software & Systems Process Engineering Metamodel (SPEM) 25

Another characteristic of a BOK is the constant evolution and updating since the
mapped knowledge must come from both the state-of-the-art and the state-of-practice,
that is, as well as techniques, methods, and concepts, tools of the field evolved, this
evolution must be present in the BOK content (ABRAN et al., 2004).

Some well-known BOKs served as a basis for understanding the structure and or-
ganization that we could use to create PTBOK. Among these, we highlight the Software
Engineering Body of Knowledge (SWEBOK) (BOURQUE et al., 1999), which brings to-
gether the main concepts of the software engineering area and also Project Management
Body of Knowledge (PMBOK) (PMI, 2000), this one with a focus on project manage-
ment. There is also the Business Analysis Body of Knowledge (BABOK)(A. . . ,) that
encompasses the concepts in the area of business analysis.

3.3 Software & Systems Process Engineering Metamodel (SPEM)

Software and Systems Process Engineering Metamodel (SPEM) is a process engi-
neering metamodel and a conceptual framework that enables provide the concepts needed
to model, document, present, manage, exchange, and perform development methods and
processes. The implementation of this metamodel is directed to process engineers, project
leaders, project managers, and developers who are responsible for maintaining and imple-
menting individual processes or for their organizations (OMG, 2006).

SPEM 2.0 is used to define software development processes and systems as well as
their components. Its main aim is to support a wide range of development methods and
processes of different styles, cultural backgrounds, levels of formalism, life cycle models,
and communities. This metamodel enables the developer to choose the generic approach
to behavioral modeling that best meets his needs. It even provides a specific framework
for enhancing these generic behavioral models, which are characteristic for describing
different processes, focusing on providing the additional information structures processes
modeled with Unified Modeling Language (UML) 2.0 or Business Process Model and
Notation (BPMN)/ Business Process Definition Metamodel (BPDM) activities, with the
purpose to describe a real process.

One of the main features of the SPEM is the possibility of the specification of
different processes from a common knowledge base regardless of the specific process. A
clear separation is defined between method content and process content, the content
represents a knowledge base while the process represents a process is specified. That is
the knowledge base that stores all the information required to process the life cycle.

Figure 5 shows the SPEM structure, which consists of two main parts, Method
Content, and Process. The first one is composed of Work Product Definition, Role Defi-
nition, Task Definition, and Category. Method Content provides the concepts for SPEM
2.0 users and organizations to build up a development knowledge base that is indepen-
dent of any specific processes and development projects. The process is composed of Task

26 Chapter 3. Background

Use, Role Use, Work Product Use, Activity, and Process and follows method content
specification to instantiate a process.

Figure 5 – SPEM structure (ELVESAETER; BENGURIA; ILIEVA, 2013)

Source – (OMG, 2006)

3.4 Chapter Summary

In this chapter, we presented our theoretical foundation. We detailed the main
concepts of Performance Testing. Also, we have included some definitions about Body of
Knowledge and also about the SPEM metamodel, which we use for modeling PTBOK.

27

4 SYSTEMATIC LITERATURE REVIEW
In this chapter, we present the SLR that we carried out. Section 4.1 details the

protocol we followed for conducting the study. In Section 4.2, we discuss the results
that we obtained, which explores the selected works so that we may answer our research
questions.

4.1 Protocol

SLR scope is Performance Testing study area, seeking out guidelines, taxonomy,
process, or frameworks that support activities related to planning, execution, monitoring,
and reporting of test results. In this research, we endorsed the protocol proposed by
Kitchenham (2007) in SLR. Also, we used the Thoth tool to support the conduct of the
study (MARCHEZAN et al., 2019). The GQM (Goal, Question, Metric) paradigm (KOZI-
OLEK, 2008) usage means to resume the review scope, which may be observed in Table 1.

Table 1 – Objective according to the GQM paradigm (KOZIOLEK, 2008).

For the purpose of: identify / characterize
With respect to: performance testing processes
From the viewpoint of: performance test engineers and researchers
In the context of: software engineering environment

Source – Author.

4.1.1 Research Questions

We assigned the following Research Questions (RQ):

• RQ1. What are the performance testing profiles/roles, artifacts, methods, or ap-
proaches?

• RQ2. What are the performance testing stages and phases?

• RQ3. What are the performance testing activities, steps, or tasks?

• RQ4. What are activities or task flows performed in performance testing?

4.1.2 Question Structure

Research Questions (RQs) are designed using (PICOC) (WOHLIN et al., 2012)
criteria, that take into consideration the Population, Intervention, Comparison, Outcome,
and Context.

Population: published research on software;

28 Chapter 4. Systematic Literature Review

Intervention: performance testing;

Comparison: general comparison of the retrieved processes;

Outcome: published papers on Performance Testing;

Context: software testing practice and research.

4.1.3 Search Strategy

To perform the proposed search, we selected the following databases:

• Scopus1

• IEEE Xplore Digital Library2

• ScienceDirect3

• Engineering Village4

• ACM Digital Library5

These databases were chosen because they store the main publications in the
computer science field and they also offer a web-based search engine. Hence, we elaborated
search strings according to each database particularity. The generic string that was used
to derive the other strings is shown in Table 2.

Selected Databases: Scopus, IEEE, Science Direct, Engineering Village, ACM.

Table 2 – Generic Search String.

(process OR framework OR method OR approach OR guideline OR taxonomy
OR ontology) AND (web) AND ((performance OR load OR stress OR

workload) AND (test OR testing)) AND (stage OR phase OR activity)
Source – Author.

4.1.4 Selection Criteria

Inclusion Criteria (IC) and Exclusion Criteria (EC) were defined and applied to
filter in the initial search. An inclusion criterion is a feature that implies including a given
study in the scope of the current research. An exclusion criterion, by its turn, based on
some reason excluded a given study from the body of the research. Besides, for a study
1 Scopus:<https://www.scopus.com>
2 IEEE: <https://ieeexplore.ieee.org/>
3 ScienceDirect:<https://www.sciencedirect.com>
4 Engineering Village:<https://www.engineeringvillage.com>
5 ACM DL:<https://dl.acm.org/>

https://www.scopus.com
https://ieeexplore.ieee.org/
https://www.sciencedirect.com
https://www.engineeringvillage.com
https://dl.acm.org/

4.1. Protocol 29

inclusion, the paper must satisfy at least one inclusion criterion and at least one exclusion
criterion as a way to exclude the study from our analysis.

Therefore, the inclusion and exclusion criteria we defined were as follows:

• IC1. The study addresses web performance testing;

• IC2. The study proposes some method, process, framework, approach, toward or
guideline related to performance testing;

• IC3. The study describes or presents some activity, step, stage, phase about any
performance testing process;

• EC1. The study is less than 5 pages;

• EC2. The study is in a language other than English;

• EC3. The study is not available for download;

• EC4. The study is not related to performance testing in the software area;

• EC5. The study is not a primary study;

• EC6. The study has received note 1.0 or less in the quality assessment.

4.1.5 Quality Assessment Criteria

To evaluate selected studies’ relevance and also answering some research ques-
tions, we used the Quality Assessment (QA) criteria. The quality assessment criteria are
featured and may be exploited in two stages: the first stage as being an individual evalu-
ation of each researcher, to reduce bias probability; the second stage is when researchers
should reach a consensual note about publications in a “divergent state” in a quality
measurement grade.

Each of the cited QA criteria is evaluated by each researcher, according to the
following degree: Yes (Y) = 1; Partial (P) = 0.5; No (N) = 0. So the total score ranging
the five questions can result in: 0-1.0 (poor); 1.5 or 2.0 (regular); 2.5 or 3.0 (good); 3.5
or 4.0 (very good); and 4.5 or 5.0 (excellent). Each of the criteria and their possible
evaluations are described as following:

QA1: Did the study describe the performance testing profiles/roles, methods, artifacts,
or approaches?

Y: The study describes completely a performance testing profile/role, method, artifact,
or approach;

P: The study describes partially a performance testing profile/role, method, artifact, or
approach;

30 Chapter 4. Systematic Literature Review

N: The paper does not describe a performance testing profile/role, method, artifact, or
approach.

QA2: Did the study mention the performance testing stages or phases?

Y: The study mentions completely a performance testing stage or phase;

P: The study mentions partially a performance testing stage or phase;

N: The study doesn’t mention a performance testing stage or phase.

QA3: Did the study explain the performance testing activities, steps, or tasks?

Y: The study explains completely a performance testing activity, step, or task;

P: The study explains partially a performance testing activity, step, or task;

N: The study does not explain a performance testing activity, step, or task.

QA4: Did the study report activities/tasks flow performed by performance testing?

Y: The paper reports completely a performance testing activities/tasks flow;

P: The paper reports partially a performance testing activities/tasks flow;

N: The paper does not report performance testing activities/tasks flow.

QA5: Did the study present an evaluation for its proposal?

Y: The paper presents completely the evaluation;

P: The paper presents partially the evaluation;

N: No evaluation was presented.

4.1.6 Data Extraction Strategy

To extract the relevant data from the selected studies, a specific form was pro-
duced. The following data were extracted for each study:

DE1. Title;

DE2. Author;

DE3. Year;

DE4. Conference;

DE5. Addresses;

4.1. Protocol 31

Figure 6 – GQM Structure

GOAL

RQ1

DE6

RQ2

DE7

RQ3

DE8

RQ4

DE9
Source – Author.

DE6. Performance Testing Profiles, Roles, Artifacts, Methods, or Approaches;

DE7. Performance Testing Stages or Phases;

DE8. Performance Testing Activities, Steps, or Tasks;

DE9. Performance Testing Activities/Task Flows;

DE10. Empirical Evaluation.

To support our extraction data election, we present, in Figure 6 the relationship be-
tween research questions and derived data extraction through the GQM paradigm (KOZI-
OLEK, 2008).

4.1.7 Selection Process

1. Pilot Search Strategy: To verify the quality of the proposed search string, the ap-
proach called Search-Based String Generation (SBSG), proposed by Souza (SOUZA
et al., 2018) was applied. The approach is based on precision and sensitivity indexes
calculation. Precision is the ability to identify the number of irrelevant studies, while
sensibility is a way to identify all of the relevant studies. When precision is zero,
no irrelevant study is detected. This approach applies an Artificial Intelligence
technique through the Hill-Climbing algorithm suggested by Russell (RUSSELL;
NORVIG, 2016), which allows the measurement of precision and sensitivity indexes
for a set of keywords and an initial set of selected papers. The proposed string was
submitted based on 8 (eight) pre-selected studies. Thus, the achieved results were
11.27% precision and 79.49% sensitivity.

2. Search Databases: The strings were generated using selected terms and synonyms
and were run in the selected databases, resulting in an initial aggregation of studies;

3. Removal of Duplicates: The results of initial selection were filtered out for du-
plicated entries;

32 Chapter 4. Systematic Literature Review

Figure 7 – Onion diagram showing the number of papers after each step of the SLR
process.

1328 Retrieved Studies1328 Retrieved Studies

1081 Not duplicates1081 Not duplicates

52 IC - EC52 IC - EC

37 QA37 QA

Source – Author.

4. Selection Studies: In this step, we read separately the title and the abstract
(reading the introduction and conclusion when necessary) of each study. Here, we
decided to select or reject an article following defined inclusion and exclusion criteria;

5. Quality Assessment: The selected studies from inclusion and exclusion criteria
application were submitted to quality assessment criteria;

6. Data Extraction: To answer to RQs, the selected/classified studies were obtained
and relevant data were extracted using a form.

Our initial selection was conducted in May 2019, on ACM Digital Library, En-
gineering Village, IEEE Explore, Science Direct, and Scopus and provided 1328 results
(see Figure 7). After filtering out duplicate entries, the number of results was reduced to
1081. The number of duplicate entries was quite large and this might be attributed to
papers being revised from conferences publications into journal articles, being extended
and submitted in later conferences, and overlapping results from databases. After sepa-
rately applying inclusion and exclusion criteria fifty two (52) studies remained. Finally,
the quality assessment (see Table 3) reduced the number of results to thirty seven (37)
papers.

4.2 Results and Discussion

In this section, we present the SLR results, in which thirty seven (37) studies are
discussed to respond to defined research questions. Figure 8 provides us an overview of
the results by a feature model. Nodes Test Plan, Model, Planning, and Analysis are
optional. For instance, in an approach that does not use a model as an artifact, this is
not required.

4.2. Results and Discussion 33

Table 3 – Quality Assessment Results

Studies Quality Assessment Evaluation
Reference Year QA1 QA2 QA3 QA4 QA5 Score
Tselikis, Mitropoulos e Douligeris (2007) 2007 T P T P N 3.0
Sharifi, Tasharrofi e Mahmoudzadeh (2005) 2005 T T P T N 3.5
Hadharan et al. (2000) 2000 N T T N N 2.0
Anderson et al. (2006) 2006 T P T N N 2.5
Pfau, Smeddinck e Malaka (2017) 2017 N P P P N 1.5
Sprenkle et al. (2005) 2005 T T P N T 3.5
Yin et al. (2008) 2008 P T T P T 4.0
Huang et al. (2011) 2011 P T T T N 3.5
Rodrigues et al. (2014) 2014 P P T T T 4.0
Braga et al. (2018) 2018 T P T P T 4.0
Liu et al. (2018) 2018 T P T P P 3.5
Xia et al. (2006) 2006 N T P P P 2.5
Hanmer e Letourneau (2003) 2003 T P T P N 3.0
Arora (2016) 2016 P P P N N 1.5
Mirshokraie, Mesbah e Pattabiraman (2015) 2015 N T P N P 2.0
Gao e Li (2011) 2011 N P T P P 2.5
Kun et al. (2008) 2008 N P T P P 2.5
Marszalkowski (2012) 2012 N P P P N 1.5
Boone et al. (2010) 2010 T P T P P 3.5
Garg, Singla e Jangra (2016) 2016 N P T N N 1.5
Ster et al. (2011) 2011 T P T P P 3.5
Camargo et al. (2016) 2016 N P T N P 2.0
Chen et al. (2010) 2010 P P P N N 1.5
Juric et al. (2006) 2006 N P P N P 1.5
Xu et al. (2014) 2014 T P T P T 4.0
Pons (2005) 2005 N P T N P 2.0
Souza e Travassos (2017) 2017 N P T P T 3.0
Subraya (2006) 2006 T T T T N 4.0
Xia et al. (2010) 2010 T P T P P 3.5
Snodgrass (1988) 1988 N P T P N 2.0
Bernardino, Zorzo e Rodrigues (2016) 2016 T T T T T 5.0
Putri, Hadi e Ramdani (2017) 2018 T P T P T 4.0
Ali e Badr (2015) 2015 P P T P N 2.5
Gias et al. (2013) 2013 T P T P N 3.0
Freitas e Vieira (2014) 2014 T P T P N 3.0
Rodrigues et al. (2015) 2015 T T T T N 4.0
Meier et al. (2007) 2007 T P T T N 3.5

Source – Author.

34
C

hapter
4.

System
atic

Literature
Review

Figure 8 – Taxonomy of performance testing tools represented by feature model.

Performance Testing Process

Profiles/Roles

Performance Engineer

Architect Tester Analyst

Methods

Scripting CR MBT

Artifacts

Test Plan Model Script Workload Scenario Test Report

Approaches

Load Stress Endurance Spike

Stages

Pre-Test

Planning Scripting Design Configuration

Test

Execution Monitoring

Post-Test

Analysis Reporting

Legend
Mandatory
Optional
Or
Abstract
Concrete

Source – Author.

4.2. Results and Discussion 35

4.2.1 RQ1. What are the performance testing profiles/roles, artifacts, meth-
ods or approaches?

In this RQ, we explain the profiles/roles, methods, artifacts, or approaches iden-
tified in the selected studies.

• Profiles/Roles

Profiles/Roles related to Performance Testing are as follows:

– Performance Engineer: The performance engineer must be able to support
all stages, phases, and activities of the performance test. This role can be
specialized in other roles (Performance Architect, Performance Tester, and
Performance Analyst). Some papers refer directly or indirectly to this role
(SUBRAYA, 2006) (XU et al., 2014) (STER et al., 2011);

– Performance Architect: This role is involved within Design and Configura-
tion Phases and it must make a connecting bridge between early phases and
testing execution. A Performance Architect must-have skills to make design
and configuration activities. The term “Performance Architect” is reported in
Subraya (SUBRAYA, 2006) paper;

– Performance Tester: This role is directly related to the testing execution
phase. A Performance Tester is the one who should "operate" performance
testing, making use of available tools for measuring performance. A few papers
bring this role within another nomenclature as User and Developer (TSELIKIS;
MITROPOULOS; DOULIGERIS, 2007) (PFAU; SMEDDINCK; MALAKA,
2017). We merged these terms in Performance Tester, once we believe that is
more suitable for this context;

– Performance Analyst: The performance Analyst has participated in early
and late performance testing phases. This role is responsible for initial testing
planning and documentation, providing input to subsequent phases, design,
and configuration; This role is also present after testing execution, hence, it
is employed in the analysis and reporting phases. This role is not directly
reported in the selected papers. However, Subraya (SUBRAYA, 2006) refers
to their activities, without specific nomenclature.

After analyzing selected studies, we identified the following four (4) profiles/roles:
It is noteworthy that the roles above listed are technical, not covering management

levels of organizations.

• Artifacts

Some artifacts are presented to support performance testing activities. The most
relevant artifacts in this context are:

36 Chapter 4. Systematic Literature Review

– Performance Test Plan: A Performance Test Plan is a document elaborated
by a Performance Analyst as a means to, provide support and guiding the team
in the whole test activities. In this document general testing features, such as
testing type, scope, approach, and the steps to achieve performance testing
goals are explained. This artifact is generated in the planning phase and it
is reported in some papers that focus on this phase (MEIER et al., 2007)
(FREITAS; VIEIRA, 2014) (YIN et al., 2008) (HUANG et al., 2011);

– Model: This artifact is used as input in a technique known as Model-Based
Testing. A model is an abstraction of software behavior that enables reuse
and facilitates the understanding of the flow of activities performed by the test
(YIN et al., 2008);

– Performance Script: A script is the main input artifact for running the test.
Through it, the test execution flow is defined, since a script is represented
by a set of instructions and may be obtained automatically or manually. In
the former, scripts are generated through tools that use capture and replay
mechanisms (SUBRAYA, 2006). On the latter one, in manual form scripts,
they are generated through a programming language code;

– Workload: This artifact is responsible for modifying the SUT situation through
its different configurations. A workload may vary based on the test approach
and it includes the number of users, concurrent active users, data volumes,
and transaction volumes, along with the transaction mix. For performance
modeling, a workload is associated with an individual scenario (PFAU; SMED-
DINCK; MALAKA, 2017);

– Performance Scenario: Meier et al. (2007) define a scenario as a set of steps
in an application. Moreover, a scenario may map a given application context,
within a determinate workload for a user profile, it should be modeled based
on usage patterns and log files. In other words, a scenario must reflect real or
expected system usage for performance testing;

– Performance Test Report: Test execution should produce data for report-
ing. A technical report must contain test results, organized in a way that
allows their interpretation by stakeholders. Meier et al. (2007) list six key
components, which are not mandatory, of a technical report: a results graph, a
table with single-instance measurements, a workload model, test environment,
general observations, and references section.

• Methods

Three methods are related to performance testing conducting (RODRIGUES et al.,
2015):

4.2. Results and Discussion 37

– Scripting: This method involves technical support by the manual script where
the performance tester writes a set of code statements, which are inputs to a
load generator to providing a workload in a given scenario;

– Model-Based Testing: In this method, a software behavior under test is ver-
ified according to model predictions. It has some advantages such as enabling
the application of models for appropriate testing models creation, as well as
its use in performance testing;

– Capture and Replay This method consists of recording the execution of
the application’s functionalities for the generation of test scripts for the later
execution of these scripts simulating the execution of the application’s func-
tionalities.

• Approaches

Subraya (2006) presents a set of four (4) performance testing approaches called
LESS (Load, Endurance, Stress, Spike). These approaches are discussed below:

– Load Testing: A load is the number of users that compete to increase the
traffic of the application. It is useful for determining the breaking point and
checking when bottlenecks begin to emerge;

– Endurance Testing: Endurance testing is directly related to the reliability
of the application. Different test execution times can be set to check the
behavior of the application in different scenarios based on the duration of the
test. Endurance testing may be to perform on a normal load or a stress load,
but the main focus of this approach is the test duration;

– Stress Testing: Stress testing is similar to load testing. However, stress test-
ing aims to check how the application handles its limit. Therefore, it helps to
identify the load that the system can handle before breaking down or degrading
quickly;

– Spike Testing: A spike testing is conducted to verify application behavior
under a surge in a short duration. The application is submitted to a sudden
load increase.

4.2.2 RQ2. What are the performance testing stages and phases?

For our purpose, stages were mapped as being the activities group at a high level,
which may have one or more phases.

We identified three (3) stages and eight (8) phases in the performance testing
context. The stages and phases are as follows:

38 Chapter 4. Systematic Literature Review

• Pre-Test: This stage comprises previous phases to test execution. The test defini-
tion and preparation occur in this stage. The Pre-Test stage has four (4) phases:

– Planning: In this phase, it occurs test definition. Major requirements re-
lated to the test are mapped and some factors should be analyzed, such as
network and infrastructure environment, business functions related with the
performance requirements, and everything that may be relevant to the test;

– Scripting: This phase involves activities that focus on script elaboration,
which can be obtained by different means. For instance, supported by models
and by using the MBT or CR for an automatic generation or also employing
coding, where scripts are made from a specific programming language;

– Design: Using the test specifications defined in the planning phase, perfor-
mance testing is designed taking into account environments particularities and
performance testing goals;

– Configuration: It is the last phase before test execution. In this state, ad-
justments and setting performance testing are made. Issues like workload type,
performance testing type and tool functionalities should be considered as well
as infrastructure issues.

• Test: The Test stage is related to the execution of the test and it is performed after
the pre-test stage.

– Execution: In this phase workload is generated and the SUT is monitored
to obtain inputs that indicate the main bottlenecks and the behavior of the
system under this load. In addition to this monitoring, the test should provide
mechanisms to collect necessary metrics, which were defined in the Pre-Test
stage.

– Monitoring: Defined metrics as throughput, response time, and hits per sec-
ond must be monitored during test execution. This monitoring allows per-
formance testing roles to obtain outputs for subsequent phases, analysis, and
reporting in the post-test stage.

• Post-Test: This stage encompasses the phases of Analysis, and Reporting.

– Analysis: This phase aims to carry out the analysis of the test results, accord-
ing to the metrics that were collected during test execution. The support by a
specific tool is very important in this phase, once manual execution is imprac-
ticable. However, this analysis is directly related to the collection of metrics
results exposure during the test, not to the analysis by the performance engi-
neer in a decision making process;

4.2. Results and Discussion 39

Table 4 – Performance Testing Stages/Phases and Evaluation type.

P
re

-T
es

t

T
es

t

P
os

t-
T

es
t

E
va

lu
at

io
n

Ref.

P
la

nn
in

g

Sc
ri

pt
in

g

D
es

ig
n

C
on

fig
ur

at
io

n

E
xe

cu
ti

on

M
on

it
or

in
g

A
na

ly
si

s

R
ep

or
ti

ng

C
as

e
St

ud
y

E
xp

er
im

en
t

Tselikis, Mitropoulos e Douligeris (2007) X X X X
Sharifi, Tasharrofi e Mahmoudzadeh (2005) X X
Hadharan et al. (2000) X
Anderson et al. (2006) X
Pfau, Smeddinck e Malaka (2017) X X X
Sprenkle et al. (2005) X X
Yin et al. (2008) X X X X
Huang et al. (2011) X X X X
Rodrigues et al. (2014) X X X X X
Braga et al. (2018) X X X X
Liu et al. (2018) X X
Xia et al. (2006) X X
Hanmer e Letourneau (2003) X X X X
Arora (2016) X X X X
Mirshokraie, Mesbah e Pattabiraman (2015) X X
Gao e Li (2011) X X X X X
Kun et al. (2008) X X X
Marszalkowski (2012) X X
Boone et al. (2010) X X
Garg, Singla e Jangra (2016) X
Ster et al. (2011) X X X X X
Camargo et al. (2016) X X X X X
Chen et al. (2010) X
Juric et al. (2006) X
Xu et al. (2014) X X X X X X X X
Pons (2005) X X X
Souza e Travassos (2017) X X X X X X
Subraya (2006) X X X X X X X X
Xia et al. (2010) X X X X
Snodgrass (1988) X X
Bernardino, Zorzo e Rodrigues (2016) X X X X X X
Putri, Hadi e Ramdani (2017) X X X X X
Ali e Badr (2015) X X X
Gias et al. (2013) X X X
Freitas e Vieira (2014) X X
Rodrigues et al. (2015) X X X
Meier et al. (2007) X X X X X X X X

Source – Author.

40 Chapter 4. Systematic Literature Review

– Reporting: This phase is the sequence of the analysis phase. In this phase,
test results are reported. This report might vary between a detailed and auto-
mated report, depending on the tool used, or a report with minor information,
so that the performance engineer/architect has the task of interprets perfor-
mance testing report results.

In Table 4, the relation between selected paper, stage, and phase are related.’
It is possible to verify that most of the studies address test execution. Another issue
demonstrated in this table is an evaluation type, achieved by selected studies. Case
studies are more recurring in this context, once eleven (11) empirical studies of this type
were found, followed by experiments with seven (7) studies that used this approach to
assess the study. Another relevant question is that the majority of studies are not focused
on all phases and stages of performance testing, because they focus on some specific
phases.

4.2.3 RQ3. What are the performance testing activities, steps, or tasks?

Based on the selected papers, we found one hundred and thirty eight (138) per-
formance testing activities, steps, or tasks. In Figure 9 it is possible to identify that
assumption, as well as the trend evidenced in previous research questions. There is a
greater concentration of activities in the test execution phase, where we identified forty
seven (30) activities related to this phase. Some performance testing tools work with
monitoring and execution independently. However, others do not distinguish between
these phases. The other phases have a similar commensurate of activities, ranging from
fifteen (15) to twenty two (22) activities, except the Scripting and Reporting phase where
twelve (12) and five (5) related activities, respectively, were found.

It is relevant to allude that some activities can have differences only in their nomen-
clature, for the sake of having the same objective in practice. It is also worth emphasizing
that due to the varied possibilities for a performance test, not necessarily all the mapped
activities must be used, as a result of the particularity of each test, a certain group of
activities will be executed.

4.2.4 RQ4. What are the activities/tasks flow performed in performance
testing?

The mapping of the stages, phases and subsequent activities reported in the se-
lected studies allowed us to organize the phases as shown in Figure 10. This flow circularly
presents the phases. Performance testing may be thought of as a sequential activity and
may be instantiated as many times as necessary. In this flow, the sequence starts in the
Planning, following the seven (7) next phases until completing the cycle with the Re-
porting phase, which is highlighted to mark to the end. Another reason that motivated

4.2. Results and Discussion 41

Figure 9 – Relation Activities/Steps/Tasks Quantitative vs Phases.

Planning
Scrip

ting
Desig

n

Configuration

Monitoring

Execution
Analysis

Reportin
g

5

10

15

20

25

30

15
12

18

22

17

30

19

5

A
ct

iv
iti

es
/S

te
ps

/T
as

ks
Q

ua
nt

ita
tiv

e

Source – Author.

Figure 10 – Performance Testing Activities/Tasks Flow

Planning

Scripting

Design

Config-
uration

Execution
Moni-
toring

Analysis

Reporting

Source – Author.

us to model the flow in this manner is the large variety of activities and tasks that do
not include all mapped phases, making it possible to understand the sequence of the test,
independently on the activity described to contemplate the phases in their totality or not.

42 Chapter 4. Systematic Literature Review

4.3 Chapter Summary

In this chapter, we presented the protocol, execution, and results of an SLR for an
overview of performance testing for Web applications. Hence, thirty seven (37) studies
were selected and analyzed to obtain subsidies that answered our research questions. We
assume that our main contribution was obtained through SLR results, which allowed us
to map the main concepts related to the performance testing area, encompassing all its
stages and phases. Our results were reported in a textual description and by a feature
model that encompasses the whole SLR results. The paper “Systematic Literature Review
on Web Performance Testing”, which presents the results of this review, was accepted at
the IV Regional School of Software Engineering6.

6 <https://sol.sbc.org.br/index.php/eres/article/view/13739/13587>

https://sol.sbc.org.br/index.php/eres/article/view/13739/13587

43

5 SURVEY
In this chapter, we present the survey that was carried out. This study had as the

main objective, to gather information about the performance testing from a professional
perspective. Section 5.1 details the survey protocol. In Section 5.2, we present the main
threats to the study and some ways to try to mitigate them. Section 5.3 provides a
discussion about results that we found from survey conduction.

5.1 Survey Protocol

Our survey protocol is based on Kasunic (2005), which defined a seven-stage, end-
to-end process for survey conducting. Figure 11 provides us an overview of this process.

Figure 11 – Survey flow by Kasunic (KASUNIC, 2005)

Source – Author.

5.1.1 Identify the research objectives

This stage aims to elucidate what we want to accomplish through this survey.
Therefore, we aim to identify major inputs related to Web performance testing, under
a technical view, gathering opinions from the industry. We hope that from the data
obtained through this survey, it will be possible to gather insights that support us in
the performance testing body of knowledge creation, which must contemplate the state
of practice of the area under review. In other words, we look for methods, guidelines,
artifacts, activities, steps, tasks, and techniques related to performance testing.

5.1.2 Identify and characterize the target audience

In this stage, we expect to discover who, specifically, will respond to the survey.
Thus, our target audience may encompass industry professionals who work directly or
indirectly with performance testing that characterize the relevant population for our study.
These subjects may have different roles in their companies, the main relevance for being
part of the research is the knowledge about the performance testing process in their
organizations.

44 Chapter 5. Survey

5.1.3 Design the sampling plan

Design the sampling plan is related to some questions:

• How large is the target audience population?

• Can the target audience be enumerated?

• How will you ensure that those who respond to the survey are representative of the
target audience?

Based on the questions listed above and to obtain a relevant sample for the re-
search, we adopted two (2) different strategies. The first one is through direct contact
with IT companies as well as specific performance testing organizations. The second one
is the survey dissemination in the main social networks and discussion forums. To in-
crease the likelihood of adherence to the questionnaire, we adopted some criteria for the
disclosure of the questionnaire:

• The discussion group must have at least 1000 members1;

• The discussion group should be from a performance testing-related subject.

We chose the following social networks for the survey: Facebook2 (11 groups),
LinkedIn3 (5 groups), Stack Overflow4. In addition, the questionnaire was also disclosed
in a WhatsApp5 discussion group about performance testing with 253 active members6.

5.1.4 Design and write the questionnaire

After the early stages, the survey objectives must be worded into the questionnaire.
Hence, we followed some best practices presented in Shull, Singer e Sjøberg (2007) study:

• Present open and closed questions;

• Avoid yes/no questions;

• Provide extra space for comments;

• Use pattern tools;

• Easier questions should be asked first;

• Explain how confidentiality will be preserved;
1 We adopted this criterion so that we had a greater probability of responses due to a large number of

groups
2 Facebook:<https://www.facebook.com>
3 LinkedIn:<https://www.linkedin.com>
4 Stack Overflow:<https://www.stackoverflow.com>
5 WhatsApp:<https://www.whatsapp.com>
6 Groups details in<http://bit.ly/2Q3Picz>

https://www.facebook.com
https://www.linkedin.com
https://www.stackoverflow.com
https://www.whatsapp.com
http://bit.ly/2Q3Picz

5.1. Survey Protocol 45

• Present research credentials, university name, researcher’s name, etc.

As a tool for creating and applying the questionnaire, we chose the LimeSurvey7,
which is an open-source solution that offers appropriate functionality for our research.

We intend to get data about performance testing experience from subjects, there-
fore this survey is classified as cross-sectional. Moreover, we applied a self-administered
questionnaire, where the participants are responsible for reading and answering the ques-
tions.

Firstly, it was presented the Informed Consent Form (ICF), followed by profile
questions. Then, specific performance testing questions were divided into five (5) stages.
Our focus was to separate the content seeking to facilitate the fill and understanding of
the questionnaire.

Profile questions were elaborated aiming to verify the knowledge level from sub-
jects, seeking to level participants and to divide them into groups for future results anal-
ysis.

The elaborated performance testing stages questions focus on main inputs related
to performance testing. These inputs are composed of roles, profiles, activities, phases,
tasks, steps, and the performance testing general flow.

• Profile Questions

Profile questions are as follow:

1) What is the highest level of education you have completed?

2) How many years of experience do you have in the performance testing area in the
industry context?

3) How many years of experience do you have in the performance testing area in the
academic context?

4) Which one of the following best describes your organization?

5) What is your main job position?

6) Finally, please indicate your name, your organization’s name, and your email address
below if you would like to contribute to our research or to receive a summary of the
results. Your data will be combined with the data of other respondents and shared
only in aggregate:

(Name, Name of the organization, and e-mail address were required in a non-
mandatory way).

7 LimeSurvey:<https://www.limesurvey.org/>

https://www.limesurvey.org/

46 Chapter 5. Survey

• Performance Testing Questions

Performance testing questions are the following:

1) The maturity level of performance testing activities8.

2) Does your organization follow a defined performance testing methodology/process,
or is it done ad hoc?

3) What are the roles, functions (positions in the company) involved in performance
testing?

4) What are the main activities performed by the performance testing team on software
projects of your organization?

5) Is there a specific performance testing infrastructure in your organization? If so, is
it shared or dedicated? If so, is it physically, virtualized, or in the cloud?

6) How is the process of setting performance testing scenarios and scripts that are
performed in your organization? What tools, techniques, approaches, and methods
support this process?

7) How is the performance testing load generation process performed in your organi-
zation? What tools, techniques, and methods support this process?

8) How is the process of performance testing monitoring performed in your organiza-
tion? What tools, techniques, and methods support this process?

9) What are the main monitored performance testing metrics in your organization’s
software projects?

10) How is the performance testing analyzing process performed from collected metrics
in your organization?

11) What are the limitations found in the tools, methodologies, techniques, or methods
that support performance testing activities in your organization?

12) Please provide in the field below any relevant considerations regarding this ques-
tionnaire or our research.

13) Which domains are subjected to performance testing in your organization?

We provide a help text for each question, to explain to the respondent which is
more relevant in the respective question.
8 In this question, we seek to understand each organization’s maturity level for each performance testing

activity and phase.

5.2. Threats to Validity 47

5.1.5 Pilot Questionnaire

Once the artifacts for conducting the survey are formulated, they must be validated
to look out for bugs identification and emerging improvements in the instrument. Thereby,
a pilot test should be conducted with a small sample similar to the target sample of the
study so that these validations are performed before the survey execution. We intend to
realize a pilot test with three (3) subjects, which were chosen because they have similar
characteristics to our target sample.

5.1.6 Distribute the Questionnaire

The questionnaire should be distributed to selected members of the target audience
as defined by the sampling plan. Social posts were refreshed or updated 3 times a week,
always looking for the top of the feed to increase views and consequent survey adherence
rate.

Regarding the WhatsApp group planned for submission, the request for the survey
was sent, but it was considered inappropriate to the group’s privacy standards, which
according to their administrators is focused on informal information about performance
testing.

5.1.7 Analyze the Results and Write a Report

The results should be collected and translated into appropriate graphical displays
that facilitate understanding. The charts may be compiled into a report and interpreta-
tions, inferences, generalizations, and caveats can be made based on evidence provided
by the results.

5.2 Threats to Validity

In this section, we introduce the main threats to the validity of our study, and
strategies for mitigating these threats are presented according to Wohlin et al. (2012).

Construct Validity: Some threats may affect the validity of the constructor and
are related to the possibility of its generalization. All artifacts produced we validated by
two (2) performance testing experts to mitigate threats related to the construct validity.

Internal Validity: Threats to internal validity are forces that may alter the
independent variable. For the elaboration of the questionnaire, the questions were grouped
by similarity, and different strategies were used (open and closed questions). Also, we
synthesize issues to avoid participants’ fatigue as much as possible.

External Validity: External threats can limit our ability to generalize the results
of the experiment externally. To mitigate threats related to the sample size, so that we
could find a meaningful sample for our context, different means of participants prospecting

48 Chapter 5. Survey

were applied, such as the different social networks are chosen and the direct contact with
IT companies.

Conclusion Validity: This type of threat is related to issues that may affect
the correct conclusions based on the relationship between treatments and the results of
the experiment. To mitigate the cultural bias inherent in surveys, we sought to reach
the largest number of respondents per country, enabling us to increase confidence in the
cultural data representativeness.

5.3 Results

The questionnaire was available from December 2019 to March 2020. Eighty nine
(89) participants answered the questionnaire, twenty eight (28) of which had enough
content, which gives us a utilization rate of approximately 31%. This relatively low
percentage of adhesion, we attribute to the voluntary nature and questions being mostly
optional. So it was a risk that we needed to take to try to extract as much information
as possible.

5.3.1 Job Position

Figure 12 shows the percentages related to the subjects’ positions in their respec-
tive organizations. According to these data, it is evident that a significant portion (40%)
performs the function of Performance Tester, that is, it works directly with activities of
test execution. Another relevant part of this graph is composed of Performance Engi-
neers (16%), followed by 14% who declared to work as Performance Testing Manager,
roles that have a broader participation in the entire test cycle. The job positions that
had the least mention were Software Engineer and Performance Consultant, both with
4%, and Performance Analyst with 12%.

This information shows us first that the positions informed in the question corre-
spond to the real scenario of roles played by the subjects when performing performance
testing activities. Another piece of information that we can infer from the graph is that
there is a significant portion of those directly involved in the activities of carrying out the
test, which somehow qualifies our sample since we can obtain relevant information from
an experienced target audience.

5.3.2 Subjects Experience

Figure 13 presents data related to the subjects’ experiences. The graph shows that
relating to the experience in the academic field, 48% have experience from 0 to 1 year,
20% from 2 to 4 years, 12% from 5 to 7 years, 8% from 8 to 10 years, 8% from 11 to 13
years, and 4% has more than 14 years experience in this area. On the other hand, the
experience in the industry area presents other data. 4% have experience from 0 to 1 year,

5.3. Results 49

Figure 12 – Job position.

Source – Author.

44% have experience from 2 to 4 years, 12% from 5 to 7 years, 8% from 8 to 10 years,
12% from 11 to 13 years, and 20% reported more experience than 14 years in the field.
Based on these data, we verified that approximately 40% of the participants have eight
(8) years or more of professional experience.

These numbers show that the majority of the subjects have greater experience in
the industry than in the academic area. This is relevant to our context since we seek
practical data related to Performance Testing. In this case, it is more relevant than only
academic experience.

Figure 13 – Subjects experience.

0 10 20 30 40 50 60 70 80 90 100

Academic

Industry

4%

20%

8%

12%

8%

8%

12%

12%

20%

44%

48%

4%

0-1 year 2-4 years 5-7 years 8-10 years 11-13 years 14+

Source – Author.

5.3.3 Maturity Level

Meier et al. (2007) introduced Core Performance Testing Activities:
Identify Performance Testing Requirements (Requirements): Identify the

physical test environment and the production environment as well as the tools and re-
sources available to the test team. Identify the response time, throughput, and resource

50 Chapter 5. Survey

utilization goals and constraints. Additionally, identify project success criteria that may
not be captured by those goals and constraints; for example, using performance tests
to evaluate what combination of configuration settings will result in the most desirable
performance characteristics.

Plan and Design Tests (Design): Identify key scenarios, determine variability
among representative users, and how to simulate that variability, define test data, and
establish performance metrics. Consolidate this information into one or more models of
the system for implementation, execution, and analysis.

Configure the Test Environment (Configuration): Prepare the test envi-
ronment, tools, and resources necessary to execute each strategy in a way that features
and components become available for testing. Ensure that the test environment is instru-
mented for resource monitoring as necessary.

Implement Test Design (Implementation): Develop the performance tests
following the test design.

Execution and Monitoring Tests (Execution): Run and monitor your tests.
Validate the tests, test data, and results collection. Execute validated tests for analysis
while monitoring the test and the test environment.

Analyze Results, Report, and Retest (Report): Consolidate and share re-
sults data. Analyze the data both individually and as a cross-functional team. Reprioritize
the remaining tests and re-execute them as needed. When all of the metric values are
within accepted limits, none of the set thresholds have been violated, and all of the desired
information has been collected, you have finished testing that particular scenario on that
particular configuration.

Based on these activities, we seek to obtain the maturity level according to the
following scale. It is worth noting that the scale shown is increasing from 0-7 where each
higher level contemplates the characteristics of the previous levels.

• (7) In Optimization: The activity is subject to continuous improvement;

• (6) Automated: The activity or some activity step/task is conducted in an auto-
mated manner;

• (5) Very Defined: The activity is conducted following documentation;

• (4) Slightly Defined: Some step/task of activity is defined through some docu-
mentation;

• (3) Very Management: The activity is conducted under management;

• (2) Slightly Management: There is some management in activity execution;

• (1) Ad hoc/ Manner: The activity is applied in an ad hoc manner;

5.4. Chapter Summary 51

• (0) Not Applied: The activity is not applied.

Figure 14 details the information we obtained about the maturity level of the
performance testing process in the subjects organizations. An interesting piece of data
that we can highlight in this graph is that approximately 51.33% of the participants
informed that they do not have a defined process, namely, they do not apply or apply in
an ad hoc manner. This behavior is common to all phases of performance testing. So,
we ratify our motivation to propose a process that assists those involved in performance
testing in the planning, design, and execution of the test. We believe that a generic
framework may contribute to organizations applying a systematic and well-defined process
for the test performance, as well as to provide a repository of relevant information about
this type of test.

Figure 14 – Maturity level.

0 10 20 30 40 50 60 70 80 90 100

Requirements

Design

Configuration

Implementation

Execution

Report

8%

12%

8%

8%

12%

12%

8%

12%

16%

12%

12%

8%

12%

16%

16%

8%

12%

16%

4%

12%

4%

4%

4%

4%

4%

16%

4%

12%

4%

4%

8%

12%

24%

12%

16%

12%

16%

40%

32%

40%

36%

36%

32%

Not Applied Ad hoc/ Manner
Slightly Management Very Management
Slightly Defined Very Defined
Automated In Optimization

Source – Author.

5.4 Chapter Summary

In this chapter, we presented the details of the protocol, execution, and results of
the survey that we applied. This survey aimed to obtain subsidies for the preparation of
PTBOK from the industry perspective. The main difficulty that we faced in conducting
this study was the participant’s adhesion. Furthermore, obtaining answers provided some
insights for the PTBOK. However, the results that we found in the survey converge to
the SLR data.

53

6 PTBOK
This chapter is organized as follows. In Section 6.1 we present an overview of

the PTBOK framework. Sections 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 detail the main PTBOK
components. In Section 6.9 we show some details of the PTBOK modeling.

Performance Testing Body of Knowledge (PTBOK) gathers the main in-
puts and outputs, techniques, methods, approaches, etc. related to Performance Testing.
Also, PTBOK seeks to guide, from a practical as well theoretical view, the entire perfor-
mance testing process, involving a set of domains, stages, phases, activities, and steps for
conducting the Performance Testing.

6.1 Framework

In the following, we describe PTBOK components. A Stage is at the highest ab-
straction level of the process and is composed of Phases (Planning, Design, Configuration,
Execution, Monitoring, Analyzing, and Reporting), which in turn are composed of activ-
ities. Each Activity may have one or more tasks. A Task is performed by a Role, that
is the Actor responsible for performing the referred task, and these Roles may be defined
in a Role Set, which aggregates a set of roles with similar functions. In another point
of view, Performance Domains are areas of knowledge related to a given domain. In the
framework, it is also possible to visualize this relationship between Performance Domains
and the activities related to them through a color pattern.

Figure 15 represents the PTBOK framework, which shows an overview of the
process. Each phase is grouped with its respective activities. Furthermore, through a
color pattern, one can identify the relationship amongst activities vs stages and activities
vs performance domains.

54
C

hapter
6.

PT
B

O
K

Figure 15 – PTBOK framework overview

Source – Author.

6.1. Framework 55

6.1.1 Effort Analysis

In Figure 16, we intend to represent an analysis of the effort employed in each of
the phases and stages of PTBOK according to the related Performance Domains.

To obtain the values shown in Figure 16, we carried out an ad hoc study in our
research group. This analysis took into account the number of suggested PTBOK activi-
ties in each phase and their complexity. We emphasize that these values are not absolute
and may change according to how each organization conducts performance testing. In
addition, we analyzed this figure in the survey for PTBOK evaluation, aiming to ratify
the values shown in the graph with expert opinions.

Regarding Requirements, most of the work is done in the Planning phase, and there
is also a relationship with the Analysis phase. Scripts and Scenarios have greater use in
the Project phase, but they also appear in the Planning and also in the test stage, through
the Execution and Monitoring phases. Workload appears only in the Pre-Test stage, most
frequently in the Configuration phase. The Performance Domain Environment is used in
the Planning and Design phases but is also related to Monitoring. Acceptance Criteria is
used in the three stages, through the Design, Monitoring, and Analysis phases. Tools and
Methods has slightly greater use in Planning and it is also listed in the Execution phase
Finally, Performance Domain Reports has a little effort in the Execution phase, but the
vast majority of work in this domain is in the Analysis and mainly Reporting phases

Figure 16 – PTBOK estimated effort: Performance Domains vs Phases vs Stages

Source – Author.

56 Chapter 6. PTBOK

6.2 Role Set

In some cases, specific roles are not necessary for performance testing, it depends
on how the roles are structured in the organization. Thus, it is possible to adhere to a
more generic representation through a Role Set. A Role Set can be defined as a grouping
of responsibilities in a performance testing context.

• Performance Engineer

This Role Set gathers skills and competencies to perform throughout the perfor-
mance testing life cycle. Given the diversity of tasks and contexts in which the Per-
formance Engineer may act, it was specialized in 3 (three) different roles: Performance
Analyst, Performance Architect, and Performance Tester. However, these specializations
are not mandatory, and it is the responsibility of the organization to map needs for an
appropriate Performance Engineer decomposition.

6.3 Roles

The following are the main roles involved in the performance testing phases. We
define a schema for the prefix of each activity. The letter represents the phases Planning,
Design, Configuration, Execution, Monitoring, Analysing, and Reporting. The first
number represents Performance Domain:

1. Requirements

2. Scripts

3. Workload

4. Environment

5. Acceptance Criteria

6. Tools and Methods

7. Reports

The second number represents the order in which the activity takes place according
to the context of the Performance Domain and Phase. For example, activity P1.1 belongs
to the Planning phase, and it is the first activity of Performance Domain Requirements.

6.4. Stages 57

6.3.1 Performance Analyst

Performance Analyst participates in early and late performance testing phases. It
is responsible for initial testing planning and documentation, providing input to subse-
quent phases, design, and configuration. This role is also observed after testing execution,
on this account, in the analysis and reporting phases. Figure 17 shows the activities per-
formed by this role.

Figure 17 – Performance Analyst Activities

Source – Author.

6.3.2 Performance Architect

This role is involved within Design and Configuration Phases and it is responsible
for bridging early phases and testing execution. A Performance Architect must have skills
in activity designing and configuration. Figure 18 shows the activities performed by this
role.

Figure 18 – Performance Architect Activities

Source – Author.

6.3.3 Performance Tester

This role is directly related to the testing execution phase. A Performance Tester is
the one who should run performance testing, making use of available tools for performance
testing. Figure 19 shows the activities performed by this role.

6.4 Stages

A performance test has three (3) main stages, the first precedes the performance
test execution activities (Pre-Test stage). The second gather the activities carried out

58 Chapter 6. PTBOK

Figure 19 – Performance Tester Activities

Source – Author.

in the performance testing execution (Test stage). Finally, activities performed after
test execution are carried out in the Post-Test stage. We emphasize that all stages are
complementary to each other and necessary since each of these stages brings together
essential characteristics for performance testing. A relevant issue concerning the stages
is the execution flow, that is, in the way we present, the stages must occur sequentially
since the output from one stage is an input to the subsequent stage.

6.4.1 Pre-Test

Pre-Test comprises the initial activities, those related to the performance testing
planning, definition, and preparation.

Pre-Test stage has three (3) phases: Planning, Design, and Configuration. Pre-
Test stage is characterized by the performance of activities and tasks that precede the
test execution. This stage has a main appeal to questions related to the test preparation,
providing from its outputs, inputs for the Test stage.

6.4.2 Test

The Test stage occurs from the outputs of the previous stage (pre-test) and consists
of two (2) phases, Execution, and Monitoring. The execution phase brings together the
activities related to the workload application according to the planned scenarios. The
Monitoring phase, in turn, is responsible for verifying the application’s behavior as a
result of the applied workload.

6.4.3 Post-Test

Post-Test stage is the last performance testing stage. Analyzing and Reporting
phases to compose this stage, which is executed from the Test stage outputs. The first
phase of this stage (Analyzing) has as main objective to perform an analysis on the data
generated from the defined metrics such as throughput, latency, memory consumption,
processing, etc. From this analysis, it is possible to present the final data related to the
test, through reports in the Reporting phase.

6.5. Phases 59

6.5 Phases

We mapped seven (7) main phases for carrying out performance testing: Planning,
Design, Configuration, Execution, Monitoring, Analysis, and Reporting. These phases are
described as follows.

6.5.1 Planning

The planning phase is the first performance testing phase. In this phase, some
factors are mapped, such as the allocation of resources, infrastructure, data, and also
human resources involved in the test. The general scope of the performance test should
be defined during the planning phase. In addition, the identification and analysis of
risks, as well as information relevant to the test, should also be mapped. In summary,
the definition of the test occurs in the planning phase. Figure 20 shows the activities
performed in this phase.

Figure 20 – Planning Activities

Source – Author.

6.5.2 Design

Using the test specifications defined in the planning phase, performance testing
is designed taking into account environments’ particularities and performance testing
goals. This phase includes activities related to the test project, receiving inputs from
the planning phase, and providing outputs to the execution phase. The Design phase
also involves activities focusing on script elaboration, which can be gathered by different
means. For instance, supported by models and using the Model-Based Testing or Capture
and Replay for an automatic generation or by coding, where scripts are created from a
specific programming language. Figure 21 shows the activities performed in this phase.

60 Chapter 6. PTBOK

Figure 21 – Design Activities

Source – Author.

6.5.3 Configuration

The main activities of performance testing depend fundamentally on automation
tools for the realization of their tasks. Therefore, in the configuration phase, adjustments
to the necessary tools occur. These adjustments include both the tools related to the test
execution and the tools related to the environment where the test will be performed. It is
the last phase before test execution. In this state, adjustments and setting performance
testing are made. Issues like workload type, performance testing type and tool function-
alities should be considered as well as infrastructure issues. Figure 22 shows the activities
performed in this phase.

Figure 22 – Configuration Activities

Source – Author.

6.5.4 Execution

In the execution phase, the workload is applied to SUT. This phase characterizes
performance testing since it is essential for any performance testing to generate and apply
a certain workload in an application. The activities carried out in this phase depend on
tools that automate their tasks, because it is impracticable to perform tests manually,
that is, without the support of tools that automate and facilitate this execution. It is
worth emphasizing that this phase must provide mechanisms that allow monitoring of
the metrics defined in the early phases. Figure 23 shows the activities performed in this
phase.

6.5. Phases 61

Figure 23 – Execution Activities

Source – Author.

6.5.5 Monitoring

Defined metrics as throughput, response time, hits per second must be monitored
during test execution as well as bottlenecks identification. This monitoring allows perfor-
mance testing roles to obtain outputs for subsequent phases, analysis, and reporting in
the post-test stage.

The monitoring phase has a strong connection with the execution phase, in some
cases, they can be confused, because some tools execute and monitor simultaneously.
However, we find it interesting to have this separation due to the degree of importance
that both phases have in the performance test. Figure 24 shows the activities performed
in this phase.

Figure 24 – Monitoring Activities

Source – Author.

6.5.6 Analysis

This phase refers to how data results from the monitoring are processed and rep-
resented in performance testing reports. Hence, data must first be compared with the
test objective, which is a success criterion in test analysis. By understanding the SUT
behavior, it is possible to draw conclusions based on the data so that reports are gener-
ated in the next phase. In addition, in the analysis phase, possible actions can be mapped
to correct bottlenecks and unexpected application behaviors. Data should be presented

62 Chapter 6. PTBOK

as representative as possible, either through spreadsheets, tables, or charts, the latter
facilitating the identification of trends. Figure 25 shows the activities performed in this
phase.

Figure 25 – Analysis Activities

Source – Author.

6.5.7 Reporting

The test reports are generated in the Reporting phase, with the objective of pro-
viding an understanding of the possible bottlenecks detected in the test and also offering
the test results in a legible and organized manner. The reporting phase is decisive for
an understanding of the application’s behavior after the test execution. The monitored
metrics must be detailed through robust documentation that allows the Performance En-
gineer to explain to stakeholders the test results as well as the possible insights generated
from performance testing. Figure 26 shows the activity performed in this phase.

Figure 26 – Reporting Activities

Source – Author.

6.6 Performance Domains

The following are the 7 (seven) performance domains related to performance test-
ing.

6.6.1 Requirements

To obtain a clear definition of the performance testing requirements, an under-
standing of the functionalities is necessary. Thus, the Performance Engineer can make
use of known requirements elicitation techniques, since there is no clear understanding

6.6. Performance Domains 63

of what features should be tested. However, in a scenario where the main functionalities
for testing are known, it is up to the Performance Analyst, during the Project phase, to
define the main inputs and expected results, as well as issues related to Workload, Ramp
Up and Ramp Down. Documenting requirements through models is important to ensure
that the application’s test history is available, thus seeking greater ease in the evolution
and replication of application performance tests.

This performance domain comprises information that is directly related to the test
requirements. The activities included in this performance domain involve requirements
elicitation, analysis, and validation.

Figure 27, shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

Figure 27 – Requirements Activities

Source – Author.

• P1.1 Elicitate Performance Requirements

Different sources may provide information related to the test, for example, the ap-
plication development and maintenance team and stakeholders. Therefore, it is necessary
to collect, compile, and save this information in the requirements specification document.
Requirements elicitation techniques may support this activity.

Steps:

1. Gathering performance testing info;

2. Compiling performance testing info;

3. Updating Performance Testing Requirements Specification

• Added Elements: SUT description; environment description; contractual
obligations; client expectations; mitigation of risks; business requirements;
available application features and components; application usage scenarios

• P1.2 Analyze Performance Requirements

64 Chapter 6. PTBOK

This activity aims to perform the analysis of the test requirements and it has an
approach similar to that used in traditional Requirements Engineering. Therefore, re-
quirements analysis techniques may support this activity. During the analysis of the test
requirements, the following information should be added to the Performance Testing Re-
quirements Specification: Objectives (detailing the general objectives of the test); Targets
(desired values to metrics); thresholds (max limit acceptable).

• P1.3 Specify Performance Requirements

This activity consolidates the elicitation and analysis of the test requirements. It is
important to note that these three activities (P1.1, P1.2, and P1.3) are closely linked
and, depending on the context of the organization, may be carried out simultaneously.
Therefore, the requirements document must be revised and corrected, whether necessary.
In this activity, it is added the feasibility analysis to the performance testing requirements
specification: are the goals plausible and achievable for the organization’s scenario?

• A1.1 Validate Performance Requirements

This is the first analysis activity in the process and aims to validate the requirements.
So, one can use V&V techniques from Software Engineering, for example, reviews, walk-
throughs, and inspections, to assist in the validation process. One must update the
Performance Testing Requirements Specification with the validation data after applying
the V&V technique.

6.6.2 Scripts and Scenarios

In general, a script can be defined as a sequence of steps necessary to carry out
a performance testing execution instance. Scripts can be developed through program-
ming languages, such as C, Java, Python, etc. Another manner of obtaining scripts is
through Capture & Replay tools, which execute a certain functionality of the applica-
tion to generate the scripts from that execution. Hence, it can imply a decrease in the
level of complexity for the elaboration of the scripts, the code is abstracted from the
user. However, this approach can generate excess code or even some type of undesired
code. Therefore, despite a higher level of complexity, the manual script preparation can
be very useful in a context where the team is proficient in the scripts language or even
in cases where script changes are constantly needed. An important aspect is in relation
to the creation of the scripts: is the possibility of scripts parametrization, that is, where
through external files, the script execution parameters are dynamically changed. With-
out this kind of functionality, performance testing becomes somewhat impractical. The
most available performance testing tools already allow the use of both, manual scripts
and Capture & Replay approaches, as well as the scripts parametrization.

6.6. Performance Domains 65

A scenario can be defined as a specific context, where application functionality will
be tested. This context is composed of the workload and the way that this load behaves,
and also by the set of all characteristics inherent to that context. For example, a load of
1000 initial users being incremented every 2 minutes in a product’s purchase functionality
through an application’s shopping cart. This scenario is formed by a set of one or more
scripts that will be executed so that the projected objective is reached. The scenarios
must be thought of in the initial phases of the test, more specifically in the planning and
in the requirements domain, so that later in the phases of design and configuration this
scenario is instantiated for its execution by scripts.

Below we detail the main activities of this performance domain. The execution of
the test is the main focus of the activities of this domain.

Figure 28 shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

Figure 28 – Scripts and Scenarios Activities

Source – Author.

• P2.1 Plan Test Design

This activity is the first project activity in the process. The main project inputs are the
test objectives and the SUT information, which may be found in the Performance Testing
Requirements Specification. After extracting this information, there are already subsidies
for the creation of a Performance Testing Plan. This initial document may contain some
preliminary design information, evolved from the test specifications, such as the intended
approach, resource allocation, strategies, etc. However, the test project is still immature
at this stage, so there is no need for detailed project detail at this moment.

• D2.1 Define Test Data

66 Chapter 6. PTBOK

As the first design activity, it occurs the test data definition. Then, the type of approach
is selected, for example, random or database-based, for data acquisition. After that, one
performs the test data definition and the execution plan included in the Performance
Testing Plan. Therefore, they should reflect inputs as close as possible to the application
production environment.

• D2.2 Implement Test Design

This activity has a relatively simple definition, summarizing the creation of the scripts and
models used in the test. Then, one must follow the planning. The tool that was chosen
to create the models and scripts and perform the test directly influences this activity.

• E2.1 Execute Performance Scenarios

The first activity in the test execution is the execution of the scenarios, which depends
fundamentally on the tool and approaches chosen for the test. After running the scenarios,
one record scenarios information in the Performance Testing Plan.

• M2.1 Monitor the Test

Test monitoring is divided into three main activities. The first is the monitoring of
the test. This activity has a higher-level view of the test, analyzing the test execution
in general, and recording the monitoring data in the Performance Testing Report and
Performance Testing Plan.

6.6.3 Workload

The Workload domain covers all aspects related to the generation, execution, and
monitoring of the workload, with some important tasks like identifying key scenarios,
determining variability among representative users and how to simulate that variability,
defining test data, and establishing metrics. Consolidating this information into one or
more system usage models.

Some relevant information, such as the number of virtual users and the delay in
user actions, should be considered in the workload modeling. However, the system flow
and throughput are directly affected by the processing time, which can be variable as the
workload increases.

The planning and correct execution of the Workload is fundamental to the success
of the test. Therefore, below we detail the activities present in this performance domain.

Figure 29, shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

6.6. Performance Domains 67

Figure 29 – Workload Activities

Source – Author.

• P3.1 Identify User Profiles

The test should be performed in an environment as close as possible to the production
environment. Thus, the different user profiles that interact with the application must be
identified. Therefore, this activity aims to map these profiles.

• P3.2 Identify Key Scenarios

Mapping the main usage scenarios of the application is essential for proper test execution.
A key scenario has some peculiarities that characterize it, gathering access characteristics
of a user profile with the related functionalities, as well as the flow in which they occur.
In this activity, the main scenarios are extracted and the Performance Testing Plan is
updated with this information.

• P3.3 Determine Distribution of User Activities

After obtaining the main user profiles and key scenarios, it is necessary to make a rela-
tionship between them. So, profiles are allocated to the scenarios, and the Performance
Testing Plan is implemented with this information.

• D3.1 Plan and Design Workload

It is important to map the way that the workload behaves according to the used approach
(load, stress, volume, etc.). To define the workload project since each of these approaches

68 Chapter 6. PTBOK

has particularities that influence this behavior. Thus, in this activity, the Design Workload
is defined and elaborated and must be attached to the Performance Testing Plan.

• C3.1 Configure Ramps

Before the test run, we need to perform some configuration activities before running the
test. The first is to configure the workload ramp behavior. This ramp has three main
phases, ramp up, its steady state, and its ramp down. Each of these phases may happen
in different ways according to the test approach. Typically, the tools used for the test run
offer customized settings for the ramp configuration.

6.6.4 Environment

In the performance testing context, the environment domain covers everything
related to the infrastructure used in the test, both hardware or software. Thus, some key
activities related to this domain must be carried out while preparing the test environment,
tools, and resources needed to execute each strategy as resources and components become
available for testing, ensuring that the test environment is instrumented for monitoring
resources as needed.

Below, we detail the activities of this performance domain
Figure 30, shows the related activities to this performance domain, as well as the

stage in which they occur and which role is responsible for which activity.

Figure 30 – Environment Activities

Source – Author.

• P4.1 Identify the Test Environment

Environment information is analyzed in this activity. This includes both information
about the application’s production environment and information about the test environ-
ment that will be used in the test run. Environment planning includes possible requests

6.6. Performance Domains 69

for resources that can be made. Thus, in addition to environmental planning, the Testing
Environment Request should be added to the Performance Testing Plan.

• C4.1 Prepare the Test Environment

The second and last configuration activity is preparing the test environment. Then, we
must set up the tools and artifacts for the test execution. Configurations of the SUT and
also of the server, network, etc., are performed in this activity.

• M4.1 Monitor the Test Environment

This is the second monitoring activity and it aims to monitor the testing environment.
As in the test monitoring, we must record the information in two artifacts, in the Per-
formance Testing Plan and Performance Testing Report the environment status info, and
the environment monitoring info, respectively.

6.6.5 Acceptance Criteria

This domain has some characteristics that are similar to those of the requirements
domain. However, the main difference is that the acceptance criteria have a greater focus
on performance testing business rules, with an approach more focused on the results and
metrics, while the requirements domain looks at the application and lists the features to
be tested.

The main activities in this domain involve identifying the response time, through-
put, and resource utilization goals and constraints. In general, response time is a user
concern, throughput is a business concern, and resource utilization is a system concern.
Additionally, identify project success criteria that may not be captured by those goals
and constraints; for example, using performance tests to evaluate what combination of
settings will result in the most desirable performance characteristics.

Figure 31, shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

The activities of this performance domain are as follow.

• D5.1 Establish Performance Metrics

To carry out the activity that establishes the performance metrics, it is important to
gather information about the metrics that will be collected during the test execution.
These metrics fall into two categories, server and application metrics. After the defini-
tion, we need to create a baseline, which will establish the default values for the metrics
according to the test requirements.

• D5.2 Define Service Level Agreement

70 Chapter 6. PTBOK

Figure 31 – Acceptance Criteria Activities

Source – Author.

In summary, SLAs are specific goals that we set for the application. These goals are
based on the best possible interaction with users regarding performance. To carry out this
definition of SLAs, it is necessary to analyze the behavior of certain types of application
usage and map out arisen bottlenecks that can impair the application’s functioning. From
these values, it is possible to define SLAs. After performing the test, we must compare
these values with the values obtained during the test execution, indicating whether the
application meets the planned agreements.

• M5.1 Monitor the Performance Metrics

This activity aims to monitor performance metrics. As with other monitoring activities,
in addition to showing the information and alerts, it is necessary to record the monitored
data in the Performance Testing Report.

• A5.1 Validate Service Level Agreement

In this activity, we make a comparative analysis of the SLA with the metrics, intending
to validate the SLAs. It is important to detail whether the SLAs are consistent with the
test or the test is suitable for the SLAs. After performing this analysis, it is needed to
record the data of this validation in the Performance Testing Report.

6.6.6 Tools and Methods

Tools are extremely important for performance testing since testing without tools
to automate the process is impractical. Therefore, we have a specific domain that deals
with the tools and methods used. Tools are available on the market for virtually the
entire performance testing life cycle. As for the methods, some approaches to performance
testing (load, stress, spike, etc.), as well as techniques (scripting, capture & replay), should
be analyzed and chosen according to the test purpose and context.

6.6. Performance Domains 71

Figure 32, shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

Figure 32 – Tools and Methods Activities

Source – Author.

• P6.1 Choose Tool

During planning, it is possible to choose tools to support the test. So, the Performance
Architect must review the list of tools and choose the most appropriate for the context.
After that, it is important to register in the Performance Testing Plan the justification
and what requirements will be covered with the use of the tool.

• P6.2 Choose Method

Choosing the appropriate method for the test is an important task, as the method must
meet what is expected for the test. Hence, we extract the necessary information from the
specification document and then update the Performance Testing Plan. The list of ap-
proaches assists in the definition and choice of the method, as it brings the characteristics
of each of the methods and approaches used in the performance test. This choice involves
both issues of approaches (load, stress, spike, volume) as well as questions specific to the
method such as MBT, CR, among others. This activity ends the test planning activities.

• E6.1 Generate Workload

The basis of performance testing is workload generation. Thus, creating virtual users
that interact with the application by simulating real users may contribute. This load
generation is offered in an automated way by most tools, with the tester only being
responsible for its configuration and management. It is important to record the workload
status in the Performance Testing Plan.

72 Chapter 6. PTBOK

6.6.7 Reports

The main objective of the reports is to consolidate and share the results obtained
in the test, so they are considered important in that specific domain. Reports must be
detailed enough to support the performance engineer in making the decision, which may
include adaptations and repetitions in the test. A test that does not have reports with
relevant information, which indicates the application state according to the workload
performed, tends to have its usefulness compromised.

Figure 33, shows the related activities to this performance domain, as well as the
stage in which they occur and which role is responsible for which activity.

Figure 33 – Reports Activities

Source – Author.

Below, we detail the activities of this performance domain.

• E7.1 Collect Data

After the beginning of the test run, we must collect data related to the metrics that were
defined in the planning and in the Project. The use of specific tools is essential to carry
out this activity. We record the metrics collected in the Performance Testing Report.

• A7.1 Build Graphs and Charts

The graphs and tables build are very important to show intuitively the data obtained in
the test execution and consequently in the test reports. The vast majority of tools used
to run the test support a considerable variety of graphs. In general, for each metric, it
is possible to generate a graph or table or merge metrics in combined graphs. If the test
execution tool does not support this type of representation, one can use external tools

6.7. Artifacts 73

that enable this creation since the information present in the Performance Testing Report
must be intuitive for the team.

• A7.2 Analyze Results

In this activity, one needs to analyze the results. Hence, the person responsible for the
analysis should have some mathematical knowledge and statistical principles to interpret
the test results. Some tools perform this analysis in an automated way or even assist
the user in such analysis. However, despite the tool that helps a lot in this activity, the
analysis by the professional of the area cannot be disregarded because it is through it that
we may have a real understanding of the results obtained with the test.

• R7.1 Report Results

This activity ends the testing process and aims to report the results, which may be from
two perspectives. The first is a technical vision that should provide useful evidence and
information to the technical team involved in the test, developers, architects, software
engineers in general. The second perspective focuses on stakeholders, customers in general,
who are interested in a report focused on business rules information affected by the test.
Three principles assist in the formulation of these reports: Report Early, that is, to make
the reports as early as possible, Report Visually, offering information with visual appeal,
and Report Intuitively, aiming to generate reports as intuitive as possible.

6.7 Artifacts

The most relevant artifacts in this context are as follows.

6.7.1 Performance Testing Requirements Specification

This artifact gathers the main information related to the test requirements. It is an
incremental document, just like the Performance Test Plan, that is, it is incremented with
information according to the target activities. The Performance Analyst is responsible
for preparing this document. However, due to a large number of activities making use
of it, some other roles such as Performance Architect and Performance Tester may also
make use of the document’s information, and also update it with information.

6.7.2 Performance Testing Plan

A Performance Testing Plan is a document elaborated by Performance Analyst
as means to, provide support and guiding the team in the whole test activities. In this
document, general testing features, such as testing type, scope, approach, and the steps
to achieve performance testing goals are explained.

74 Chapter 6. PTBOK

6.7.3 Model

This artifact is used as input in a technique known as Model-Based Testing. A
model is an abstraction of software behavior that enables reuse and facilitates the under-
standing of the flow of activities performed by the test.

6.7.4 Performance Script

A script is the main input artifact for running the test. Through it, the test
execution flow is defined since a script is represented by a set of instructions and may be
obtained automatically or manually. In the former, scripts are generated through tools
that use capture and replay mechanisms. On the latter one, scripts are generated through
a programming language code.

6.7.5 Workload

This artifact is responsible for modifying the SUT situation through its different
configurations. A workload may vary based on the test approach and it includes many
users, concurrent active users, data volumes, and transaction volumes, along with the
transaction mix. For performance modeling, a workload is associated with an individual
scenario.

6.7.6 Performance Scenario

In performance testing, the SUT must deal with different usage conditions. Those
conditions mapped out with their particularities are defined here as test scenarios. A
scenario maps out a given application context, within a determinate workload for a user
profile. It should be modeled on basis of usage patterns and log files. In other words, a
scenario must reflect real or expected system usage for performance testing.

6.7.7 Test Data

Test data consists of the test inputs. As in the performance test, one of the main
objectives is the detection of application bottlenecks, the test data should be as close
as possible to the application’s production environment. Therefore, the results obtained
with test data application are as reliable as possible.

6.7.8 Performance Testing Report

Test execution should produce reporting data. A technical report must contain
test results, organized in a way that allows their interpretation by stakeholders.

6.8. Guidelines 75

6.8 Guidelines

We have separated the various components present in the test activities into guide-
lines. Each activity may be supported with one or more of these components, and each
guideline, in turn, can be employed in one or more activities. In the modeling of PTBOK,
we have separated the guidelines by phases and it is also possible to view them grouped
in a single set. As an example of a guideline, we can mention the list of tools, which
details information about tools for performance testing. Other examples of guidelines are
the different approaches that can be used in the test, such as load, stress, spike, among
others.

6.9 Process Modeling

To model the process we use SPEM, with the EPF-Composer1 support. We instan-
tiate the main components of the metamodel to model the PTBOK2. Figure 34 shows a
screenshot of the modeled process. On the left side menu, one can see the process views.
In the center of the figure, we can see the process workflow. This workflow presents
some tabs, in which it is possible to view some information such as the work breakdown
structure, team allocation, and work product usage.

Figure 34 – PTBOK Process Modeling

Source – Author.

We separate the process into views, which provide a general and detailed visualiza-
tion. Also, the use of this metamodel provided a visualization with navigability between
the components and keeps the artifacts and parts of the process gathered and organized
in a central repository.

1 Available at:<https://www.eclipse.org/epf/downloads/tool/tool_downloads.php>
2 PTBOK is available at<lesse.com.br/ptbok>

https://www.eclipse.org/epf/downloads/tool/tool_downloads.php
lesse.com.br/ptbok

76 Chapter 6. PTBOK

6.9.1 SPEM x PTBOK Mapping

To model our process, we need to map each element of the SPEM to its respective
element in PTBOK. Tables 5.a and 5.b shows this relationship between the elements.
We followed the SPEM nomenclature pattern with some changes. The Task Definition
we define as an Activity. Disciplines represent the Performance Domains. For Stages
and Phases, we created custom categories, and the Guidances represent the PTBOK
Guidelines.

Table 5 – Mapping from the PTBOK to SPEM

(a) Method Content

SPEM PTBOK
Work Product
Definition Work Product

Role Definition Role
Task Definition Activity
Category/Discipline Performance Domain
Category/Role Set Role Set
Category/Custom Stages
Category/Custom Phases
Guidances Guidelines

(b) Process

SPEM PTBOK
Work Product Use Work Product Use
Role Use Role Use
Task Use Activity Use
Discipline Performance Domain
Guidances Guidelines

Regarding Process (Table 5.b), the PTBOK maintains the SPEM nomenclature,
except for the Task Use that we map the PTBOK activities and the SPEM guidances
representing the PTBOK guidelines.

6.10 Chapter Summary

In this chapter, we introduced PTBOK, detailing each of its components and
how they contribute to performance testing. Finally, we presented how the process was
modeled and the mapping between the components of the SPEM and those instantiated
in PTBOK.

77

7 EVALUATION
In this chapter, we present the survey that we conducted to evaluate the PTBOK.

Section 7.1 details the survey protocol. In Section 7.3, we present the main threats to the
study and how we mitigate them. Section 7.2 provides a discussion about survey results.
We intended to carry out another type of evaluation, a quasi-experiment. However, due to
the pandemic, we had to resize the research design and adopt a questionnaire to evaluate
the PTBOK.

7.1 Survey Protocol

In this evaluation, one more time, we follow the protocol proposed by Kasunic
(2005), as well as the survey that we detail in Chapter 5.

The main objective of the survey is to evaluate the modeled process (PTBOK)
from the point of view of experts in Performance Testing. This evaluation aims to get
improvement suggestions and possible issues. Also, participants will be able to indicate
the PTBOK applicability in the software industry.

Our target audience may encompass industry professionals who work directly or
indirectly with performance testing, which characterize the relevant population for our
study. These subjects may have different roles in their companies, the main relevance for
being part of the research is the knowledge about the performance testing process in their
organizations.

To obtain a relevant sample for the research, we adopted two (2) different strate-
gies. The first one is through direct contact with IT companies as well as specific per-
formance testing organizations. The second one is the survey dissemination in the social
network (LinkedIn1). For the latter, we specifically were looking for professional profiles
with a large experience in performance testing and who currently perform roles related
to performance testing in their companies.

To develop the questionnaire, we applied the same practices that we described in
Section 5.1.4. We used the Google Forms2 tool for the elaboration and analysis of survey
artifacts.

The survey was composed of the following artifacts:

• Consent Form: To record the participants’ agreement to participate in the assess-
ment;

• Profile Questionnaire: To collect information about the professional profile of
the participants;

• Presentation Video: Video containing general leveling information about Perfor-
mance Testing and the PTBOK presentation;

1 LinkedIn:<https://www.linkedin.com>
2 Google Forms:<https://docs.google.com/forms/>

https://www.linkedin.com
https://docs.google.com/forms/

78 Chapter 7. Evaluation

• Technical Questionnaire: Main form, containing the questions relevant to the
evaluation of PTBOK. We divided this questionnaire into 5 Sections.

In Section 1, we collect some personal data from participants such as names and
emails.

In Section 2, we discussed the PTBOK framework. So, we present the PTBOK
framework overview in Figure 15 and then some questions related to the complete-
ness and suitability of the process. Besides, we collected information about im-
provements and corrections suggested to PTBOK. In this section we use open and
closed questions, aiming to increase the quantity and quality of the information in
the answers.

Section 3 discussed Figure 16, which refers to the effort analysis in the phases and
stages of PTBOK.

• Perceived Usefulness (PU): Form containing 5 questions relevant to the evalu-
ation of PTBOK perceived usefulness (Section 4);

• Ease of Use (EoU): Form containing 5 questions relevant to the evaluation of
PTBOK ease of use (Section 5).

The reference model used to formulate perceived usefulness and ease of use questions
was the TAM (Technology Text Acceptance) Model, proposed by Davis (DAVIS,
1993).

Before applying the survey artifacts, we conducted a pilot with a similar sample
to our target audience. This pilot enabled us to validate and make improvements to the
survey protocol and artifacts. There were no significant changes in the artifacts from the
pilot we ran, just a few minor grammatical adjustments.

We adopted two strategies for distributing the questionnaire. The first one was
through a network of professionals from companies that apply performance testing. The
second strategy was to search on LinkedIn3, profiles involved in performance testing roles.
When contacting the participants, we detailed some information such as the confidentiality
of the data and the duration of the evaluation.

7.2 Results

The survey was available from December 2020 to May 20204. Eight (8) participants
performed the assessment, all of whom declared to have experience with performance
testing, having worked in organizations that apply performance testing, such as Dell5,
3 LinkedIn:<https://www.linkedin.com>
4 Survey data are available in:<https://bit.ly/3fAIgsH>
5 Dell:<www.dell.com>

https://www.linkedin.com
https://bit.ly/3fAIgsH
www.dell.com

7.2. Results 79

IBM6, and Netflix7. Besides, one of the participants also reported having experience in
this field in academia.

• Profile Questionnaire

Survey participants have the following profile. Regarding gender, there are two
women (25%) and six men (75%). Three participants work as Software Architects (37,5%),
and the others occupy the positions of University Professor, Performance Testing Engi-
neer, Developer, Performance Tester, and Performance Engineer, 12,5% each.

Figure 35 presents data related to the subjects’ experiences. The graph shows
results relating to the experience in the academic field, 62.5% have experience from 0 to
1 year, 25% from 1 to 3 years, and 12.5% have more than five (5) years experience in this
area. On the other hand, the experience in the industry area presents other data. 12.5%
have experience from 0 to 1 year, 37.5% have experience from 1 to 3 years, 25% from 3
to 5 years, and 25% reported more experience than five (5) years in the field.

Figure 35 – Subjects experience.

0 10 20 30 40 50 60 70 80 90 100

Academic

Industry

12.5%

25%25%

25%

37.5%

62.5%

12.5%

0-1 year 1-3 years 3-5 years 5+ years

Source – Author.

• Technical Questionnaire (TQ)

Regarding the Technical Questionnaire (TQ), we analyzed the responses from
two perspectives, internal cohesion of responses by applying the Cronbach’s Alpha anal-
ysis, and individual response analysis. Cronbach’s Alpha to TQ, which resulted in
𝛼 = 0.857, i.e. respondents tend to answer the same way for all TQ questions (TQ.1
- TQ.8). Figure 36 summarizes the results regarding each TQ question.

In TQ.1, we addressed the adequacy of the division among the stages of the PT-
BOK We can notice that 87.5% of the participants partially or totally agree that the
division is adequate. For 75% of the participants, the PTBOK performance domains and
activities are adequate (TQ.2 and TQ.4), and for 62.5% of the participants, the PTBOK
phases are adequate (TQ.3). 87.5% of the participants think that the flow of the perfor-
mance test process shown in PTBOK is correct and can assist in the performance testing
6 IBM:<www.ibm.com>
7 Netflix:<www.netflix.com>

www.ibm.com
www.netflix.com

80 Chapter 7. Evaluation

of web applications (TQ.5). Also, this same percentage of participants agrees that it is
possible to use the PTBOK in performance testing teams with segregation of responsibil-
ities (TQ.6). Regarding the use of PTBOK to support teaching in academia, 75% agree
that PTBOK may assist in teaching activities in the performance testing area (TQ.7).
In the last objective question of the technical questionnaire (TQ.8), we present the figure
that shows the PTBOK estimated effort.

100% of the participants agreed that the figure adequately represents the effort
employed in PTBOK performance domains, phases, and stages.

Figure 36 – Technical Questionnaire

0 10 20 30 40 50 60 70 80 90 100

TQ.1

TQ.2

TQ.3

TQ.4

TQ.5

TQ.6

TQ.7

TQ.8

50%

75%

62.5%

75%

37.5%

50%

75%

25%

37.5%

25%

12.5%

25%

50%

37.5%

12.5%

75%

12.5%

12.5%

12.5%

25%

12.5%

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Source – Author.

• Ease of Use

Regarding the Ease of Use (EoU), as well as TQ, we analyzed the responses
from two perspectives, internal cohesion of responses by applying the Cronbach’s Alpha
analysis, and individual response analysis. Cronbach’s Alpha to EoU, which resulted in
𝛼 = 0.887, i.e. respondents tends to answer the same way for all EoU questions (EoU.1
- EoU.5).

Figure 37 summarizes the results regarding each EoU question. In question EoU.1
we stated the PTBOK ease of use. The wide majority answered positively to this question,
87.5% answered strongly agree or agree. 75% of the participants will recommend the use of
PTBOK (EoU.2). 87.5 % of the participants agree that PTBOK is a good idea and that
it has easy access (EoU.3 and EoU.4). In the EoU.5 question, 50% agree that PTBOK
can facilitate the performance testing, while the remaining 50% answered strongly agree
to EoU.5 affirmation.

7.2. Results 81

Figure 37 – Ease of Use

0 10 20 30 40 50 60 70 80 90 100

EoU.1

EoU.2

EoU.3

EoU.4

EoU.5

25%

37.5%

25%

62.5%

50%

62.5%

37.5%

37.5%

25%

50%

25%

12.5%

12.5%

12.5%

25%

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Source – Author.

• Perceived Usefulness

Regarding the Perceived Usefulness (PU), as well as TQ and EoU, we ana-
lyzed the responses from two perspectives, internal cohesion of responses by applying the
Cronbach’s Alpha analysis, and individual response analysis. Cronbach’s Alpha to PU,
which resulted in 𝛼 = 0.887, i.e. respondents tend to answer the same way for all PU
questions (PU.1 - PU.5).

Figure 38 summarizes the results regarding each PU question. 87.5% agree that
PTBOK is useful for performance testing conduction (PU.1). In the PU.2 question,
although 62.5% agree that PTBOK can increase production in conducting the test, a
significant number (37.5%) partially disagree with this statement. 50% of the participants
agree that PTBOK produces results expected for a performance test process and that it
can decrease the time spent in test conduction (PU.3 and PU.4). Finally, in the PU.5
question, all the participants enjoyed using PTBOK, with 50% agreeing and 50% strongly
agreeing.

Figure 38 – Perceived Usefulness

0 10 20 30 40 50 60 70 80 90 100

PU.1

PU.2

PU.3

PU.4

PU.5

50%

25%

25%

37.5%

50%

37.5%

37.5%

25%

12.5%

50%

12.5%

37.5%

12.5%

37.5%

12.5%

37.5%

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Source – Author.

82 Chapter 7. Evaluation

• Open Questions

We elaborated nine (9) open questions related to technical aspects of PTBOK. To
extract relevant considerations in open questions, we use the Dedoose8 tool for coding sup-
port. After analyzing the responses, we identified 3 (three) main codes: (I) Improvement
Suggestions, (II) Applicability, and (III) Positive Aspects, which we detail below.

I - Improvement Suggestions
This code concerns the improvements in PTBOK pointed out by the participants,

which we discuss below.
R1 suggested the inclusion of some activities that have a warm-up, listing some

tools that support it. For R4, it may be necessary to include an iteration path and the
leading of alternative flows after the test execution. In addition, R4 and R6 also suggested
further details of the roles involved in the process.

R7 presented some suggestions related to the order of some activities, such as
the choice of the test method before the tool choice. Another aspect addressed by R7
was that, in the analysis phase, it would possibly be more appropriate to build graphs
and reports after evaluating the SLA and requirements, through analysis with previously
published data, which could facilitate understanding.

II - Applicability
This code is related to the most suitable applicability to PTBOK, mainly under

two contexts: an organizational one, involving the size of teams and organizations, and
another identifying which software development methodologies would be most appropriate
for the use of PTBOK.

R1, R6, and R7 believe that PTBOK can be applied both to teams that work
with more traditional methodologies and to teams that adopt agile methods. In addition,
R7 justifies it by mentioning the ease of understanding the process as a facilitator of its
application. However, for R3 there is a lot of overhead, which may make it difficult to
apply it in agile processes.

Regarding the size of the organizations in which the application of PTBOK would
be more appropriate, in general, the participants answered that medium to large compa-
nies would have better applicability since there is a greater probability of having dedicated
performance testing teams. However, R5 understood the main concept when we conceived
PTBOK, which is its adaptability to different organizations, with the responsibility of tai-
loring the process according to their organizational structure and particularities. R2 states
that because it does not perceive feedback loop/back propagation signaling, it looks like
a process for waterfall teams. Using Agile, it would be necessary to merge part of the
activities and make the points of iterative/refinement evident.

III - Positive Aspects

8 Dedoose:<https://www.dedoose.com/>

https://www.dedoose.com/

7.3. Threats to Validity 83

This code addresses the most relevant aspects pointed out by the participants. We
seek to understand the main strengths of PTBOK from the professional opinion.

R1 succinctly defines his opinion of PTBOK with “It looks great!”. For R2
PTBOK is a very valuable effort in trying to standardize something that, in practice,
is often done without adequate preparation. R3 expressed that this process can be of
great support due to the clarity of the tasks and organization. The defined granularity
was mentioned by R4 as a positive point, emphasizing also that PTBOK contemplates
the main aspects of the performance testing. R5 says “I think it is very well docu-
mented and has a great visual and navigation quality. The process is easy
to follow and looks very instructive.” For R6, PTBOK represents an organized
and well-structured way of describing the performance process. It brings clarity and a
wide understanding that is often lacking to those who execute the process and to the
stakeholders of a performance team.

7.3 Threats to Validity

Construct Validity: Some threats may affect the validity of the constructor and
are related to the possibility of its generalization. To mitigate threats related to the
construct validity, we validated all artifacts produced by a performance testing expert,
also conducted a pilot questionnaire to gather issues and improvements to survey artifacts.
However, we were unable to mitigate the low statistical power related to the number of
participants.

Internal Validity: Threats to internal validity are forces that may alter the
independent variable. For the elaboration of the questionnaire, the questions were grouped
by similarity, and different strategies were used (open and closed questions). Also, we were
careful in synthesizing issues to avoid participants’ fatigue as much as possible.

External Validity: External threats can limit our ability to generalize the results
of the experiment externally. To mitigate threats related to the sample size, so that we
could find a meaningful sample for our context, different means of participants prospecting
were applied. We contacted participants through a social network and by direct contact
with IT companies.

Conclusion Validity: This type of threat is related to issues that may affect the
correct conclusions based on the relationship between treatments and the results of the
experiment. To mitigate these threats, we applied some strategies such as analysis using
tool-assisted coding and Cronbach’s Alpha analysis.

7.4 Chapter Summary

In this chapter, we presented the PTBOK evaluation. We conducted a survey in
which we collected the opinion of professionals in the performance testing area. By means

84 Chapter 7. Evaluation

of this evaluation, it was possible to gather info that allows us to understand positives
aspects, applicability, and improvements for the PTBOK. In this survey, we changed our
adherence strategy a little. Despite having a smaller number of participants, compared to
the survey described above, we obtained detailed responses and representative feedback.

85

8 CONCLUSION
Performance testing can bring numerous benefits to companies. With performance

testing, they may manage scalability, assess the adequacy of developed software perfor-
mance, and improve the performance. A defined process may assist those who deal with
performance testing in conducting this type of test (MEIER et al., 2007).

Firstly, an SLR gave us an academic perspective on performance testing. This
revision provides a feature model that was an initial basis for PTBOK. Then, through a
survey, we sought to understand the industry’s position concerning performance testing.
Therefore, we merged SLR to survey the results so that we could start the conception
of PTBOK. Hence, we mapped concepts of the SPEM metamodel and instantiated them
on PTBOK. So, we finally evaluated our study, through a survey with experts in the
performance testing area.

Our main contributions are listed below:

1. An SLR collecting, analyzing, and discussing thirty-seven (37) different works on
performance testing area;

2. A Feature Model with the main concepts related to performance testing;

3. A Survey with relevant information to the performance testing process from an
industry perspective;

4. Modeling of PTBOK in a concise metamodel.

We list some publications below that were originated in the context of our research.
Published:

• Norberto, M., Gaedicke, L., Bernardino, M., Legramante, G., Basso, F. P., & Ro-
drigues, E. M. (2019, October). Performance Testing in Mobile Application: a
Systematic Literature Map. In Proceedings of the XVIII Brazilian Symposium on
Software Quality (pp. 99-108).

• Girardon, G., Costa, V., Machado, R., Bernardino, M., Legramante, G., Basso, F.
P., & Neto, A. (2020, March). Testing as a service (TaaS) a systematic literature
map. In Proceedings of the 35th Annual ACM Symposium on Applied Computing
(pp. 1989-1996).

• Costa, V., Girardon, G., Bernardino, M., Machado, R., Legramante, G., Neto, A.,
& de Macedo Rodrigues, E. (2020, March). Taxonomy of performance testing tools:
a systematic literature review. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing (pp. 1997-2004).

• Legramante, Guilherme, et al. “Systematic Literature Review on Web Performance
Testing.” Anais da IV Escola Regional de Engenharia de Software. SBC, 2020.

86 Chapter 8. Conclusion

Under Review:

• Towards a Hybrid Process Modeling Approach based on SPEM and BPMN: the
Performance Testing Body of Knowledge. Submitted to Empirical Software Engi-
neering and Measurement - ESEM (Main Track).

Future Submission:

• Towards a Performance Testing Body of Knowledge (PTBOK). Future submission
to a Journal.

Open Questions
After conducting our study, some questions remain open. Although PTBOK al-

lows adaptability to traditional and agile software models, evidence obtained in the open
questions show that in the current form, PTBOK is more suitable for traditional meth-
ods such as waterfall or RUP and for teams that have well-defined roles in performance
testing conduction. Therefore, a relevant issue is an adaptation in the process to make
this more practical for agile teams so that a professional can act in different roles and use
methodologies such as SCRUM and XP.

We provide guidelines that may assist in performance testing conduction. However,
there is not a case study directed to the industry yet, which applies these guidelines to
teams that do not have experience with performance testing, or even that want to start
applying this type of test in their organizations.

Another relevant issue is the possibility of including a phase or activities related
to the testing warm-up. An applicability study is needed to verify how to merge this
warm-up to PTBOK.

Finally, we also give as an open question, the possibility of modeling the process
with some other technology or meta-model, or even the application of mechanisms that
allow better usability to the current PTBOK version.

Future Work
As future work, we will continue to investigate inputs to increase the body of

knowledge maintained at PTBOK. In addition, we are working on the design of a man-
agement tool for performance testing. Through it, we intend to use PTBOK as support
and to coordinate the technologies used in the test, keeping performance testing projects
in a repository that can assist organizations in managing performance testing, while also
maintaining the historical data on tests performed.

87

REFERENCES
A Guide to the Business Analysis Body of Knowledge (BABOK guide). [S.l.: s.n.]. Cited
at page 25.

ABRAN, A. et al. Software engineering body of knowledge. IEEE Computer Society,
Angela Burgess, 2004. Cited at page 25.

ALI, A.; BADR, N. Performance testing as a service for web applications. In: 2015
IEEE 7th International Conference on Intelligent Computing and Information
Systems, ICICIS 2015. Cairo, Egypt: [s.n.], 2015. p. 356–361. Cited 2 times at pages
33 and 39.

ANDERSON, K. S. et al. SWORD: Scalable and Flexible Workload Generator for
Distributed Data Processing Systems. In: Proceedings of the 38th Conference
on Winter Simulation. [S.l.]: Winter Simulation Conference, 2006. (WSC ’06), p.
2109–2116. Cited 2 times at pages 33 and 39.

ARORA, J. Web testing using UML environment models. In: 2016 International
Conference on Computing, Communication and Automation (ICCCA). [S.l.:
s.n.], 2016. p. 785–789. Cited 2 times at pages 33 and 39.

BERNARDINO, M.; ZORZO, A. F.; RODRIGUES, E. M. Canopus: A domain-specific
language for modeling performance testing. In: IEEE. 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST). [S.l.],
2016. p. 157–167. Cited 4 times at pages 17, 23, 33, and 39.

BLACK, R.; ROMMENS, J. L.; AALST, L. V. D. The Expert Test Manager: Guide
to the ISTQB Expert Level Certification. [S.l.]: Rocky Nook, Inc., 2017. Cited at
page 18.

BOONE, B. et al. SALSA: QoS-aware load balancing for autonomous service brokering.
Journal of Systems and software, v. 83, n. 3, p. 446–456, 2010. Cited 2 times at
pages 33 and 39.

BOURQUE, P. et al. The guide to the software engineering body of knowledge. IEEE
software, IEEE, v. 16, n. 6, p. 35–44, 1999. Cited 2 times at pages 24 and 25.

BRAGA, R. et al. A Machine Learning Approach to Generate Test Oracles. In:
Proceedings of the XXXII Brazilian Symposium on Software Engineering.
New York, NY, USA: ACM, 2018. (SBES ’18), p. 142–151. Cited 2 times at pages 33
and 39.

CAMARGO, A. A. de et al. An Architecture to Automate Performance Tests on
Microservices. In: Proceedings of the 18th International Conference on
Information Integration and Web-based Applications and Services. [S.l.]:
ACM, 2016. Cited 2 times at pages 33 and 39.

CHEN, S. et al. Towards Practical Modeling of Web Applications and Generating
Tests. In: 2010 4th IEEE International Symposium on Theoretical Aspects of
Software Engineering. [S.l.: s.n.], 2010. p. 209–217. Cited 2 times at pages 33 and 39.

DALAL, S. R. et al. Model-based testing in practice. In: Proceedings of the 21st
international conference on Software engineering. [S.l.: s.n.], 1999. p. 285–294.
Cited at page 17.

88 References

DAVIS, F. D. User acceptance of information technology: system characteristics, user
perceptions and behavioral impacts. v. 38, n. 3, p. 475 – 487, 1993. Cited at page 78.

ELVESAETER, B.; BENGURIA, G.; ILIEVA, S. A comparison of the essence 1.0
and spem 2.0 specifications for software engineering methods. In: Proceedings
of the Third Workshop on Process-Based Approaches for Model-Driven
Engineering. [S.l.: s.n.], 2013. p. 1–10. Cited 2 times at pages 9 and 26.

FERRARI, D. On the foundations of artificial workload design. In: Proceedings of
the 1984 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems. New York, NY, USA: ACM, 1984. (SIGMETRICS ’84), p. 8–14.
Cited at page 24.

FREITAS, A.; VIEIRA, R. An ontology for guiding performance testing. In: IEEE.
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT). [S.l.], 2014. v. 1, p. 400–407.
Cited 4 times at pages 23, 33, 36, and 39.

GAO, H.; LI, Y. Generating quantitative test cases for probabilistic timed Web Service
Composition. In: Proceedings - 2011 IEEE Asia-Pacific Services Computing
Conference, APSCC 2011. [S.l.: s.n.], 2011. p. 275–283. Cited 2 times at pages 33
and 39.

GARG, N.; SINGLA, S.; JANGRA, S. Challenges and Techniques for Testing of Big
Data. Procedia Computer Science, v. 85, p. 940–948, 2016. Cited 2 times at pages
33 and 39.

GIAS, A. U. et al. IVRIDIO: Design of a software testing framework to provide Test-first
Performance as a service. In: Third International Conference on Innovative
Computing Technology (INTECH 2013). [S.l.: s.n.], 2013. p. 520–525. Cited 2
times at pages 33 and 39.

HADHARAN, R. et al. End to End Performance Modeling of Web Server Architectures.
SIGMETRICS Perform. Eval. Rev., ACM, New York, NY, USA, v. 28, n. 2, p.
57–63, 2000. Cited 2 times at pages 33 and 39.

HANMER, R. S.; LETOURNEAU, J. P. A best practice for performance engineering.
Bell Labs technical journal, Nokia Bell Labs, v. 8, n. 3, p. 75–89, 2003. Cited 2
times at pages 33 and 39.

HUANG, X. et al. An adaptive performance modeling approach to performance profiling
of multi-service web applications. In: Proceedings - International Computer
Software and Applications Conference. [S.l.: s.n.], 2011. p. 4–13. Cited 3 times at
pages 33, 36, and 39.

JURIC, M. B. et al. Comparison of performance of Web services, WS-Security, RMI, and
RMI–SSL. Journal of Systems and Software, v. 79, n. 5, p. 689–700, 2006. Cited 2
times at pages 33 and 39.

KASUNIC, M. Designing an effective survey. [S.l.], 2005. Cited 3 times at pages 9,
43, and 77.

References 89

KIM, G.-H.; KIM, Y.-G.; CHUNG, K.-Y. Towards virtualized and automated software
performance test architecture. Multimedia Tools and Applications, Springer, v. 74,
n. 20, p. 8745–8759, 2015. Cited 2 times at pages 9 and 24.

KITCHENHAM, B. A. Guidelines for performing Systematic Literature Reviews
in software engineering. EBSE Technical Report EBSE-2007-01. [S.l.: s.n.],
2007. Cited at page 27.

KOZIOLEK, H. Goal, question, metric. In: Dependability Metrics. [S.l.]: Springer,
2008. p. 39–42. Cited 3 times at pages 11, 27, and 31.

KUN, W. et al. Performance analysis of the OGSA-DAI 3.0 software. In: Proceedings
- International Conference on Information Technology: New Generations,
ITNG 2008. [S.l.: s.n.], 2008. p. 15–20. Cited 2 times at pages 33 and 39.

LAUDAN, L. Science and hypothesis: Historical essays on scientific
methodology. [S.l.]: Taylor & Francis, 1981. v. 19. Cited at page 21.

LIU, X. et al. Distributed Testing System for Web Service Based on Crowdsourcing.
Complexity, v. 2018, 2018. Cited 2 times at pages 33 and 39.

MARCHEZAN, L. et al. Thoth: A web-based tool to support systematic reviews. In:
IEEE. 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). [S.l.], 2019. p. 1–6. Cited at page 27.

MARSZALKOWSKI, J. Prototype of high performance scalable advertising server with
local memory storage and centralised processing. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Budapest, Hungary: [s.n.], 2012. p. 194–203.
Cited 2 times at pages 33 and 39.

MEIER, J. et al. Performance testing guidance for web applications: patterns
& practices. [S.l.]: Microsoft press, 2007. Cited 7 times at pages 17, 23, 33, 36, 39, 49,
and 85.

MEMON, A. M.; SOFFA, M. L. Regression testing of GUIs. ACM SIGSOFT
Software Engineering Notes, ACM, v. 28, n. 5, p. 118–127, 2003. Cited at page 17.

MIRSHOKRAIE, S.; MESBAH, A.; PATTABIRAMAN, K. Guided Mutation Testing
for JavaScript Web Applications. IEEE Transactions on Software Engineering,
v. 41, n. 5, p. 429–444, 2015. Cited 2 times at pages 33 and 39.

MOLYNEAUX, I. The art of application performance testing: Help for
programmers and quality assurance. [S.l.]: O’Reilly Media, Inc., 2009. Cited at
page 23.

OMG. Software Process Engineering Metamodel SPEM 2.0 OMG Draft
Adopted Specification. [S.l.], 2006. Cited 3 times at pages 18, 25, and 26.

OMG, O.; PARIDA, R.; MAHAPATRA, S. Business process model and notation BPMN
version 2.0. Object Management Group, v. 1, n. 4, 2011. Cited at page 18.

90 References

PFAU, J.; SMEDDINCK, J. D.; MALAKA, R. Automated Game Testing with ICARUS:
Intelligent Completion of Adventure Riddles via Unsupervised Solving. In: Extended
Abstracts Publication of the Annual Symposium on Computer-Human
Interaction in Play. New York, NY, USA: ACM, 2017. (CHI PLAY ’17 Extended
Abstracts), p. 153–164. Cited 4 times at pages 33, 35, 36, and 39.

PMI. A guide to the project management body of knowledge (PMBOK
guide). [S.l.]: Project Management Inst, 2000. v. 2. Cited at page 25.

PONS, A. P. Improving the performance of client Web object retrieval. Journal of
Systems and Software, v. 74, n. 3, p. 303–311, 2005. Cited 2 times at pages 33
and 39.

PRODANOV, C. C.; FREITAS, E. C. de. Metodologia do trabalho científico:
métodos e técnicas da pesquisa e do trabalho acadêmico-2ª Edição. [S.l.]:
Editora Feevale, 2013. Cited at page 21.

PUTRI, M. A.; HADI, H. N.; RAMDANI, F. Performance testing analysis on web
application: Study case student admission web system. In: IEEE. 2017 international
conference on sustainable information engineering and technology (SIET).
[S.l.], 2017. p. 1–5. Cited 2 times at pages 33 and 39.

RODRIGUES, E. et al. PLeTsPerf a model-based performance testing tool. In: IEEE.
2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST). [S.l.], 2015. p. 1–8. Cited 3 times at pages 33, 36, and 39.

RODRIGUES, E. M. et al. Evaluating Capture and Replay and Model-based
Performance Testing Tools: An Empirical Comparison. In: Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. [S.l.]: ACM, 2014. Cited 2 times at pages 33 and 39.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach. [S.l.]:
Malaysia; Pearson Education Limited„ 2016. Cited at page 31.

SHARIFI, M.; TASHARROFI, S.; MAHMOUDZADEH, H. A new method on automated
web application testing. WSEAS Transactions on Computers, v. 4, n. 11, p.
1684–1691, 2005. Cited 2 times at pages 33 and 39.

SHULL, F.; SINGER, J.; SJØBERG, D. I. Guide to advanced empirical software
engineering. [S.l.]: Springer, 2007. Cited at page 44.

SNODGRASS, R. A relational approach to monitoring complex systems. ACM
Transactions on Computer Systems (TOCS), ACM, v. 6, n. 2, p. 157–195, 1988.
Cited 2 times at pages 33 and 39.

SOUZA, F. C. et al. Automating Search Strings for Secondary Studies. [S.l.]:
Springer International Publishing, 2018. 839–848 p. Cited at page 31.

SOUZA, T. Silva-de; TRAVASSOS, G. H. Observing Effort Factors in the Test Design
& Implementation Process of Web Services Projects. In: Proceedings of the 2Nd
Brazilian Symposium on Systematic and Automated Software Testing. New
York, NY, USA: ACM, 2017. (SAST), p. 7:1—-7:10. Cited 2 times at pages 33 and 39.

References 91

SPRENKLE, S. et al. Automated Replay and Failure Detection for Web Applications. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2005. (ASE ’05), p. 253–262.
Cited 2 times at pages 33 and 39.

STER, D. C. van der et al. Hammercloud: A stress testing system for distributed
analysis. In: IOP PUBLISHING. Journal of Physics: Conference Series. [S.l.],
2011. v. 331, n. 7, p. 072036. Cited 3 times at pages 33, 35, and 39.

SUBMITTERS, O. Essence–kernel and language for software engineering methods.
Citeseer, 2012. Cited at page 18.

SUBRAYA, B. M. Integrated approach to web performance testing: A
practitioner’s guide. [S.l.: s.n.], 2006. 1–368 p. Cited 7 times at pages 17, 18, 33, 35,
36, 37, and 39.

TSELIKIS, C.; MITROPOULOS, S.; DOULIGERIS, C. An evaluation of the
middleware’s impact on the performance of object oriented distributed systems. Journal
of Systems and Software, v. 80, n. 7, p. 1169–1181, 2007. Cited 3 times at pages 33,
35, and 39.

WOHLIN, C. et al. Experimentation in software engineering. [S.l.]: Springer
Science & Business Media, 2012. Cited 2 times at pages 27 and 47.

WOODSIDE, M.; FRANKS, G.; PETRIU, D. C. The future of software performance
engineering. In: 2007 Future of Software Engineering. [S.l.: s.n.], 2007. p. 171–187.
Cited 2 times at pages 17 and 23.

XIA, J. et al. An empirical performance study on PSIM. Computer Journal, v. 49,
n. 5, p. 509–526, 2006. Cited 2 times at pages 33 and 39.

XIA, X. et al. Multi-level logs based web performance evaluation and analysis. In:
ICCASM 2010 - 2010 International Conference on Computer Application
and System Modeling, Proceedings. [S.l.: s.n.], 2010. v. 4, p. V437–V441. Cited 2
times at pages 33 and 39.

XU, X. et al. URMG: Enhanced CBMG-based method for automatically testing web
applications in the cloud. Tsinghua Science and Technology, v. 19, n. 1, p. 65–75,
2014. Cited 3 times at pages 33, 35, and 39.

YIN, J. et al. A web performance modeling process based on the methodology of learning
from data. In: Proceedings of the 9th International Conference for Young
Computer Scientists, ICYCS 2008. Zhang Jia Jie, Hunan, China: [s.n.], 2008. p.
1285–1291. Cited 3 times at pages 33, 36, and 39.

93

INDEX
CR, 38

MBT, 38

PTBOK, 6, 18–20, 22, 26, 53, 75, 76, 85

SLR, 20, 21, 27
SPEM, 6, 18, 25, 26, 76

	Title page
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations
	List of acronyms
	List of symbols
	Table of Contents
	Introduction
	Motivation
	Objectives
	Main Contributions
	Organization

	Methodology
	Introduction
	Research Classification
	Research Design
	Chapter Summary

	Background
	Performance Testing
	System Architecture for Performance Testing

	Body of Knowledge
	Software & Systems Process Engineering Metamodel (SPEM)
	Chapter Summary

	Systematic Literature Review
	Protocol
	Research Questions
	Question Structure
	Search Strategy
	Selection Criteria
	Quality Assessment Criteria
	Data Extraction Strategy
	Selection Process

	Results and Discussion
	RQ1. What are the performance testing profiles/roles, artifacts, methods or approaches?
	RQ2. What are the performance testing stages and phases?
	RQ3. What are the performance testing activities, steps, or tasks?
	RQ4. What are the activities/tasks flow performed in performance testing?

	Chapter Summary

	Survey
	Survey Protocol
	Identify the research objectives
	Identify and characterize the target audience
	Design the sampling plan
	Design and write the questionnaire
	Pilot Questionnaire
	Distribute the Questionnaire
	Analyze the Results and Write a Report

	Threats to Validity
	Results
	Job Position
	Subjects Experience
	Maturity Level

	Chapter Summary

	PTBOK
	Framework
	Effort Analysis

	Role Set
	Roles
	Performance Analyst
	Performance Architect
	Performance Tester

	Stages
	Pre-Test
	Test
	Post-Test

	Phases
	Planning
	Design
	Configuration
	Execution
	Monitoring
	Analysis
	Reporting

	Performance Domains
	Requirements
	Scripts and Scenarios
	Workload
	Environment
	Acceptance Criteria
	Tools and Methods
	Reports

	Artifacts
	Performance Testing Requirements Specification
	Performance Testing Plan
	Model
	Performance Script
	Workload
	Performance Scenario
	Test Data
	Performance Testing Report

	Guidelines
	Process Modeling
	SPEM x PTBOK Mapping

	Chapter Summary

	Evaluation
	Survey Protocol
	Results
	Threats to Validity
	Chapter Summary

	Conclusion
	References
	Index

