
FEDERAL UNIVERSITY OF PAMPA

Ariel Góes de Castro

Towards Probe Planning for In-band
Network Telemetry

Alegrete
2021

Ariel Góes de Castro

Towards Probe Planning for In-band Network
Telemetry

Monography submitted to the Undergradu-
ate Program in Computer Science of Federal
University of Pampa in partial fulfillment of
the requirements for the Bachelor’s degree in
Computer Science.

Supervisor: Prof. Dr. Marcelo Caggiani
Luizelli

Alegrete
2021

SERVIÇO PÚBLICO FEDERAL

MINISTÉRIO DA EDUCAÇÃO

Universidade Federal do Pampa

ARIEL GÓES DE CASTRO

Towards Probe Planning for In-band Network Telemetry

Monografia apresentada ao Curso de
Ciência da Computação da Universidade
Federal do Pampa, como requisito parcial
para obtenção do Título de Bacharel em
Ciência da Computação.

Dissertação defendida e aprovada em: 10, maio de 2021.

Banca examinadora:

__

Prof. Dr. Marcelo Caggiani Luizelli

Orientador

UNIPAMPA

__

Prof. Dr. Arthur Francisco Lorenzon

UNIPAMPA

Prof. Dr. Fábio Diniz Rossi

IFFar

Assinado eletronicamente por ARTHUR FRANCISCO LORENZON, PROFESSOR DO MAGISTERIO
SUPERIOR, em 12/05/2021, às 10:18, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

Assinado eletronicamente por Fábio Diniz Rossi, Usuário Externo, em 12/05/2021, às 10:39,
conforme horário oficial de Brasília, de acordo com as normativas legais aplicáveis.

Assinado eletronicamente por MARCELO CAGGIANI LUIZELLI, PROFESSOR DO MAGISTERIO
SUPERIOR, em 12/05/2021, às 14:28, conforme horário oficial de Brasília, de acordo com as
normativas legais aplicáveis.

A autenticidade deste documento pode ser conferida no site
https://sei.unipampa.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
0523597 e o código CRC 52A72162.

This work is dedicated to my family, friends, and everyone else who helped me somehow
to achieve this moment in my life.

ACKNOWLEDGEMENTS
I first would like to thank my family. They have always supported me and provided

all kinds of support to make me happy, without measuring efforts. Certainly, none of
this would have been possible without their help. In addition, I am grateful for all
the friendships I created during my undergraduate period. I would like to thank the
partnerships and the sacred nights in Napoli, highlighting the illustrious presence of:
“Chico”, “Pipo”, Rafael, “Doug”, Marcelo, Robson and Diego. I would like to thank
Victor for having been my companion throughout this journey, being always present no
matter what. In addition, I would like to thank the people who helped me a lot to
grow professionally and as a person throughout my graduation. I am not able to express
everything in a few words, but I would like to thank some of them in particular. First,
I am forever grateful to Dr. Marcelo Caggiani Luizelli (friend and supervisor) for having
offered me all the motivation and tools since the moment I started to conduct research.
I would also like to thank Dr. Arthur Francisco Lorenzon for his sincere friendship and
constant support expressed in different ways. Both were very close to me along these
years and I believe that both are examples of people and professionals to be followed.
Finally, I apologize for not mentioning everyone involved in this short thanks.

“When you’re backed against the wall, break the goddamm thing down.” – Harvey
Specter

RESUMO

In-Band Network Telemetry (INT) é um mecanismo emergente para o monitoramento de
infraestruturas de redes programáveis. Apesar de iniciativas recentes para orquestrar a
coleta de estatísticas in-band dos dispositivios da infraestrutura, as abordagens existentes
ainda são limitadas quanto a (i) coleta de dados de telemetria de forma eficiente, quando
sujeito à restrições físicas de dispositivos programáveis e (ii) a recuperação do mecanismo
de monitoramento quando sujeita a falhas nos dispositivo de encaminhamento. Neste
trabalho, propõe-se o Probing Planning for In-Band Network Telemetry (P2INT) e o
Fault-Tolerant Probing Planning for In-Band Network Telemetry (FP2INT). P2INT co-
ordena como os pacotes de probes ativos são gerados e roteados de modo a garantir que
todos os enlaces sejam visitados e que todas as informações de telemetria da infraestru-
tura de rede sejam coletadas. Formaliza-se o problema de otimização que o P2INT resolve
com um modelo de Programação Linear Inteira Mista. Para resolver o modelo de maneira
eficiente, propõe-se uma math-heuristic (isto é, uma heurística baseada em mathematical
programming). A ideia chave da math-heuristic proposta é resolver partes do modelo
de otimização iterativamente, determinando quais variáveis do modelo são otimizadas e
quais são fixas. Ainda, formalizou-se o FP2INT e propôs-se uma abordagem heurística,
o Patcher – planejamento de probes tolerante a falhas para INT, o qual reconstrói ciclos
de probes afetados por dispositivos falhos, garantindo que todos os enlaces e estatísticas
in-band afetados mantenham-se ativos no monitoramento realizado. Este trabalho é o
primeiro esforço de pesquisa na direção de resolver formalmente esses dois problemas. Os
resultados mostram que P2INT supera os trabalhos existentes na literatura por um fator
de até 6x em relação ao número de ciclos de probes gerados, enquanto Patcher reduz o
número de ciclos de probes necessários em até 5,5x em comparação com solução existentes,
sem aumentar a sobrecarga em coletores INT.

Palavras-chave: Telemetria In-Band, Software-Defined Network(SDN), Probes, Moni-
toramento de Rede

ABSTRACT

INT is gaining traction as an advanced network monitoring approach. Despite a few
recent initiatives to orchestrate the collection of in-band network statistics, state-of-the-
art approaches fall short when it comes to efficiently (i) collect telemetry items while
subjected to real-world constraints and (ii) considering the possibility of device failures
(e.g., power failure, hardware failure). In this research work, we introduce (i) P2INT
and FP2INT. P2INT coordinates how probing packets are generated and routed to en-
sure that all links are covered so that the required in-band network telemetry data is
collected. We theoretically formalize the problem as a Mixed-Integer Linear Program-
ming model and propose an efficient mathematical programming-based heuristic to solve
it, namely fix-and-optimize, which iteratively chooses which model’s variables would be
optimized, and which ones would be fixed (hence the name fix-and-optimize). Also,
we theoretically formalize FP2INT and propose a mechanism, namely Patcher – fault-
tolerant probing planning for INT, which reconstructs probing cycles affected by failure
nodes and optimizes them while ensuring all non-affected links/statistics are still being
traversed/collected. To solve this problem efficiently, we introduce a heuristic that wisely
finds a high-quality solution. To the best of our knowledge, this is the first attempt to
formally define and solve these problems. Results show that that P2INT outperforms
the closest contender by a factor of up to 6x concerning the number of probing cycles
generated, while Patcher reduces the number of probe cycles needed up to 5.5x compared
to a state-of-the-art solution, while not increasing the INT collectors’ load.

Key-words: In-band Network Telemetry, Software-Defined Network(SDN), Probe, Net-
work Monitoring

LIST OF FIGURES
Figure 1 – Example of int usage in a network infrastructure. 24
Figure 2 – Example of a solution for the Probing Planning problem, illustrating a

snapshot where probing packets (𝑓1, 𝑓2, 𝑓3) collect telemetry data from
selected network devices. 25

Figure 3 – SDN architecture overview. 28
Figure 4 – Programming a target with P4. 30
Figure 5 – P4 abstract forwarding model. 31
Figure 6 – Traditional and INT monitoring overview. 32
Figure 7 – Number of probing cycles for an increasing network size. 48
Figure 8 – Number of probing cycles for different probe capacity. 49
Figure 9 – Probe capacity usage. 49
Figure 10 – Transmission overhead. 50
Figure 11 – Collector load. 51
Figure 12 – Link overhead. 51
Figure 13 – Runtime. 52
Figure 14 – Reconstruction of the telemetry solution using Patcher. 54
Figure 15 – Number of probing cycles for an increasing network size. 59
Figure 16 – Collector load. 60
Figure 17 – Minimum distance to the closest collector. 61
Figure 18 – Average difference of |𝒞𝑝 ∩ 𝒞𝑝|. 61
Figure 19 – Average difference of |𝒯𝑝 ∩ 𝒯𝑝|. 62
Figure 20 – Trivial solution runtime. 62
Figure 21 – Patcher runtime. 63

LIST OF TABLES
Table 1 – OpenFlow action set. 29
Table 2 – Primary metadata in v1model switch. 34

LIST OF SYMBOLS
AMD Advanced Micro Devices

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

DCN Data Center Network

DDoS Distributed Denial of Service

DFS Depth-First Search

DPDK Data Plane Development Kit

FP2INT Fault-Tolerant Probing Planning for In-Band Network Telemetry

FPGA Field Programmable Gate Array

HPCC High-Performance Computing Cluster

IBM International Business Machines

IETF Internet Engineering Task Force

INT In-Band Network Telemetry

ISP Internet Service Provider

KDN Knowledge-Defined Network

MDT Model-Driven Telemetry

MIB Management Information Base

MILP Mixed-Integer Linear Programming

MTU Maximum Transmission Unit

NIC Network Interface Card

NP Nondeterministic Polynomial Time

NSH Network Service Header

OID Object Identifier

ONOS Open Network System Operating System

P2INT Probing Planning for In-Band Network Telemetry

P4 Programming Protocol-independent Packet Processors

POF Protocol Oblivious Forwarding

PTP Precision Time Protocol

QoE Quality of Experience

RAM Random Access Memory

RTT Round Trip Time

SDN Software-Defined Network

SLA Service Level Agreement

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VNS Variable Neighborhood Search

CONTENTS

1 INTRODUCTION . 23
1.1 Context and Motivation . 23
1.2 Research Problem . 25
1.3 Objectives and Contributions . 25
1.4 Outline . 26

2 BACKGROUND AND RELATED WORK 27
2.1 Network Programmability . 27
2.1.1 Control Plane Programmability 27
2.1.2 Data Plane Programmability . 29
2.1.3 Network Monitoring . 30
2.1.3.1 Traditional Network Monitoring vs INT monitoring 30
2.1.3.2 In-band Network Telemetry . 32
2.2 Related Work . 33
2.2.1 Programmable Control Plane . 34
2.2.2 Programmable Data Plane . 35

3 OPTIMAL AND SCALABLE PROBE PLANNING FOR IN-
BAND NETWORK TELEMETRY 41

3.1 Problem Overview . 41
3.2 Proposed Model . 41
3.3 A Math-Heuristic Approach to P2INT 44
3.3.1 Overview . 44
3.3.2 Obtaining an initial solution . 45
3.3.3 Neighborhood selection and prioritization 46
3.4 Results . 47
3.4.1 Setup . 47
3.4.2 Results . 48

4 FAULT-TOLERANT PROBING PLANNING FOR IN-BAND
NETWORK TELEMETRY . 53

4.1 Problem overview . 53
4.2 Model description and notation 54
4.3 Proposed Heuristic Approach . 56
4.4 Evaluation . 58
4.4.1 Setup. 58
4.4.2 Results . 59

5 FINAL REMARKS . 65

5.1 Achievements . 65
5.2 Future Work . 66

BIBLIOGRAPHY . 69

ANNEX A – ORCHESTRATING IN-BAND DATA PLANE
TELEMETRY WITH MACHINE LEARNING 75

ANNEX B – PATCHER: TOWARDS FAULT-TOLERANT
PROBING PLANNING FOR IN-BAND NET-
WORK TELEMETRY 81

ANNEX C – NEAR-OPTIMAL PROBING PLANNING FOR
IN-BAND NETWORK TELEMETRY 89

ANNEX D – THE ACTUAL COST OF PROGRAMMABLE
SMARTNICS: DIVING INTO THE EXIST-
ING LIMITS . 95

Index . 111

23

1 INTRODUCTION
In this chapter, we discuss the problem of orchestrating probes for In-band Network

Telemetry. First, we give a brief introduction to INT networks, followed by the problem
definition and its constraints. Then, we formally define the problem and our contributions
to this research.

1.1 Context and Motivation

INT has recently emerged as a promising near real-time network monitoring to im-
prove network visibility (JEYAKUMAR et al., 2014; LIU et al., 2018; GENG et al., 2019)
in contrast to traditional solutions (e.g., Simple Network Management Protocol (SNMP))
that lack network coverage and scalability. Since its inception, INT has been successfully
applied to a series of use cases, including the short-lived network behaviors (e.g., micro-
burst) detection and network anomalies (e.g., routing violations and black holes), to name
a few. Due to the rich spectrum of benefits behind INT adoption, there is increasing at-
tention from the Internet Engineering Task Force (IETF) 1 and the whole networking
ecosystem. It is noteworthy the INT concept has been unlocked and fostered by the rapid
adoption of programmable data planes and domain-specific networking description lan-
guages (e.g., Programming Protocol-independent Packet Processors (P4) (BOSSHART et
al., 2014)).

As an example of a possible utilization of INT, let us consider that you are at
the commodity of your home (see Figure 1) watching some streaming video service (e.g.,
Netflix) which has a set of minimum requirements, i.e., an Service Level Agreement (SLA)
(e.g., minimum bandwidth) to work properly. First, the quality of the video and sound
are crystal clear (Figure 1a). Suddenly, the video starts “freezing" (Figure 1b) and it
becomes an unpleasant experience for you – i.e., Quality of Experience (QoE). Then,
you decide to call your Internet Service Provider (ISP) to report the situation and hope
for a quick and time-efficient solution. However, most of the time, neither the user nor
the network operator has enough information from the infrastructure to provide a quick
and a time-manner way to troubleshoot and correct network anomalies. Therefore, the
monitoring of networks is increasingly necessary to keep the quality of services in the
network. In the illustrated example, one could collect telemetry information from the
infrastructure (e.g., from switches, routers) along the path taken from your house to the
Netflix server you are accessing to assist the network operator in taking corrective actions.

In short, INT consists of instrumenting the collection of low-level network moni-
toring statistics directly from the data plane. INT allows to collect information either (i)
passively (in-band) or (ii) actively (probe packets). In the first, we leverage free space in
real traffic packets to embed telemetry information. However, the in-band approach has

1 For instance: <https://tools.ietf.org/html/draft-song-opsawg-ntf-03>

https://tools.ietf.org/html/draft-song-opsawg-ntf-03

24 Chapter 1. Introduction

(a) Initial situation.

?
?

?

Delay

Microburst

(b) Failure situation.

Figure 1 – Example of int usage in a network infrastructure.

some limitations: (i) free space is variable for each traffic packet; (ii) there is little to no
control over the route taken by the information collected on the devices – i.e. until they
are directed to a collector for further analysis – making it difficult, for example, to collect
data at a specific point in the network. On the other hand, probing packets consist of
specially-crafted packets that instruct programmable forwarding devices to collect teleme-
try data and prevent aforementioned problems, but the probes must be orchestrated and
injected cautiously into the network so that an excessive amount does not generate pro-
cessing overhead in the routing devices. Therefore, in both problems, we chose to use
active monitoring (i.e., probing packets) to obtain more control in the orchestration of
information collection. Figure 2 illustrates the entire INT process. In the first step, we
generate the probing packets to instrument the telemetry data collection along a given
path. For example, the red flow (i.e. 𝑓1) – that is routed through the forwarding devices
𝐴, 𝐸, 𝐹 , 𝐺, 𝐻, and 𝐼 – carries instructions to collect telemetry data from devices 𝐴 to
𝐻. In the second step, the collected telemetry data is extracted and reported to an INT
collector.

Recent investigations have made the first efforts towards the orchestration of
INT data collection to improve network-wide visibility. Liu et al. (LIU et al., 2018),
Pan et al. (PAN et al., 2019), and Geng et al. (GENG et al., 2019) have focused on per-
forming network telemetry through active INT-based probing packets. These strategies
have relied either on Euler Circuits (LIU et al., 2018; PAN et al., 2019) or on actual rout-
ing paths (GENG et al., 2019) to instrument the forwarding of probes. In turn, Marques
et al. (MARQUES et al., 2019) and Hohemberger et al. (HOHEMBERGER et al., 2019)
have focused on the embedding of INT data into production network packets. Marques
et al. (MARQUES et al., 2019) designed heuristic approaches to orchestrate how network
flow packets collect network telemetry data, and Hohemberger et al. (HOHEMBERGER
et al., 2019) designed a machine-learning-based model that wisely chooses and collects
INT data based on its importance.

1.2. Research Problem 25

Probes flows

AE
B

C
F

G
H

DI

INT Collector

Telemetry data Probe packet

(1)

(2)

(3) (4)

f1
f2

f3

(5)

Figure 2 – Example of a solution for the Probing Planning problem, illustrating a snap-
shot where probing packets (𝑓1, 𝑓2, 𝑓3) collect telemetry data from selected
network devices.

1.2 Research Problem

Despite current efforts towards near real-time in-band network telemetry, the coor-
dination of INT probing packets to collect network information efficiently in terms of time
and space usage is still full of gaps and challenges. For example, little has yet been done to
provide fault-tolerant orchestration of INT mechanisms in programmable network infras-
tructures. The first attempts (LIU et al., 2018; PAN et al., 2019) to tackle this problem
contributed with initial steps but suffer from (i) uncoordinated probing packet generated
and (ii) neglected capacity constraints. Pan et al. (PAN et al., 2019) utilizes a straight-
forward Depth-First Search (DFS)-like a strategy to generate Euler Circuits, leading to
dozens of probing packets that increase the monitoring overhead towards the INT collec-
tors. Furthermore, relaxing capacity constraints from probe packets make the problem
easier to solve – but unrealistic from an operational perspective. Although existing solu-
tions have either focused on INT probes to monitor link connectivity (e.g., (LIU et al.,
2018; PAN et al., 2019)) or focused on the collection itself of INT data (e.g. (MARQUES
et al., 2019; HOHEMBERGER et al., 2019)), they still miss how to jointly optimize the
way to collect telemetry data and cover network links while being fault-tolerant.

1.3 Objectives and Contributions

The proposed study has two main goals: (i) formalize the Probe Planning for
In-Band Network Telemetry problem; and (ii) design efficient and scalable algorithmic
methods to timely compute quality-wise solutions.

Those goals unfold into a set of contributions of this work, described below. We
theoretically formalize P2INT as a Mixed-Integer Linear Programming (MILP) model and
propose a math-heuristic to tackle the problem. The model consists of a generalization of
two well-known optimization problems – namely, Capacitated Arc Routing problem and
Bin Packing problem (GAREY; JOHNSON, 1979) and, therefore, it is an Nondetermin-

26 Chapter 1. Introduction

istic Polynomial Time (NP)-hard problem. P2INT coordinates how to generate and route
probe packets to ensure that all links are visited while all required INT data is collected.
In summary, it works as follows. First, we compute a feasible solution to the problem.
Then, we leverage Variable Neighborhood Search (VNS) to iterate probing cycle sets and
merge them while prioritized subsets with higher potential for improvement. Also, we
theoretically formalize FP2INT and propose a polynomial-time heuristic that wisely finds
a high-quality solution with a mechanism namely Patcher. In the event of faulty forward-
ing devices, Patcher efficiently rebuild and fix monitoring cycles by applying ”patches” to
ensure that all links are visited and the required INT data is collected correctly. It only
rebuilds part of the solution affected by faulty nodes (i.e., network devices). In summary,
Patcher aims to maintain all links covered and telemetry collected from available network
devices.

This work that tackles orchestrating INT probes across entire network infrastruc-
tures – to cover all links and collect all telemetry items (i.e., P2INT) while it enables the
network infrastructure to be fault-tolerant – with regards to device failures and to keep
INT applications alive (i.e., FP2INT).

1.4 Outline

The remainder of this work is as follows. In Chapter 2, we overview the current
literature on traditional network monitoring, as well as for INT monitoring, and discuss
the state-of-the-art efforts towards network monitoring on programmable networks. In
Chapter 3, we introduce P2INT formally presenting a MILP model and a math-heuristic
approach to the problem. Next, Chapter 4 introduces the formalization of FP2INT and
Patcher. Finally, Chapter 5 summarizes the topics covered, our results, and planned
future work.

27

2 BACKGROUND AND RELATED WORK
In this chapter, we overview recent advances in network programmability, from

the control and data plane aspects. Then, we review the most prominent research studies
in this domain.

2.1 Network Programmability

The increasing number of network services (e.g., video streaming) and the com-
plexity behind network infrastructures hinder the ability of network providers to deliver
the best out of network application requirements (e.g., SLAs). The inability to properly
manage networks at fine-grained level information is due to the difficulty to change its
structure, inhibiting efforts to solve problems and innovate network management. There
are two main reasons for that: (i) the control and data plane are physically coupled and
(ii) there is a vast amount of different protocols running on devices.

With full network programmability, greater visibility can be achieved to guar-
antee different requirements of services running on the network infrastructure i.e., to
collect and gather more fine-grained information (see Table 2). Those pieces of informa-
tion are inaccessible in traditional switches and assist the network operator at detecting
different network problems (e.g., micro-burst, heavy hitters) with higher accuracy than
most traditional methods, which relies on sampling (e.g., NetFlow (CLAISE et al., 2004),
SFlow (PHAAL; PANCHEN; MCKEE, 2001)) or polling (SNMP (CASE M. FEDOR,
1989)). The aforementioned methods are not suitable for different reasons (simultane-
ously): (i) network coverage is not guaranteed, since few telemetry targets result may
evade the supervision of network operators, missing key events to detect problems and
anomalies; (ii) scalability is essential for growing networks, such as large data centers
running dozens of different services with its heterogeneous requirements (e.g., minimum
bandwidth, maximum Round Trip Time (RTT)). This happens due to the control logic
being linked to forwarding devices (routers, switches), narrowing operators’ actions that
are usually pragmatic standard-driven using existing protocols. Problems like these can
be easily tackled with Sofware-Defined Networks (SDN) (Kreutz et al., 2015). SDN is a
paradigm that proposes to decouple the control logic from forwarding devices (data plane)
– allowing flexible operation and decisions over the network infrastructure.

2.1.1 Control Plane Programmability

SDN has emerged as an alternative for easing network programmability by de-
coupling the control plane from the data plane, i.e., physically separating the device’s
control logic from its forwarding engine. By decoupling the control logic from the net-
work devices, SDN allows many different network-management tasks to be more tactile
while increasing network reliability and performance for a variety of services. This de-

28 Chapter 2. Background and Related Work

Network OS

Control
application 1

...

Network-wide view

Control path OpenFlow switches

Control
plane

Data
plane

Control
application 2

Control
application N

OpenFlow

Figure 3 – SDN architecture overview.

coupling lowered network service providers’ timescale to develop and deploy new network
services. An example of this separation is OpenFlow. Recently, OpenFlow has been
widely adopted by the industry as an open interface that enables the intercommunication
between control and data plane. OpenFlow allows network operators to instruct how net-
work devices behave by modifying flow tables, which enables switches to assume different
network functions such as switches, routers, firewalls – to name a few.

OpenFlow came at an opportune time when the industry was urgent for technolo-
gies embracing more pragmatism in terms of network programmability, allowing to tackle
different challenging network events for troubleshooting (e.g., heavy hitters). OpenFlow
enables network hardware and software to evolve separately and eases the path for the
replacement of proprietary hardware and firmware by open source Network Operating
Systems (NOS) (e.g., (CASADO et al., 2006; CASADO et al., 2007; GUDE et al., 2008;
BERDE et al., 2014)).

Figure 3 shows the SDN architecture overview. At the bottom (represented in
green) there is the data plane. The data plane is a southbound interface composed of
OpenFlow switches (or forwarding devices) responsible only for processing and forwarding
data packets. In its turn, the control plane (represented in red) represents the “intelli-
gence” of the SDN and offers a logically- centralized control. It is the northbound interface
that allows operators to instruct on how to manage the incoming data, where a network
OS (e.g., NOX (GUDE et al., 2008)) handles the requests from control applications and
translates them onto OpenFlow directives. The interaction between both planes is man-
aged by OpenFlow protocol, responsible for the insertion of instructions that match a
set of headers to perform different actions (e.g., to drop, or to forward network packets)
by updating flow tables in switches, allowing the device to behave like a switch, router,
firewall, or something in between.

2.1. Network Programmability 29

However, OpenFlow is limited by the data plane-supported features. For example,
OpenFlow 1.0 supports 12 header fields and that has grown to 42 in OpenFlow 1.5.1.
For instance, suppose we need to deploy a new network link protocol. In this case, even
having access to control plane programmability and OpenFlow interface, it is not possible
to use OpenFlow to instrument forwarding devices that do not support this new protocol.
In other words, as OpenFlow operates manipulating forwarding tables (e.g., by matching
on a given header), the hardware/software forwarding devices must offer support for it.
Table 1 summarizes some OpenFlow actions that can be performed on packets.

Table 1 – OpenFlow action set.

Action Description
copy TTL inwards apply copy TTL inward actions to the packet.
pop apply all tag pop actions to the packet.
push-MPLS apply MPLS tag push action to the packet.
push-PBB apply PBB tag push action to the packet.
push-VLAN apply VLAN tag push action to the packet.
copy TTL outwards apply copy TTL outwards action to the packet.
decrement TTL apply decrement TTL action to the packet.
set apply all set-field action to the packet.
qos apply all QoS actions, such as a meter, and set_queue to the

packet.
group if a group action is specified, apply the actions of the relevant

group bucket(s) in the order specified by this list
output if no group actions are specified, forward the packet on the

port specified by the output action
priority Set packet priority.

2.1.2 Data Plane Programmability

More recently, network programming languages such as P4 and Protocol Oblivious
Forwarding (POF) eased data plane programmability by allowing network programmers
to fully specify the internal pipeline process of forwarding devices. P4 has emerged re-
cently as an alternative to low-level data plane programming (e.g., C-like or Data Plane
Development Kit (DPDK)-based programming). P4 allows programmers to specify pro-
tocols, parsers, and how incoming packets are processed by forwarding devices in a target-
independent way using different solutions (e.g., software forwarding devices, Field Pro-
grammable Gate Array (FPGA)s, Neural Processing Unit (NPU)s).

The P4 workflow process to program a target is summarized in Figure 4. First, a
P4 code, an architecture model, and a P4 compiler are both provided by the user. P4 pro-
grammers write programs for a specific architecture, which defines a set of programmable
components at the target as well as their external data plane interfaces. When compiling
a set of P4 programs, two artifacts are produced: (i) a data plane configuration that

30 Chapter 2. Background and Related Work

Manufacturer supplied

P4 program

P4
architecture

model

P4 compiler API

Data plane runtime

Control plane

API

 Data planeTables Extern
objects

LOAD

LOAD

Target

User-supplied

Figure 4 – Programming a target with P4.

implements the forwarding logic described in the input program and (ii) an Application
Programming Interface (API) for managing the state of the data plane objects from the
control plane. The control plane communicates with the data plane using the same chan-
nel, but tables and other objects are not fixed anymore, since they are defined by the P4
program.

P4 was initially designed to program switches/forwarding devices. However, its
scope has been broadened to cover a large variety of devices (e.g., FPGAs, Network In-
terface Card (NIC)s, Application-Specific Integrated Circuit (ASIC)s) – as long as the
constructs can be implemented on all of those platforms with minimal resource usage. In
Figure 5, we illustrate the programmable forwarding pipeline model. Incoming packets are
forwarded via a programmable parser and are followed by multiple stages of match-action,
arranged in series, parallel, or a combination of both. The model is derived from Open-
Flow, but assumes some generalizations: (i) OpenFlow assumes a fixed parser, whereas
P4 supports a programmable parser to allow new headers to be defined; (ii) OpenFlow
assumes the match + action stages are in series, whereas P4 supports either in parallel or
in series stages; (iii) P4 model assumes actions to be composed of protocol-independent
primitives supported by the switch. Hence, P4 programs are target-independent. A com-
piler can map a variety of different forwarding devices (i.e., in the same architecture),
ranging from relatively slow software switches to the fastest ASIC-based switches.

2.1.3 Network Monitoring

2.1.3.1 Traditional Network Monitoring vs INT monitoring

Network Monitoring has the purpose to enable proper management operations,
providing network operators information about the network as the basis for the manage-
ment decisions on traffic engineering and anomaly detection (e.g., micro-bursting, heavy
hitters). Traditional monitoring, in the operational model (ZIMMERMANN, 1980), may
be described by a series of steps as in SNMP explained below.

2.1. Network Programmability 31

Control
program

Table
config

Action
set

Parse
graph

I
N
P
U
T

P
A
R
S
E
R

B
U
F
F
E
R

I
N
P
U
T

P
A
R
S
E
R

Match
Action

Match
Action

Match
Action Match

Action

Match
Action

Match
Action

Forwarding
rules

Forwarding
rules

Ingress pipeline Egress pipeline

Packets mods +
Egress Selection Packets mods

Figure 5 – P4 abstract forwarding model.

SNMP consists mainly of a collection of network management stations and a sub-
set of agent elements (see Figure 6a). To identify each monitoring element, there is an
Object Identifier (OID) for each device. Identified devices may read or set SNMP mes-
sages stored in its Management Information Base (MIB), which defines object properties
hierarchically and keeps track of its operations. The elements communicate by exchanging
messages (polling) through User Datagram Protocol (UDP) packets using SNMP proto-
col for further perform data measurement and data processing. The process works as
follows. First, data is collected from target devices at a certain rate, constituting the
collection phase. Right after, the collected data is aggregated and preprocessed into some
statistical format. Finally, the itemized data is transmitted to a station where further
analysis is performed, generating statistics that help identify particular events. Also, the
results may be exported. For example, (ALEXANDROV; KAZYMOV; PROKOSHIN,
2018) uses a data viewer called Grafana (GRAFANA, 2020) to monitor short-term and
long-term traffic statistics.

Accurately monitor different events on the network allows network operators to
solve network problems faster rather than spending a longer period looking for the problem
itself. Yet, traditional monitoring has striven to deliver “near” real-time visibility over
the network infrastructure because of insufficient network coverage and scalability. SDN
allows for improving how network monitoring performs. Figure 6 illustrates an overview
of the two models. The main differences between the traditional and INT model rely
on the collection phase and transmission phase. We can schedule (with a global view)
which devices the telemetry data is to be collected and at what frequency, with minimal
intervention from the operator. Also, open protocols (e.g., OpenFlow) allows operators
to defined specific data structures for their needs.

Despite that, there are existing limitations regarding data-plane programmability.
SDN only allows accessing coarse-grained data from devices by matching flow tables mod-
ified by the control plane. Therefore, it is impossible to access fine-grained internal-state

32 Chapter 2. Background and Related Work

End-Host

Agent 2

Data

Network Management Station

End-Host

Agent 3
MIB MIB

MIB

Agent 1

SNMP SNM
PSN

M
P

(a) Traditional monitoring.

End-Host P4/INT devices
Original data

INT data

INT Collector/
Analysis

SDN/P4 controller

User-specified path

Generate Queries

End-Host

Processed telemetry data

User data Telemetry data

(b) INT monitoring.

Figure 6 – Traditional and INT monitoring overview.

information (e.g., data-plane packet processing time) to provide higher visibility of the
network state and help identify problems timely with better accuracy.

2.1.3.2 In-band Network Telemetry

Traditional active and passive measurement techniques are either inaccurate or
resource-consuming. INT allows access to internal-state information (e.g., packet-processing
time) at the data plane. Network monitoring generally performs in an in-band fashion –
i.e., it forwards using the same links as traffic packets. Also, INT monitors in one of two
ways. In the first (i.e., active measurement), telemetry data is carried in network packets
of the active network by embedding an instruction header to user packets and directing
network devices to add the requested data into the packet along its route. By reaching
its final destiny, as in Figure 6b, all the telemetry data collected are sent to a collector
(INT sink) for further analysis where statistical information is extracted, whereas the
user data is sent to its original destination. The processed telemetry data is then sent to
an SDN controller where compliance requirements are checked and decisions are trans-
lated into new queries on the data plane’s devices. In the second, the process is similar.
However, specially-crafted probe packets are used to only carry telemetry information
on what telemetry data is to be collected. Probe packets are similar to regular network
packets. The difference is they are artificially created. These packets can follow a specific
format (LUCKIE; MCGREGOR; BRAUN, 2001) or be encapsulated in well-known pro-
tocols such as UDP, Transmission Control Protocol (TCP), or Network Service Header

2.2. Related Work 33

(NSH). One of the advantages of this approach is that it has more space for collect-
ing information since there is no user data embedded. However, an excessive number of
probes can also generate overhead in the pipeline of the routing devices. In this case, the
collection of telemetry data is only limited by the packet Maximum Transmission Unit
(MTU) – since there is no traffic data embedded in it.

The INT model is currently realized by high-level programming languages such
as P4. P4 language allows by default to access a wide range of telemetry data from
forwarding device architectures. For instance, the v1model architectural switch (BAS
C. CASCONE, 2020) describes the code specifications of a simple switch. We can find
in this architectural reference which metadata fields (or telemetry files) are available to
be collected. Examples of metadata include packet-queuing size, queuing timestamp, and
queuing depth (see Table 2 for a complete list of currently available metadata). Observe
that custom-made metadata can be designed by P4 programmers (for instance, heavy-
hitters data structures). It is also possible to count packets and bytes traversing the
device and mark certain packets to be dropped at the end of the processing, all being
performed in the data plane.

As an example, consider we want to collect telemetry information to monitor net-
work infrastructure. Regardless of the approach (e.g., using actives flows, probe packets),
by using P4 we specify each packet to collect a variety of internal-state variables (e.g.,
switch IDs, queue length, process time) along its path, allowing a more fine-grained level
of information available to the operator. By doing this, we can detect, e.g., micro-bursts,
which were previously unachievable with traditional monitoring.

2.2 Related Work

Next, we discuss the most prominent studies related to in-band network telemetry.
Recent advances in forwarding devices (e.g. Cisco (2018), Arista (2018), Juniper (2018),
Huawei (2018)) have enabled to continuously push telemetry information (i.e. via stream-
ing) to data collectors – known as Model-Driven Telemetry (MDT) (WU J. STRASSNER;
ZHANG., 2016). In this context, Putina et al. (PUTINA et al., 2018) proposed a mech-
anism for real-time detection of Border Gateway Protocol (BGP) anomalies, relying on
machine-learning techniques and Model-Driven Telemetry (MDT)-based telemetry data
streaming. Other studies have focused on the concept of in-band network telemetry
(INT) (BOSSHART et al., 2014). INT enables the inclusion of “telemetry instructions”
into available fields of packet headers. These fields instruct INT-capable devices what
telemetry data they should collect and write into the respective packets. Kim et al. (KIM
et al., 2015) show that it is possible, for instance, to discover which switches are causing
HTTP latency spikes in a network. In their evaluation, they considered an emulated
scenario (using Mininet (LANTZ; HELLER; MCKEOWN, 2010)) and took advantage of
the TCP options field to push INT instructions to collect queue time spent in the switch.

34 Chapter 2. Background and Related Work

Table 2 – Primary metadata in v1model switch.

Field Notes Size (bits)
ingress_port The port on which the packet arrived. 9 bits
packet_length The number of bytes in the packet. 32

bits
egress_spec Specification of an egress. Maybe a physical

port, a logical interface, or a multicast group.
9 bits

egress_port The physical port to which this packet in-
stance is committed.

9 bits

enq_timestamp Queue timestamp at entry queue. 32
bits

enq_qdepth Queue depth at entry queue. 19
bits

deq_timedelta Queue depth at the packet dequeue time. 32
bits

deq_qdepth Queue depth at exit queue. 19
bits

instance_type Represents the type of instance of the packet
(normal, ingress clone, egress clone, recircu-
lated, resubmitted). The representation of
this data is target-specific.

32
bits

ingress_global_timestamp Ingress global timestamp. 48
bits

egress_global_timestamp Egress global timestamp. 48
bits

mcast_grp Multicast group id (key for the mcast repli-
cation table.

16
bits

egress_rid Indicates that a verify_checksum() method
has failed.

16
bits

checksum_error 1 if a checksum error was found, 0 otherwise. 1 bit
priority Set packet priority. 3 bits

In the last years, several studies to enhance network visibility have been proposed.
These approaches rely either on a programmable control plane (e.g., using OpenFlow) or,
more recently, on a programmable data plane to tackle several monitoring tasks within
different scenarios (e.g., ISPs or Data Center Network (DCN)s).

2.2.1 Programmable Control Plane

Handigol et al. (HANDIGOL et al., 2014) designed NetSight, a platform that uses
a postcard approach. It introduces the concept of ”packet histories", i.e. information
of each switch state and header modifications along the routes. This is done by the
use of postcards in an out-of-band or in-band fashion. A protocol intercepts and stores
SDN-controller messages to generate a postcard for each packet matching the rule. The
postcards are then used by applications such as a debugger or a packet history logger

2.2. Related Work 35

to help detect problems such as loops and congested links. Everflow (ZHU et al., 2015)
extended INT concept by exploring the “match-and-mirror” functionality of commodity
switches. Everflow uses the INT concept to filter packets that satisfy given patterns (i.e.
matching) and send (mirroring) them to multiple data analyzers, which then can send
“guided probes” to investigate potential faults.

Tu et al. (Van Tu; Hyun; Hong, 2017) innovates by introducing Open Network
System Operating System (ONOS), an INT-based monitoring system. ONOS has dis-
tributed SDN controllers that create flow-level rules "match-action" fashion to instrument
INT packets to collect telemetry data at the packet level. The information analyzed can
then be displayed at, e.g. a web service and help identify problems in the infrastructure.
Gupta et al. (GUPTA et al., 2018) designed SONATA, a high-level interface to express
telemetry queries. Based on programmable data plane constraints, monitoring queries
are partitioned and processed in multiple devices – ensuring therefore that monitoring
queries and the packet forwarding still operate at line rate for high traffic volumes and
rates. Other studies (BASAT et al., 2017; SIVARAMAN et al., 2017) have proposed to
execute specific telemetry operations (e.g. heavy hitters identification) directly in the
data plane. However, telemetry operations are limited by the available capabilities (e.g.
memory) in forwarding devices.

(ADRICHEM; DOERR; KUIPERS, 2014; YU et al., 2015; RAMANATHAN;
KANZA; KRISHNAMURTHY, 2018) focused efforts on probe usage for network monitor-
ing. OpenNetMon (ADRICHEM; DOERR; KUIPERS, 2014) continuously monitors per-
flow metrics, like throughput, delay and packet loss based on predefined link-destination
pairs. Similarly, SLAM (YU et al., 2015) uses the time of arrival of the first and last
switches from a path to estimate the delay between links. In turn, SDProber (RA-
MANATHAN; KANZA; KRISHNAMURTHY, 2018) proactively generates probes to in-
spect the links to identify delays and congestion. The probes are routed using a random
walk approach to traverse (with different rates) each link in the network with different
frequencies adjusted iteratively.

2.2.2 Programmable Data Plane

Mazières et al. (JEYAKUMAR et al., 2014) introduced the seminal work on in-
band telemetry. They proposed the concept of Tiny-Packet Program (TPP) by modifying
Ethernet packets with a uniquely identifiable header that contains a set of instructions (at
most 5) allowing end-hosts to actively query networks’ internal state for DCNs. However,
the set of instructions is not expressive enough to implement all data plane network tasks
(e.g., per-packet scheduling).

PathDump (TAMMANA; AGARWAL; LEE, 2016) is a mechanism designed to
identify and debug anomalous behaviors in programmable network infrastructure. The
approach is based on the route taken by network packets and on the subsequent analysis

36 Chapter 2. Background and Related Work

of it. For that, PathDump keeps track of the packet’s route, employing INT instruction
in the forwarding devices. In turn, SwitchPointer (TAMMANA; AGARWAL; LEE, 2018)
further advances that approach, proposing to collect end-host telemetry information to
enhance the debugging capabilities – in addition to in-network telemetry information. The
telemetry data collected in the infrastructure is stored internally in the routing devices,
constituting a distributed “storage service” of monitoring information. This approach
reduces the cost and potential impact of constantly transmitting telemetry data to ana-
lyzers.

Other studies (MESTRES et al., 2017; HYUN; HONG, 2017; TU et al., 2018)
leverages the advances of both the control plane and the data plane (e.g., P4) to design
self-learning network architectures to control and operate networks. (MESTRES et al.,
2017) redefines Knowledge-Defined Network (KDN) (CLARK et al., 2003) and suggests a
knowledge plane that adopts AI and a cognitive system. Hyun and Hong (HYUN; HONG,
2017) proposes a model that consists of four planes that act together: (i) the data plane
where INT metadata is generated, extracted, and transmitted to (ii) the management
plane, which is responsible to store and aggregate the collected data for further analysis
in the (iii) knowledge plane. In (iii), the gathered data serve as the input to a machine
learning algorithm and is converted to requirements that aid Software-Defined Network
(SDN) controllers on (iv) the control plane to deploy INT requirements into programmable
switches. Similarly, INTCollector (TU et al., 2018) proposes a telemetry system where
INT probes help the collector identify called “events” on the data plane by the usage of
thresholds to achieve dynamic granularity. The events and recent data are stored in a
database where the SDN controller (e.g., ONOS (Van Tu; Hyun; Hong, 2017)) queries
information to learn about the network behavior in an automated fashion.

SpeedLight (YASEEN; SONCHACK; LIU, 2018) presents the design and imple-
mentation of a synchronized network snapshot protocol to collect network measurements
in the data plane. It takes into account the data plane can perform extremely fine-grained
in-band processing of network traffic, but it is limited by computation and resources avail-
able – while the control plane has opposite trade-offs. SpeedLight proposes to split the
responsibilities to take snapshots into the data plane and the control plane processing
units at switches/routers and snapshot observers. The process is as follows: (i) a host
acts as a snapshot observer that broadcasts a request on which device to take a snapshot
of a given metric at a given moment in the future; (ii) the control planes running on
each device synchronize using a protocol like Precision Time Protocol (PTP) to initialize
the snapshot; (iii) the data plane processes the queries, while the control plane gath-
ers the snapshots and detects its completion). In turn, FlowStalker (CASTANHEIRA;
PARIZOTTO; SCHAEFFER-FILHO, 2019) operates entirely on the data plane to avoid
communication time bottleneck between the controller and programmable switches to
gather telemetry items in a distributed fashion. The network is subdivided into clusters,

2.2. Related Work 37

based on a metric (e.g., latency time) that enables the information to be gathered as a
cluster event without the controller’s interference. The monitoring occurs in two phases:
(i) proactive phase: counts each incoming packet of a given flow and compares to a low
threshold that identifies flow targets; (ii) monitor target flows and collect per-flow (e.g.,
packet and byte counts) metrics and per-packet (e.g., timestamps) metrics. Besides, the
gathering process is only triggered by a high threshold, which avoids communication over-
head to the controller. However, the system lacks network query expressiveness due to
the existing hardware limitations while considering only a subset of flows to be monitored
timely.

Liu et al. (LIU et al., 2018), Pan et al. (PAN et al., 2019), Geng et al. (GENG et al.,
2019), Basat et. al (BASAT et al., 2020) and Lin et al. (LIN et al., 2020) have focused on
performing network telemetry through active INT-based probing packets. These strategies
have relied either on Euler Circuits (LIU et al., 2018; PAN et al., 2019) or on actual routing
paths (GENG et al., 2019; BASAT et al., 2020) to instrument the forwarding of probes.
Liu et al. (LIU et al., 2018) proposed NetVision, an attempt to provide an architectural
design to offer network telemetry as a service. NetVision enhance network visibility by
dynamically changing the routing policies applied to network flows. (LIU et al., 2018)
and (MARQUES et al., 2019) propose two heuristic strategies for collecting telemetry
data, namely, concentrate and balance. The proposed heuristics assign network flows
to forwarding devices. Once the assignment is defined, network flows collect telemetry
information from forwarding devices. The strategy named balance tries to distribute
equally the telemetry data over available network flows. On the other hand, the other
strategy – named concentrate – strives to aggregate telemetry data on a restricted number
of flows.

Pan et al. (PAN et al., 2019) were the first attempt to tackle this problem. How-
ever, these solutions have (i) generated uncoordinated probing packets, and (ii) neglected
existing capacity constraints. For example, Pan et al. (PAN et al., 2019) utilize a straight-
forward DFS-like strategy to generate Euler Circuits, leading to dozens of probing packets.
This increases the overhead to transmit probing packets to INT collectors as they need
to get to their respective sink. Further, relaxing capacity constraints of probing packets
make the problem easier to solve in practice – but unrealistic from the operational point
of view. Similarly, Lin et al. (LIN et al., 2020) present NetView, a telemetry system
that supports different telemetry frequencies, monitoring each device using active probes.
Each probe contains a (i) forwarding stack for each hop information and a (ii) telemetry
stack that gathers telemetry data along the path of the probe. Users can request teleme-
try queries through an API where a telemetry coordinator is responsible for generating
probes considering different frequencies of data collection and prioritizing high-frequency
query cluster demands to the lower ones.

Geng et al. (GENG et al., 2019) and Zhou et al. (ZHOU et al., 2020) leverage

38 Chapter 2. Background and Related Work

programmable switches and NICs. Geng et al. (GENG et al., 2019) propose SIMON, a
measurement system that reconstructs the network state by the collection of key network
state variables such as queuing times, link utilization, and queue composition. SIMON
takes advantage of existing NICs being able to retrieve data on an edge-based approach.
A mesh of probes reconstructs DCN networks by covering the paths on a per-packet
or per-flow basis. The reconstruction is based on network tomography and uses the
LASSO (TIBSHIRANI, 1996) inference algorithm that timely feeds a multi-layered neural
network and provides high accuracy to detect different problems. However, due to network
tomography limitations, SIMON limits itself to only operate in DCN networks where it
has full knowledge about the topology. In turn, NetSeer (ZHOU et al., 2020) selects
packets that experience flow events, minimize false-positives (duplication of reported flow
events), and aggregate sequential event (e.g., congestion) packets from flow into a single
flow event to aid on the location of anomalies (e.g., packet drops) in the network.

Basat et al. (BASAT et al., 2020) provide PINT, an in-band telemetry framework
for High-Performance Computing Cluster (HPCC) networks, that bounds the amount
of information added to each packet. PINT considers most applications do not require
perfect telemetry information and allows the encoding of requested query data per packet
as low as one bit on multiple packets. A query engine decides on an execution plan the
probability of running each query set on packets along its path. Instead of collecting all
items (per-packet per-switch), PINT aggregates data onto packets successfully reduces
overhead by the use of switch IDs instead of INT meta header in packets which reduces
the processing time at switches. However, PINT does not necessarily cover the whole
topology. Besides, it provides an only-aggregated view of the network state e.g., tracing
flows needs significantly fewer packets, but small flows may consist of a single packet,
which prevents from splitting the query telemetry data.

Most of the recent work (CHEN; HAO; GLOVER, 2016; TIRKOLAEE; MAH-
DAVI; ESFAHANI, 2018; ARAKAKI; USBERTI, 2019) do not consider there are (i)
one or more collectors (i.e., different depots) disposed on the network infrastructure, (ii)
items to be collected at each device (i.e., node constraints), and (iii) links to be satisfied
(i.e., edge constraints) concomitantly. (ARAKAKI; USBERTI, 2019) proposes a path-
scanning heuristic PS-Ellipse, for the known Capacitated Arc Routing Problem (CARP).
It constructs a feasible solution from an efficiency rule that selects the most promising
edges to serve next. In a similar way, (CHEN; HAO; GLOVER, 2016), (TIRKOLAEE;
MAHDAVI; ESFAHANI, 2018) present different meta-heuristic approaches to tackle the
problem. (CHEN; HAO; GLOVER, 2016) proposes a hybrid metaheuristic approach
(HMA-CARP) which incorporates local refinement and randomized tabu-search proce-
dures to the solution, while (TIRKOLAEE; MAHDAVI; ESFAHANI, 2018) proposes a
hybrid simulated annealing based on a heuristic algorithm for Periodic Capacitated Arc
Problem (PCARP) on urban waste collection. This version of the problem differs from

2.2. Related Work 39

CARP, mainly by (i) different vehicle (probe) capacity and (ii) maximum amount of time
to generate valid trips. In turn, Ma et. al (MA et al., 2014) investigate the problem of
identifying individual link metrics in a network from end-to-end path measurements with
a minimum number of monitor placements, under the assumption that link metrics are
additive and constant i.e., the combined metric over multiple links is the sum of indi-
vidual link metrics. Under an extensive formulation, it is shown the minimum number
of monitors necessary for satisfying link metrics is at least k (k=3, but typically more),
irrespective of the network topology. However, the Minimum Monitor Placement (MMP)
algorithm only solves optimally (linear time) iff the assumed paths of the packets are
routed in a cycle-free fashion i.e., monitors can direct measurement packets to selected
paths as long as they do not contain cycles.

As can be observed, current research efforts related to the in-band telemetry are
still restricted to mechanisms that mostly utilize collected telemetry data for new moni-
toring solutions (JEYAKUMAR et al., 2014; ZHU et al., 2015; TAMMANA; AGARWAL;
LEE, 2016; TAMMANA; AGARWAL; LEE, 2018; CHEN et al., 2019). The studies intro-
duced by (MARQUES et al., 2019) and (LIU et al., 2018) represent the first steps towards
the orchestrating of in-band network telemetry. However, they have focused on the or-
chestration of static and offline scenarios. Furthermore, none of these works consider, at
a design level, that devices may fail for a multitude of reasons (e.g., power failure, mis-
configuration), and thus, may compromise the network telemetry system, in addition to
not explicitly consider flow capacity constraints. By not considering capacity constraints,
the problem tackled by (MARQUES et al., 2019) becomes computationally tractable.
However, it limits the operation of the proposed strategies in a production environment.
As a first step in the direction of dynamic and online orchestration, it advances the state-
of-the-art by dynamically modeling the orchestration problem of in-band telemetry items
in a dynamic way and with the aid of machine learning models (e.g., (HOHEMBERGER
et al., 2019), (GENG et al., 2019)). Hohemberger et al. (HOHEMBERGER et al., 2019)
is the first attempt to coordinately collect telemetry items in real-time. They design a
machine-learning-based model and formalize the problem of collection to satisfy spatial
and temporal requirements i.e., consider items must be collected from specific devices and
at a certain rate, respectively to properly feed machine-learning applications on top of
the network to detect anomalies (e.g., Distributed Denial of Service (DDoS)). Similarly,
Pan et at. (PAN et al., 2019) utilizes Euler Circuits and DFS-like strategies to orchestrate
probing packets across the network. However, these works construct a static solution and
do not consider devices may fail.

As will be shown later, our approach can outperform state-of-the-art, coming up
with feasible, high-quality solutions for larger scenarios in a timely fashion. To the best
of our knowledge, our work is the first to simultaneously (i) collect all telemetry data
from devices, considering there may be one or more collectors, (ii) verify every link at the

40 Chapter 2. Background and Related Work

network infrastructure, and (iii) fault-tolerant with regards network devices.

41

3 OPTIMAL AND SCALABLE PROBE PLANNING FOR IN-BAND
NETWORK TELEMETRY

In this section, we present the Probe Planning for In-Band Network Telemetry
(P2INT) problem. First, we show a brief introduction to the problem. Then, an op-
timization model formally defines the problem and its constraints. Finally, we show a
near-optimal approach to the problem and evaluate it against the current state-of-the-
art.

3.1 Problem Overview

The P2INT problem consists of defining optimized probing cycles to cover network
infrastructure, i.e., in terms of telemetry data and network connectivity. It is noteworthy
that the complete network coverage, both in terms of links and nodes, enables the as-
sessment of end-to-end metrics based on different composition rules (e.g., multiplicative,
additive, and concave) (FILHO et al., 2018). This approach is crucial for operating in
large-scale networks such as the 5G device-to-device ecosystem, where path-based mea-
surements are prohibitive due to the massive number of available paths.

The P2INT problem is not trivially solved. First, probing packets are space-
bounded (i.e., w.r.t bytes), and therefore it is infeasible (in most cases) to collect all
network telemetry data with a single packet. Second, routing a probing packet is chal-
lenging. Probes need to be routed in such a manner that telemetry data requirements are
met while avoiding extra overheads on production network traffic (e.g., excessive genera-
tion of probing cycles).

Figure 2 illustrates a network infrastructure with nine programmable forwarding
devices (ranging from 𝐴 to 𝐼), each having exactly one equal-sized telemetry data (repre-
sented by colored rectangles). These telemetry data represent data planes’ internal states
(e.g., queue occupancy or processing time), which are used by specialized monitoring
applications (HOHEMBERGER et al., 2019) (e.g., DDoS detection). In the example,
probing packets are limited to collect at most five telemetry data. There exists a set of
active probing cycles (i.e., 𝑓1, 𝑓2, and 𝑓3) which are responsible for continuously (i) col-
lecting telemetry data and (ii) checking network connectivity. Probing cycles 𝑓1, 𝑓2, and
𝑓3 are routed and instrumented to collect a given subset of telemetry data. For instance,
probing cycle 𝑓1 collect telemetry data from forwarding devices 𝐴 to 𝐻, while probing
cycle 𝑓3 from devices 𝐷 and 𝐼. Observe that all network links are covered by at least one
probing cycle.

3.2 Proposed Model

The proposed optimization model considers a physical network infrastructure 𝐺 =
(𝐷, 𝐿) and a set of telemetry items 𝑉 . Set 𝐷 in network 𝐺 represents programmable

42 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

forwarding devices 𝐷 = {1, ..., |𝐷|}, while set 𝐿 consists of unidirectional links intercon-
necting pair of devices (𝑖, 𝑗) ∈ (𝐷 × 𝐷). Similarly to the literature (MARQUES et al.,
2019; HOHEMBERGER et al., 2019), we consider that there exists a set of telemetry
items 𝑉 available. Each forwarding device 𝑖 ∈ 𝐷 is able to embed a subset of items
𝑉𝑖 ⊆ 𝑉 into a probing packet. Each telemetry item 𝑣 ∈ 𝑉 has its size defined by function
𝑆 : 𝑉 → N+.

We consider there is at most 𝑃 probing cycles (i.e., 𝑃 = {1, 2, ..., |𝑃 |}) to collect
telemetry items from forwarding devices 𝐷. Packets in a probing cycle are encapsulated
in a forwarding protocol, and therefore the amount of available space to embed telemetry
items in packets is bounded by a constant, defined by function 𝑈 : 𝑃 → N+ (e.g.,
𝑈(𝑝) lower or equal to the MTU data link). Probing cycles 𝑃 are routed within the
network infrastructure 𝐺 – i.e., the packet is generated in a given source device, is routed
through a subset of devices, and returns to its origin. We denote the cycle taken by
the probing 𝑝 ∈ 𝑃 as function 𝒞 : 𝑃 → {𝐷1 × ... × 𝐷|𝐷|}. Probing cycles 𝑝 ∈ 𝑃 can
collect telemetry items from forwarding devices 𝑖 ∈ 𝒞(𝑝). The set of telemetry items
collected by probing cycle 𝑝 ∈ 𝑃 is represented by pairs (𝑖, 𝑣) : 𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉𝑖 and is
given by the function 𝒯 : 𝑃 → {𝐷 × 𝑉 }. A feasible cycle satisfy the upper-bound
𝑈(𝑝), that is ∑︀

𝑖∈𝒞(𝑝)
∑︀

𝑣∈𝑉𝑖:(𝑖,𝑣)∈𝒯 (𝑝) 𝑆(𝑣) ≤ 𝑈(𝑝). Observe that a given cycle 𝑝 ∈ 𝑃 can
visit a forwarding device 𝑖 ∈ 𝒞(𝑝) and not necessarily collect the set of telemetry items
associated. We denote the origin (starting/ending device) of each cycle 𝑝 ∈ 𝑃 as function
𝑂 : 𝑃 → 𝐷. Therefore, our model is generic to consider single- and multi-source probing
cycle scenarios (i.e., cycles might start at different forwarding devices).

Given the problem input, the optimization problem seeks a feasible solution that
minimizes the number of generated probing cycles, while visiting all network links and
collecting the required telemetry data. The model output is denoted by a 3-tuple 𝜒 =
{𝑍, 𝑋, 𝑌 }. Variables from 𝑍 = { 𝑧𝑝,𝑣,𝑖 , ∀ 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐷} indicate that a forwarding
device 𝑖 embed telemetry item 𝑣 into a probing packet from cycle 𝑝. Variables from
𝑋 = {𝑥𝑝,𝑖,𝑗 , ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿} indicate that network link (𝑖, 𝑗) ∈ 𝐿 is used to route
probing cycle 𝑝 ∈ 𝑃 . Last, variable 𝑌 = { 𝑦𝑝 , ∀𝑝 ∈ 𝑃} is used to keep track of probing
cycles used by the solution. Other auxiliary variable sets 𝑓𝑝,𝑖,𝑗 and 𝑏𝑖,𝑝 are used to ensure
cycle connectivity and sub-tour elimination. Next, we describe the MILP formulation for
this problem.

Minimize
𝑃∑︁

𝑝=1
𝑦𝑝 (3.1)

Subject to:∑︁
𝑝∈𝑃

𝑧𝑝,𝑣,𝑖 = 1 ∀𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉𝑖 (3.2)

𝑧𝑝,𝑣,𝑖 ≤
∑︁
𝑗∈𝐷

𝑥𝑝,𝑗,𝑖 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉𝑖 (3.3)

3.2. Proposed Model 43

𝑧𝑝,𝑣,𝑖 + 𝑥𝑝,𝑖,𝑗 ≤ 𝛼 · 𝑦𝑝 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿, 𝑣 ∈ 𝑉𝑖 (3.4)

∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗 −
∑︁
𝑗∈𝐷

𝑥𝑝,𝑗,𝑖 = 0 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷 (3.5)

∑︁
𝑝∈𝑃

𝑥𝑝,𝑖,𝑗 + 𝑥𝑝,𝑗,𝑖 ≥ 1 ∀(𝑖, 𝑗) ∈ 𝐿 (3.6)

∑︁
𝑖∈𝐷

∑︁
𝑣∈𝑉𝑖

𝑧𝑝,𝑣,𝑖 · 𝑆(𝑣) +
∑︁
𝑖∈𝐷

∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗 ≤ 𝑈(𝑝) ∀𝑝 ∈ 𝑃 (3.7)

∑︁
𝑗∈𝐷

𝑥𝑝,𝑗,𝑖 +
∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗 ≤ 𝛾 · 𝑏𝑖,𝑝 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷 (3.8)

∑︁
𝑗∈𝐷

𝑓𝑝,𝑖,𝑗 −
∑︁
𝑗∈𝐷

𝑓𝑝,𝑗,𝑖 = −1 · 𝑏𝑖,𝑝 ∀𝑖 ∈ (𝐷 −𝑂𝑝), 𝑝 ∈ 𝑃 (3.9)

𝑓𝑝,𝑖,𝑗 ≤𝑀 · 𝑥𝑝,𝑖,𝑗 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿 (3.10)

𝑧𝑝,𝑣,𝑖 ∈ {0, 1} ∀𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐷 (3.11)

𝑦𝑝 ∈ {0, 1} ∀𝑝 ∈ 𝑃 (3.12)

𝑥𝑝,𝑖,𝑗 ≥ 0 ∀𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐷 (3.13)

𝑓𝑝,𝑖,𝑗 ≥ 0 ∀𝑝 ∈ 𝑃, (𝑖, 𝑗) ∈ 𝐿 (3.14)

𝑏𝑖,𝑝 ≥ 0 ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷 (3.15)

Constraint set (3.2) ensures that generated probing cycles collect the required net-
work telemetry data. Constraint set (3.3) ensures that if telemetry item 𝑣 is collected
from forwarding device 𝑖, then there should have a probe being routed through 𝑖. Con-
straint set (3.4) accounts for the number of probing cycles in use. Constraint set (3.5)
ensures flow conservation on probing cycles. In other words, they generate probing cycles
without ramification or self-loops. In turn, constraint set (3.6) guarantees a probing cycle
covers at least one link direction. Constraint set (3.7) ensures that the available capac-
ity 𝑈(𝑝) is not violated either by the telemetry items collected or by the network links
covered. Constraint sets (3.8), (3.9), and (3.10) are the well-known sub-tour elimination
constraints, ensuring that generated probing cycles are strongly connected (GOLDEN;
WONG, 1981). Last, constraint sets (3.11)–(3.15) define the domains of output variables.
Constant 𝛼 and 𝛾 assume sufficient large values (i.e., 𝛼 ≥ |𝑃 | and 𝛾 ≥ |𝐿|)).

44 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

3.3 A Math-Heuristic Approach to P2INT

To tackle the P2INT complexity and come up with near-optimum solutions, we in-
troduce a fix-and-optimize approach, a mathematical programming-based heuristic (a.k.a.,
math-heuristic). Fix-and-optimize consists of iteratively choosing which model’s variables
would be optimized, and which ones would be fixed (hence the name fix-and-optimize).
It is important to notice the less variables are fixed, the closer it gets to the optimum as
there are there is more room for improvement – for this reason the quality of the solution
is “near-optimum".

3.3.1 Overview

To minimize the number of probing cycles in the solution 𝜒, the Fix-and-optimize
strategy optimizes just a few probing cycles at once, to merge them by reallocating teleme-
try data to other cycles. We select only a subset of cycles at a time to have more control
over the use of resources (e.g., memory). The model is executed using IBM ILOG CPLEX
(see Section 3.4, which uses a variation of a branch-and-bound algorithm. The tree de-
rived by this approach guarantees the optimum, but it can use an excessive amount of
memory. Despite this, one of the advantages is being able to iteratively get closer to the
solution without exceeding the capabilities of the device. We leverage INT-MD (eMbed
Data) (The P4.org Applications Working Group, 2020) mode to perform the INT opera-
tions on the probes – e.g., collect and route probe packets. In this mode, both instructions
and metadata are embedded into the packets. First, the source node embeds the INT
instructions indicating which metadata and hops are to be followed – e.g., this could be
achieved with source-routing. Then, both transit nodes – i.e., INT-enabled forwarding
devices along the probe path – and the source node aggregate metadata along the path
(INT switches). Finally, the sink node (destination INT switch) strips the instructions
and aggregated data and (selectively) sends the data to a monitoring system. Algorithm 1
presents an overview of the proposed approach. We first compute a feasible solution 𝜒 to
the P2INT problem (discussed in Subsection 3.3.2) (line 1). Then, we iteratively select a
subset of 𝑘 probing cycles (lines 5-10), and enumerate the list of variables 𝑥𝑝,𝑖,𝑗 ∈ 𝒟 ⊆ 𝑋

related to them (line 11); variables listed in 𝒟 will be subject to optimization, while others
will remain unchanged (line 12). The decision to make only a subset of cycles free at a
time is linked to the computational cost in terms of time and space. When solving the
problem in this way, it is possible to gradually improve the initial solution and stop at
any point during the execution.

We take advantage of meta-heuristic VNS (Variable Neighborhood Search) to sys-
tematically iterate over subsets of probing cycles. Further, we prioritize subsets with
higher potential for improvement – i.e., probing cycles that might be merged. (discussed
in Subsection 3.3.3). For each subset of probing cycles, we submit its decomposed set of

3.3. A Math-Heuristic Approach to P2INT 45

Algorithm 1 Overview of the fix-and-optimize heuristic.
Input: 𝑇𝑔𝑙𝑜𝑏𝑎𝑙: global time limit, 𝑇𝑙𝑜𝑐𝑎𝑙: time limit for each solver run, 𝒦𝑖𝑛𝑖𝑡,𝒦𝑒𝑛𝑑: initial/final

neighborhood size, 𝒦𝑖𝑛𝑐: increment for neighborhood size, NoImprov𝑚𝑎𝑥: max. rounds
without improvement

Output: 𝜒: best solution found to the optimization model
1: 𝜒← initial feasible solution
2: if a feasible solution does not exist then fail else
3: 𝑘 ← 𝒦𝑖𝑛𝑖𝑡

4: while 𝑇𝑔𝑙𝑜𝑏𝑎𝑙 is not exceeded and 𝑘 ≤ 𝒦𝑒𝑛𝑑 do
5: 𝒩𝑘 ← current neighborhood, i.e. tuples of 𝑘 probing cycles
6: 𝒩𝑘,𝑠ℎ𝑟 ← tuples from 𝒩𝑘, whose cycles share devices
7: 𝒩𝑘,𝑎𝑛𝑦 ← 𝒩𝑘 ∖ 𝒩𝑘,𝑠ℎ𝑟

8: NoImprov ← 0
9: while {𝒩𝑘,𝑠ℎ𝑟,𝒩𝑘,𝑎𝑛𝑦} ≠ ∅ and NoImprov ≤ NoImprov𝑚𝑎𝑥 do

10: 𝒯 ← next unvisited neighbor (w.r.t Equation 16)
11: 𝒟 ← list of variables 𝑥𝑝,𝑖,𝑗 from cycles in neighbor 𝒯
12: 𝜒′ ← solution 𝜒 optimized by the solver, under time limit 𝑇𝑙𝑜𝑐𝑎𝑙, and making

variables not in 𝒟 as fixed
13: if 𝜒′ is a better solution than 𝜒 then
14: update 𝜒 to reflect solution 𝜒′;
15: 𝑘 ← 𝒦𝑖𝑛𝑖𝑡;
16: break
17: else
18: NoImprov ← NoImprov + 1
19: end if
20: end while
21: if no improvement was made then 𝑘 ← 𝑘 +𝒩𝑖𝑛𝑐 end if
22: end while
23: return 𝜒
24: end if

variables 𝒟 along with 𝜒 to a mathematical programming solver. The goal is to obtain a
set of values to those variables listed in 𝒟, so that a better solution is found. In case there
is no improvement, we roll back and pick the probing cycle subset that follows. We run
this process iteratively until a better solution is found. Once it happens, we replace the
incumbent solution with 𝜒′ (line 14), and restart the process (i.e., 𝑘 ← 𝒦𝑖𝑛𝑖𝑡). This loop
continues until we have explored the most promising combinations of available cycles, or
𝑇𝑔𝑙𝑜𝑏𝑎𝑙 execution time is exceeded.

3.3.2 Obtaining an initial solution

The first step of Algorithm 1 (line 1) is generating a feasible solution 𝜒. The
solution must satisfy all constraints, though not necessarily a high-quality one, in terms
of used probing cycles. There are different ways to generate initial solutions to P2INT.
We adapted two existing approaches.

The first consists of adapting the Edge Randomization (ER) heuristic – an ap-
proach widely applied in Arc Routing Problems. ER starts a probing cycle from a random

46 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

unvisited network link. Then, the algorithm randomly chooses an adjacent forwarding
device and collects as many network telemetry items as possible. While the probing ca-
pacity is not depleted, the algorithm keeps repeating this procedure. Once it happens,
the probing cycle returns to its origin using the shortest-path approach. The procedure is
repeated until all network telemetry items are collected and all network links are visited.

The second approach is based on recent state-of-the-art work PathPlanning pro-
posed by Pan et al. (PAN et al., 2019). As previously mentioned, their proposal does
not consider probe capacity nor data plane telemetry items. We adapt their DFS-like
algorithm to consider both requirements in the best effort approach. Our adaptation of
the proposed DFS-like strategy only moves on to a next network link iff there is enough
capacity on the current probe to collect telemetry data and return to its origin. Observe
that other strategies could be useful for generating 𝜒 (e.g., turning the optimization model
into a factibility one by removing the objective function).

3.3.3 Neighborhood selection and prioritization

To solve the P2INT problem efficiently, we choose a subset of probing cycles 𝒟 ∈ 𝑋

that will be optimized. We explore the search space using VNS. In a nutshell, VNS orga-
nizes the search space in 𝑘-neighborhoods. Each neighborhood is determined as a function
of the incumbent solution (𝜒) and a neighborhood size 𝑘. We build a neighborhood as
a combination of any 𝑘 probing cycles. Formally, we define a 𝑘-neighborhood as a set
composed of 𝑘-tuples 𝒩𝑘 = { 𝑝 | 𝑝 ⊆ 𝑃 ∧ 𝑦𝑝 = 1 }. The number of neighbors in a 𝑘-
neighborhood is given by the binomial coefficient

(︁∑︀𝑃

𝑝=1 𝑦𝑝

𝑘

)︁
. We focus only on active

probing cycles to build our neighborhood. The reason is that the other variables in the
P2INT model are easily inferred once the probing cycles are defined. Note that other
auxiliary variables used by the model are also not part of the neighborhood structure.
With the “neighborhoods" structures, it is possible to solve the problem in parts and
quickly converge to the best solution – being able to stop the execution at any point.
This is desirable because loading all the variables in the model can generate a very large
derivation tree of the solver (i.e., CPLEX, see Section 3.4.1) taking up a lot of memory
space and more time to make the necessary cuts in the search for the optimal solution.

The time required by the solver to optimize a solution 𝜒 and a subset 𝒟 ⊆ 𝑋

is often small (in the order of msec.). However, processing every candidate subset 𝒟
from the entire 𝑘-neighborhood is impractical, especially for large network instances.
For this reason, we prioritize those neighbors that might lead to a better solution. We
prioritize tuples in the 𝑘-neighborhood set 𝒩𝑘 according to two observations: (i) it is
more probable to merge probing cycles if they are not over-committed (i.e., the higher
the residual capacity, the better); and (ii) it is easier to merge cycles that are close to
each other. We define a tuple priority, as a function of its residual capacity. The residual

3.4. Results 47

capacity of a tuple 𝒯 ∈ 𝒩𝑘 is given by 𝑟 : 𝒯 → R+, according to Equation 16.

𝑟(𝒯) =
∑︁
𝑝∈𝒯

⎛⎝𝑈(𝑝)−
(︂ ∑︁

𝑖∈𝐷

∑︁
𝑣∈𝑉𝑖

𝑧𝑝,𝑣,𝑖 · 𝑆(𝑣) +
∑︁
𝑖∈𝐷

∑︁
𝑗∈𝐷

𝑥𝑝,𝑖,𝑗

)︂⎞⎠ (16)

We break down a 𝑘-neighborhood set into two distinct sets. The first one is formed
by tuples whose probing cycles sharing forwarding devices (𝒩𝑘,𝑠ℎ𝑟) – i.e., ∩𝑝∈𝒯 ̸= ∅. The
second set is formed by remaining tuples in 𝒩𝑘 (𝒩𝑘,𝑎𝑛𝑦 = 𝒩𝑘 ∖ 𝒩𝑘,𝑠ℎ𝑟), i.e. those tuples
whose cycles do not share any forwarding device. We first process the tuples of 𝒩𝑘,𝑠ℎ𝑟.
Then, we process the remainder ones (𝒩𝑎𝑛𝑦). Last, Fix-and-Optimize takes as input
NoImprov𝑚𝑎𝑥. It indicates the maximum number of iterations without improvement that
is allowed over a given neighborhood. We stop processing the current neighborhood once
NoImprov exceeds NoImprov𝑚𝑎𝑥 (line 9).

3.4 Results

3.4.1 Setup

The proposed model was run using IBM International Business Machines (IBM)
CPLEX Optimization Studio 12.9 to obtain optimum solutions, while the proposed heuris-
tic approach was implemented using Java language. Experiments were performed on a
machine with Advanced Micro Devices (AMD) Threadripper 2920X processor and 80 GB
of Random Access Memory (RAM), using the Ubuntu 16.04 operating system. We con-
sidered different physical network instances generated with Brite (MEDINA et al., 2001),
following the Barabasi-Albert model (ALBERT; BARABÁSI, 2000). We used physical
network infrastructures varying from 10 to 200 forwarding devices and fixed a seed value
to ensure that the instances remain the same for different sizes. We vary the amount of
available space to embed telemetry items in probing packets (i.e. 𝑈(𝑝)) from 100 to 1500
Bytes. Further, we assume that forwarding devices have from 2 to 8 possible telemetry
items to export1, varying its size 𝑆(𝑣) uniformly from 2 to 20 Bytes (PAN et al., 2019).
P2INT considers the following parameters 𝑇𝑔𝑙𝑜𝑏𝑎𝑙 = 6ℎ, 𝑇𝑙𝑜𝑐𝑎𝑙 = 600𝑠, 𝒦𝑖𝑛𝑖𝑡 = 2, 𝒦𝑒𝑛𝑑 = 4,
𝒦𝑖𝑛𝑐 = 1, and NoImprov𝑚𝑎𝑥 = 15. The fine-tuning and sensitive analysis of these param-
eters is out of the scope of this work. Each experiment is repeated 30 times to ensure a
confidence level of 95% or higher.
Baseline. We consider the baseline to be the optimum solution. We compare the op-
timum against (i) the Edge Randomization (ER), (ii) the recent state-of-the-art work
proposed by Pan et al. (PAN et al., 2019), namely PathPlanning (PP) and the (iii)
Fix-and-Optmize (FixOpt) metaheuristic.
Reproducibility. Our implementation is publicly available in order to encourage full
reproducibility of our experiments2 and foster the design of new solutions.
1 In-band Network Telemetry: <https://p4.org/assets/INT-current-spec.pdf>
2 Available implementation: <https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/

https://p4.org/assets/INT-current-spec.pdf
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/

48 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

 1

 10

 100

 1000

10 20 30 40 50 100

#
 o

f
p
ro

b
es

 (
L

o
g
 1

0
)

Network size

Optimal
FixOpt

PP
ER

Figure 7 – Number of probing cycles for an increasing network size.

3.4.2 Results

We analyze the quality of the proposed approach by evaluating: (i) the number
of probing cycles generated; (ii) the resource usage of probing cycles; (iii) the data trans-
mission overhead to INT collectors; (iv) the INT collector usage; and (v) the network link
coverage.
Probing cycles. Figure 7 illustrates the amount of probing cycles generated for an increas-
ing size of network infrastructures (from 10 to 100). P2INT comes up with quality-wise
solutions compared to the optimal and the state-of-the-art approach PP. From a network
with 30 nodes to 40 nodes there is an inversion in the quality of the ER and PP heuris-
tics. Because ER is an approach with random decisions, there is no guarantee of the
quality of the solution and, in some cases, it can surpass other approaches (e.g., PP).
Fix-and-Optimize solution is able to approach the optimal value for small-scaled network
infrastructures (up to 20 nodes)3 At the same time, the PP produces solutions with up to
2x the number of probes considering small networks. For medium- to large-scale networks,
P2INT produces (on average) solutions with 2.2x and 3.70x fewer cycles compared to PP
and ER, respectively. This behavior is explained by the ability of P2INT to jointly route
probing packets and collect telemetry items.
Probe scalability. Figure 8 depicts the impact of probing packet capacity concerning the
number of generated cycles. For this evaluation, we show the results of a 50 node network
infrastructure4. As the available probe capacity increases, we observe a sharp reduction in
the number of probing cycles – as there is more room to accommodate network telemetry

>
3 Optimal solutions for large-scale (|𝐷| > 20) networks are unfeasible due to NP-hardness. For small

instances, the computing time surpasses 24h.
4 The results for other network infrastructures follow the same behavior.

https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/

3.4. Results 49

 0

 50

 100

 150

 200

 250

100 200 400 800 1500

#
 o

f
p
ro

b
es

Probe capacity

FixOpt
PP
ER

Figure 8 – Number of probing cycles for different probe capacity.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1500

R
at

io

Probe capacity

FixOpt
PP
ER

Figure 9 – Probe capacity usage.

data. When comparing P2INT to its contenders, we observe that it is able to generate
solutions with up to 5.5x and 4.6x fewer cycles than PP and ER, respectively – e.g., to
𝑈(𝑝) = 1500. It is also important to note ER may generate more cycles than necessary to
cover the network and its telemetry items when the probe capacity is constrained (e.g.,
100 to 400 Bytes) and this happens due to its random nature in the choice of places in
the creation of the cycles. On the other hand, if there is enough space to embed items,
this behavior gives ER the chance to achieve better probe capacity usage, compared to
the state-of-the-art, which reduces the total number of cycles (e.g., 𝑈(𝑝) = 1500).

Probe capacity. Figure 9 illustrates the average probing capacity usage by generated
cycles. Observe that P2INT can utilize up to 3x more available capacity than PP (e.g.,
𝑈(𝑝) = 1500). On average, P2INT utilizes 70% of available resources, while the other

50 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

A
v
g
.
tr

an
sm

is
si

o
n

o
v
er

h
ea

d
 (

in
 h

o
p
s)

of INT collector

FixOpt
PP
ER

Figure 10 – Transmission overhead.

strategies (PP and ER) use 48% and 50%, respectively. By using available resources ef-
ficiently, P2INT produces solutions with minimum overheads – i.e., since fewer probe
packages will be needed to cover the whole infrastructure.
Network efficiency. Probing cycles might be computed in a way that they are not routed
through an INT collector. In this case, at some point in the generated cycle, the collected
INT data must be sent to a given monitoring sink. For this evaluation, we consider that
there are up to five INT collectors placed optimally according to the requirements of
each solution. In other words, the INT collectors were placed connected to a forwarding
device in such a way that the distance (in hops) to probing cycles is minimized. Figure 10
illustrates the transmission cost (in hops) to the closest INT collector. We opt to illustrate
this cost in hops as the volume of transmitted data depends on the probe capacity/usage
and the frequency that probe packets are generated. Observe that the more INT sinks
are available in the infrastructure, the lower is the transmission overhead. It is expected
since with more collectors, there is a greater probability that a cycle will find a shorter
path, decreasing the transmission cost. Also, note that P2INT keeps this transmission
cost as low as possible even when there exists just one INT collector. On average, PP and
ER generate solutions with 1.38x and 2.26x higher transmissions overheads than P2INT,
respectively.
Collector load. Figure 11 shows the collector load as the number of probing cycles assigned
to each INT collector (from 1 to 5 collectors). Considering two INT collectors, solutions
can cover 83% (Fix-and-Optmize), 82% (PP) and 78% (ER) of all probing cycles. Also, as
explained in Figure 8, ER performs poorly when space in the probe is limited. It creates
an expressive number of probes and thus, may increase the average probes per collector
– especially when there are not many collectors available (e.g., 1 collector).
Network coverage. Figure 12 depicts the network link coverage as the average probing

3.4. Results 51

 0

 10

 20

 30

 40

1 2 3 4 5

A
v
g
.
#
 o

f
p
ro

b
es

p
er

 I
N

T
 c

o
ll

ec
to

r

of INT collector

FixOpt
PP
ER

Figure 11 – Collector load.

 0

 2

 4

 6

 8

100 200 400 800 1500

L
in

k
 o

v
er

h
ea

d
(#

 o
f

p
ro

b
es

 p
er

 l
in

k
)

Probe capacity

FixOpt
PP
ER

Figure 12 – Link overhead.

cycles per network link. Higher values indicate that network links are being over-covered
(i.e., multiple times), representing a waste of resources. P2INT, on average, keeps this
value close to one, while the other strategies produce solutions with network links begin
covered by up to seven probing cycles (i.e., 7x more than the necessary).
Runtime. Figure 13 shows the average runtime for an increasing size of infrastructure.
Both heuristics (ER, PP) are capable of running in practically constant time for small
instances and have a linear behavior. Our Approach, on the other hand, has an increase
of about 10x when doubling the size of the instance (e.g., 10-20). Despite being more
time consuming than the other strategies, our approach can come up with near-optimal
solutions. Yet, we believe that the Probe Plannning Problem solutions can be executed
in an offline manner and, therefore, there is no need for sub-second runtimes.

52 Chapter 3. Optimal and Scalable Probe Planning for In-band Network Telemetry

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40 50 100

R
u
n
ti

m
e(

s)
(L

o
g
 1

0
)

Probe capacity

FixOpt PP ER

Figure 13 – Runtime.

53

4 FAULT-TOLERANT PROBING PLANNING FOR IN-BAND NET-
WORK TELEMETRY

In this chapter, we theoretically formalize the Fault-Tolerant Probing Planning
for In-band Network Telemetry (FP2INT). First, we present a brief introduction to the
problem. Then, an optimization model formally defines the problem and its constraints.
Finally, we show an efficient heuristic approach to the problem and evaluate it against
the state-of-art.

4.1 Problem overview

The probing planning problem consists of designing probing cycles to cover a
network infrastructure in terms of telemetry data and links – that is, collecting data
plane telemetry statistics in near real-time using probing packets. By covering the network
infrastructure, INT enables building and maintaining an updated network-wide state –
which is crucial to large-scale networks. While previous studies have focused on building
feasible solutions to the in-band probing planning problem (e.g., (PAN et al., 2019; LIU
et al., 2018; HOHEMBERGER et al., 2020)), Patcher is the first effort to tackle fault-
tolerance at design. By “fault-tolerant”, we consider that Patcher deals with failures in
device-level, while still covering the whole network and its telemetry requests. In this
work, a failure represents an inoperative network device (e.g., switch, router) caused by
different reasons (e.g., power failure), so the interconnected links connected to this device
are inoperative and the device cannot forward any information whatsoever – i.e., in this
point, all pre-defined policies to work around the failure already failed. Patcher focuses
on building a feasible solution when (multiple) node failures occur. Suppose a given set
of programmable devices fail. To keep the in-band network telemetry monitoring alive,
the control plane (or the data plane) has to react and reorganize existing probing cycles
to keep the network-wide visibility timely. Figure 14b illustrates the case when a single
programmable device fails (i.e., node 𝐼). In this case, it affects the monitoring cycles
performed by 𝑓1 and 𝑓2. Patcher focuses on efficiently rebuilding those cycles to ensure
that all links are still being covered while collecting the required INT data from the data
planes.

For that, Patcher tries to minimize the changes in the current solution by applying
“patches” on affected cycles (and, therefore, the name Patcher). In this case, we fix the
probing cycle 𝑓1 (affected by the failure) by rerouting the probing cycle through nodes
𝐺→ 𝐻 → 𝐷 → 𝐴, instead of 𝐺→ 𝐼 → 𝐴 (where node 𝐼 has failed).

Re-optimizing probing cycles is an NP-hard problem and, therefore, it is not triv-
ially solved. The hardness of this problem is due to (i) existing space constraints on
probing packets (in the figure, they support up to six telemetry data); and (ii) ensuring

54 Chapter 4. Fault-Tolerant Probing Planning for In-band Network Telemetry

Probes flows

AE
B

C
F

G
H

DI

INT Collector

Telemetry data Probe packet

(1)

(2)

(3) (4)

f1
f2

f3

(5)

(a) Scenario without a failure node.

AE
B

C
F

G
H

DI

INT Collector
(1)

(2)

(3) (4)

f1
f2

f3

(5)

(b) Scenario with failure nodes.

Figure 14 – Reconstruction of the telemetry solution using Patcher.

cycle connectivity without any sub-tour (i.e., nodes on a cycle are all interconnected).
A naive solution consists of generating all probing cycles in the event of node failures.
Although it represents a feasible solution, it impacts the operation of active (and unaf-
fected) monitoring cycles as all probing cycles would need to be reprogrammed by the
control plane. Patcher, in contrast, focuses only on affected cycles – i.e., probing cycles
with at least a faulty node – and, therefore, can be used by the control plane to instru-
ment probing cycles in the event of failures, or directly by the data plane as a fast-failover
mechanism.

4.2 Model description and notation

Input. The optimization model considers as input a physical network infras-
tructure 𝐺 = (𝐷, 𝐿), a set of telemetry items 𝑉 , a set of active probing cycles 𝑃 , and
a set of faulty nodes 𝐷* ⊆ 𝐷. Set 𝐷 in network 𝐺 represents programmable devices
𝐷 = {1, ..., |𝐷|}, while set 𝐿 consists of unidirectional links interconnecting pair of de-
vices (𝑖, 𝑗) ∈ (𝐷 ×𝐷). There exists a set of telemetry items 𝑉 available in the network
𝐺. Each device 𝑖 ∈ 𝐷 is able to embed a subset of items 𝑉𝑖 ⊆ 𝑉 into a probing packet.
Each telemetry item 𝑣 ∈ 𝑉 has its size defined by function 𝑆 : 𝑉 → N+. Conversely, set
𝑉 * = ⋃︀

𝑑∈𝐷* 𝑉𝑑 represents the set of telemetry items in faulty nodes 𝐷*. Telemetry items
are collected by probing cycles 𝑃 = {1, ..., |𝑃 |}. We denote the routing cycle followed
by probing 𝑝 ∈ 𝑃 as function 𝒞 : 𝑃 → {𝐷1 × ... × 𝐷|𝐷|}. Probing cycles 𝑝 ∈ 𝑃 can
collect telemetry items from forwarding devices 𝑖 ∈ 𝒞(𝑝). The capacity of probing packets
(e.g., the MTU) is upper bounded by a given constant, defined as 𝑈 : 𝑃 → N+. The
subset of telemetry data collected by probing cycle 𝑝 ∈ 𝑃 is represented by a set of pairs
(𝑖, 𝑣) : 𝑖 ∈ 𝐷, 𝑣 ∈ 𝑉𝑖 and is given by the function 𝒯 : 𝑃 → {(𝐷×𝑉)×(𝐷×𝑉), ..., (𝐷×𝑉)}.
For simplicity, a pair (𝑖, 𝑣) ∈ 𝒯 is indexed as [1] and [2] to refer to the first and second
element, respectively.

Constraints. Next, we describe the main feasibility constraints related to the
problem. The problem is subject to (i) network telemetry coverage constraints; (ii) net-

4.2. Model description and notation 55

work link coverage constraints; (iii) cycle capacity; and (iv) cycle connectivity constraints.
(i) Network telemetry coverage: all network telemetry statistics available on data

plane devices 𝑉𝑖 : (∀𝑖 ∈ 𝐷) need to be collected by at least on active probing cycle 𝑃 . For
each network device 𝑖 ∈ 𝐷, we keep track of collected telemetry items by existing probing
cycles. Formally,⃒⃒⃒(︁ ⋃︁

(𝑝∈𝑃,(𝑗,𝑣)∈𝒯 (𝑝)
| 𝑖=𝑗)

(𝑗, 𝑣)[2]
)︁ ⋂︁

𝑉𝑖

⃒⃒⃒
=

⃒⃒⃒
𝑉𝑖

⃒⃒⃒
: (∀𝑖 ∈ 𝐷) (4.1)

(ii) Network link coverage: Network links 𝐿 from the network 𝐺 need to be covered
by at least on probing cycle 𝑃 . For each network link (𝑘, 𝑙) ∈ 𝐸, we count the occurrences
on existing probing cycles 𝑃 (which should be greater than one). Formally,

⃒⃒⃒ 𝑖≤(|𝒞(𝑝)|−1)⋃︁
(𝑝∈𝑃,𝑖=1
| 𝒞(𝑝)[𝑖]=𝑘

∧ 𝒞(𝑝)[𝑖+1]=𝑙)

(𝒞(𝑝)[𝑖], 𝒞(𝑝)[𝑖+1])
⃒⃒⃒
≥ 1 : (∀(𝑘, 𝑙) ∈ 𝐿) (4.2)

(iii) Cycle capacity: Probing cycles are upper bounded by 𝑈(𝑝) to embed data
plane statistics and accounting for used links and nodes. Usually, INT procedures utilize
up to 1 byte to store device/link ID. We sum the cycle length (i.e., |𝐶(𝑝)|) with the
telemetry usage to avoid creating unrealistic, lengthy cycles.
(︁ ∑︁

(𝑖,𝑣)∈𝒯 (𝑝)
(𝑗, 𝑣)[2] · 𝑆(𝑣)

)︁
+ |𝐶(𝑝)| ≤ 𝑈(𝑝) : (∀𝑝 ∈ 𝑃) (4.3)

(iv) Cycle connectivity: Probing cycles need to be well constructed. A valid cycle
𝒞 : 𝑃 → {𝐷1 × ... ×𝐷|𝐷|} is the one that starts and ends at the same device (Equation
4), while all devices 𝑖 ∈ 𝒞(𝑝) are pairwise strongly connected, i.e., any pair of devices in
𝒞(𝑝) are reachable to each other. To describe this property, we recall a auxiliary function
𝛿 : (𝑃 × 𝐷 × 𝐷) → {true, false} that returns true in case there exists a path between
node 𝑖 and 𝑗 in probing path 𝑃 , i.e. 𝒞(𝑝)[𝑖] → ... → 𝒞(𝑝)[𝑗], where (𝒞(𝑝)[𝑖], 𝒞(𝑝)[𝑖+1]) ∈ 𝐿.
Otherwise, function 𝛿 returns false.

𝒞(𝑝)[1] = 𝒞(𝑝)[|𝒞(𝑝)|] : (∀𝑝 ∈ 𝑃) (4.4)

𝛿(𝑝, 𝑖, 𝑗) = true : (∀𝑝 ∈ 𝑃),∀(𝑖, 𝑗) ∈ (𝐶(𝑝)× 𝐶(𝑝)) (4.5)

Given the feasibility constraints defined above, we assume there exists an assign-
ment function 𝒜 : (𝐺, 𝑉) → (𝒞, 𝒯) that, given a network infrastructure 𝐺, and a set of
telemetry items 𝑉 , it returns a feasible solution (𝒞, 𝒯), with respect to constraints (i),
(ii), (iii), and (iv).

Objective. Given a feasible solution (𝒞, 𝒯) and a set of faulty nodes 𝐷*, the
optimization problem seeks a new assignment 𝒜 : (𝐺 − {𝐷*}, 𝑉 − {𝑉 *}) → (𝒞, 𝒯) that

56 Chapter 4. Fault-Tolerant Probing Planning for In-band Network Telemetry

minimizes the number of changes in the current solution (𝒞, 𝒯). In other words, the
solution of 𝒜 and 𝒜 should be as similar as possible, despite the required changes with
respect of faulty nodes 𝐷* The objective function aims to minimize the changes made on
current probing cycles by maximizing the intersection between the current and the new
solution. Equation (6) describes the objective function. Observe that parameters 𝛼 and 𝛽

are used for weighting the importance of probing cycle structures (i.e., 𝛼) and telemetry
items assignments (i.e., 𝛽).

Maximize 𝛼 ·
∑︁
𝑝∈𝑃

|𝒞𝑝 ∩ 𝒞𝑝|+ 𝛽 ·
∑︁
𝑝∈𝑃

|𝒯𝑝 ∩ 𝒯𝑝| (4.6)

4.3 Proposed Heuristic Approach

To tackle the above problem efficiently – i.e., in terms of time and space – and
provide a quality-wise solution, we propose a heuristic procedure that only rebuilds parts
of probing cycles affected by the faulty nodes. Next, we overview the ideas behind our
proposed heuristic, and then we discuss the pseudo-code and its complexity analysis.

The heuristic procedure aims to maintain all network links covered while collecting
all telemetry items from the remaining devices working. The main idea consists of re-
constructing only affected cycles by faulty nodes Algorithm 2 summarizes Patcher. Our
heuristic receives as input a feasible solution (𝒞, 𝒯) and the set of faulty nodes 𝐷*. Such
a viable initial solution can be obtained, for example, through a constructive heuristic
that solves the CARP problem - i.e., that covers all network links (see Section 3.3.2). In
lines 1-5, we ”patch" all affected cycles1 by directly connecting the predecessor and the
successor of a given faulty node 𝑖 ∈ 𝐷*. We perform this new interconnection using the
shortest path. As we do not control the length of this new interconnection, it could be
that the applied ”patch" violates the probe’s capacity. In this case, we exclude telemetry
items from the affect cycles until it no longer violates the probe’s capacity (lines 6-11).
Then, the algorithm iterate over the unsatisfied items 𝑈𝑑𝑣 (i.e., those removed from prob-
ing cycles) and look for a probing 𝑝 ∈ 𝑃 that can collect it again (lines 12-19). If the
existing probing paths 𝑃 could not collect all the remaining items, we then create new
probing cycles for that purpose (lines 20-29). We sort telemetry items 𝑈𝑑𝑣 with respect
to forwarding devices 𝐷 to ensure that we collect items in a given order. Finally, we
apply a local search procedure (line 30) that further optimizes our incumbent solution.
The local search procedure strives to minimize the number of probing cycles by removing
cycles in which forwarding devices have already been covered by other probes. We iterate
over each pair of probing cycles, checking whether or not it is possible to delete. Our
proposed approach has a worst-case time complexity of 𝒪(𝐷 ·𝑉 ·𝑃), considering the most
consuming code section (lines 12-19).
1 We consider that there is some mechanism (e.g., timeout) responsible for informing that the device is

not working for the rest of the network infrastructure.

4.3. Proposed Heuristic Approach 57

Algorithm 2 Overview of the patcher procedure.
Input: (𝒞, 𝒯): initial solution; 𝐷*: subset of faulty nodes.

1: for all devices 𝑖 ∈ 𝒞(𝑝) : (∀𝑝 ∈ 𝑃) do
2: if 𝑖 ∈ 𝐷* then
3: 𝒞(𝑝)← 𝒞(𝑝)− 𝑖 ∪ ShortestPath(𝒞(𝑝)[𝑖−1], 𝒞(𝑝)[𝑖+1])
4: end if
5: end for
6: for all cycles 𝑝 ∈ 𝑃 such that Equation (3) is not satisfied do
7: while capacity 𝑈(𝑝) constraint is not satisfied do
8: exclude a collected item, until it does
9: Save item on 𝑈𝑑𝑣

10: end while
11: end for
12: for all unsatisfied items (𝑑, 𝑣) ∈ 𝑈𝑑𝑣 do
13: for all 𝑝 ∈ 𝑃 the cycles do
14: if cycle 𝑝 has residual capacity 𝑈(𝑝)− 𝑆(𝑣) ≥ 0 then
15: 𝑈𝑑𝑣 ← 𝑈𝑑𝑣 − (𝑑, 𝑣); 𝑈(𝑝)← 𝑈(𝑝)− 𝑆(𝑣)
16: 𝒯 (𝑝)← 𝒯 (𝑝) ∪ (𝑑, 𝑣)
17: end if
18: end for
19: end for
20: Sort (𝑑, 𝑣) ∈ 𝑈𝑑𝑣 regarding device 𝑑.
21: while 𝑈𝑑𝑣 ̸= ∅ do
22: 𝑃 ← new probe containing a cycle 𝐶(𝑝𝑛𝑒𝑤) which prioritizes unsatisfied items 𝑈𝑑𝑣

23: while (𝑑, 𝑣) ∈ 𝑈𝑑𝑣 do
24: if cycle 𝑝 has residual capacity 𝑈(𝑝)− 𝑆(𝑣) ≥ 0 then
25: 𝑈𝑑𝑣 ← 𝑈𝑑𝑣 − (𝑑, 𝑣); 𝑈(𝑝)← 𝑈(𝑝)− 𝑆(𝑣)
26: 𝒯 (𝑝)← 𝒯 (𝑝) ∪ (𝑑, 𝑣)
27: end if
28: end while
29: end while
30: Apply local search
31: return new solution (𝒞, 𝒯)

Algorithm 3 Overview of the local search procedure.
Input: (𝒞, 𝒯): initial solution containing the probing cycles, 𝒟: subset of failure nodes.
Output: 𝜒: best solution found after the procedure

1: 𝜒← (𝒞, 𝒯)
2: for all cycles 𝑝𝑖 ∈ 𝑃 do
3: for all other cycles 𝑝𝑗 ̸= 𝑝𝑖 do
4: if a 𝑝𝑗 ∈ 𝑃 cycles contains all of 𝑝𝑖’s devices and 𝒯 (𝑝𝑖) = ∅ then
5: 𝑃 ← 𝑃 − 𝑝𝑖

6: break
7: end if
8: end for
9: end for

10: return 𝜒

We further design a local-search procedure (Algorithm 3) that maintains all the
constraints (Section 4.2) satisfied. The idea of this procedure is to reduce non-optimized

58 Chapter 4. Fault-Tolerant Probing Planning for In-band Network Telemetry

probing cycles. From the initial solution (line 1) found by Patcher, we iteratively try to
reduce the number of cycles. Our goal is to look for other cycles that satisfy the same
subset of devices along its path and do not collect telemetry items – i.e., underused probes
(lines 2-9). If this condition is satisfied, the repeated cycles are excluded to simplify our
solution (line 5).

4.4 Evaluation

4.4.1 Setup.

All experiments were performed on a machine with an AMD Threadripper 2920X
processor and 80 GB of RAM, using the Ubuntu 16.04 operating system. We consid-
ered physical network instances that were generated with Brite (MEDINA et al., 2001),
following the Barabasi-Albert model (ALBERT; BARABÁSI, 2000). We used physical
network infrastructures varying from 10 to 100 forwarding devices. We vary the amount
of available space to embed telemetry items in probing packets (i.e. 𝑈(𝑝)) from 100 to
1500 Bytes. Further, we assume that forwarding devices have 8 possible telemetry items
to export2, varying its size 𝑆(𝑣) uniformly from 2 to 20 Bytes (PAN et al., 2019). Yet, we
consider that there exist a single faulty node (i..e, |𝐷*| = 1) in the network infrastructure
𝐺. In each execution, we vary this set to cover all devices 𝑖 ∈ 𝐷, ensuring that all devices
fail individually. We consider 𝛼 = 1 and 𝛽 = 1. As future work, we left the evaluation of
higher values for |𝐷*|, as well the fine-tuning of 𝛼 and 𝛽.

We compare the results obtained by Patcher against (i) the Edge Randomization
(ER) (BELENGUER et al., 2006), and (ii) the recent state-of-the-art work proposed
by Pan et al. (PAN et al., 2019), namely Path Planning (PP). Edge Randomization is a
heuristic procedure used to build feasible solutions to the arc routing problem. Specifically,
it is a variant of the Path Scanning (GOLDEN; DEARMON; BAKER, 1983) algorithm
for the Capacitated Arc Routing Problem (CARP), where each link has a demand to
be satisfied and a single starting point. We modified such a strategy to the problem
at hand as follows. We randomly select a starting device 𝑑 ∈ 𝐷 to start the probing
cycles 𝑝. While the capacity 𝑈(𝑝) is not violated, we collect all telemetry items 𝑉𝑖 of
the current node 𝑖 and randomly select the next forwarding device to further expand the
current probing cycle. At the point that the capacity 𝑈(𝑝) is reached, we return to the
origin forwarding device (the procedure ensures that there is enough capacity to make the
way back). In turn, Path Planning proposes a DFS-like strategy to create an Euler-trail
based algorithm. A trail is a walk in a graph without repeated edges. In turn, a Euler
trail visits each edge exactly once. In this strategy, Euler circuits are used. It is a special
Euler trail on which the starting/ending point is the same.

2 In-band Network Telemetry: <https://p4.org/assets/INT-current-spec.pdf>

https://p4.org/assets/INT-current-spec.pdf

4.4. Evaluation 59

 0

 50

 100

 150

 200

 250

 300

100 200 400 800 1500

#
 o

f
p
ro

b
es

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

Figure 15 – Number of probing cycles for an increasing network size.

Our initial solution to the problem (Chapter 4) is given according to the above
algorithms (i.e., ER and PP). On the event of a failure in devices 𝐷*, we apply Patcher
on top of existing solutions – mentioned as Patcher(ER) or Patcher(PP). Alternatively, we
re-execute algorithms ER and PP from scratch (considering faulty nodes 𝐷*) as a baseline
comparison.

Metrics. We focus our evaluation on five metrics: (i) number of probing cycles,
(ii) INT collector overhead (i.e., the number of probing cycles assigned to a given INT
collector), (iii) transmission overhead (i.e., the distance between the probing cycles and
the closest INT collector), (iv) the number of changes in current solution regarding links
(i.e., the difference between sets 𝒞𝑝 and 𝒞𝑝), and (v) the number of changes in current
solution regarding telemetry data (i.e., the difference between sets 𝒯𝑝 and 𝒯𝑝).

4.4.2 Results

Number of probing cycles. Figure 15 illustrates the average amount of probing cycles after
a given faulty node, varying probing cycle from 100 to 1500. Note that, in all graphs,
we show the average considering all faulty nodes 𝐷*. Patcher can substantially reduce
the number of probing cycles after an observed fault in comparison to ER (up to 5.5x)
and PP (up to 1.38x). it is mostly due to reorganizing existing probing cycles instead of
rebuilding a new solution from scratch. The number of probing cycles reduces as fewer
network telemetry items are to be collected (and links to be covered) in a faulty situation.

Collector and transmission overhead. Figure 16 and Figure 17 illustrate the collector and
transmission overhead, respectively. By collector overhead (Figure 16), it means that the
more probe packets are assigned to a given collector, the greater will be its workload. In
both figures, we increase the number of INT collectors from 1 to 5. These metrics are

60 Chapter 4. Fault-Tolerant Probing Planning for In-band Network Telemetry

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

C
o
ll

ec
to

r
o
v
er

h
ea

d
(#

 o
f

p
ro

b
es

)

of collectors

PP
ER

Patcher(PP)
Patcher(ER)

Figure 16 – Collector load.

calculated considering the optimal placement of INT collectors. That is, given a set of
probing cycles, we place the available INT collectors in a given set of forwarding node 𝐷 to
minimize the value of these metrics. Figure 16 illustrates the average collector overhead:
the amount of probing cycles assigned to each of them. The lower the number of INT
collectors, the higher is the overhead. When there is a fault in the network, we analyze how
this collector load is affected. Observe that Patcher reduces (up to 3x) this overhead as a
consequence of reducing the number of probing cycles (illustrated in Figure 15). In turn,
Figure 17 illustrates the average transmission overhead (i.e., the number of hops between
probing cycles and placed INT collectors). Like the collector overhead, the transmission
overhead is affected by the number of INT collectors. The more INT collectors, the lower
is the transmission costs – as this increases the chance of having an INT collector closer
to a given probing cycle. When a fault occurs, the transmission costs are maintained (or
reduced up to 60.9%) in comparison to re-executing the whole solution.
Changes in existing solutions. Figure 18 and Figure 19 illustrate the average amount of
changes required to implement a new solution on the event of a fault – regarding changes
in links and telemetry items assignments, respectively. Observe that these two metrics
are rather important in order to assess the recovery time taken by programmable network
infrastructure in the case of a fault. Note, as well, that these changes can be instrumented
directly by the control plane (e.g., by installing new rules in forwarding devices) or be
encoded into INT probing packets to be handled directly by the data plane. In either
case, a low number of changes are expected to reduce the recovery time or the resource
usage of probing packets. Figure 18 illustrates the number of probing cycle links that
have been changed from the initial solution to the new one (e.g., given by Patcher or
re-executing the algorithms from scratch). Observe that, in general, Patcher reduces
substantially the number of observed changes in existing solutions as it applies “patches”

4.4. Evaluation 61

 0

 5

 10

 15

 20

 25

1 2 3 4 5

A
v
g
.
tr

an
sm

is
si

o
n

o
v
er

h
ea

d
 (

in
 h

o
p
s)

of collectors

PP
ER

Patcher(PP)
Patcher(ER)

Figure 17 – Minimum distance to the closest collector.

 0

 5

 10

 15

 20

 25

 30

100 200 400 800 1500A
v
g
.
ex

ch
an

g
ed

 l
in

k
s

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

Figure 18 – Average difference of |𝒞𝑝 ∩ 𝒞𝑝|.

only on affected parts of probing cycles. Patcher can reduce up to 3.6x and 1.75x the
link changes (𝑈(𝑝) = 1500) in comparison to ER and PP, respectively. In turn, Figure 19
shows the number of telemetry items data has been re-assigned from one probing cycle to
another. It happens due to space constraints in existing cycles. Re-executing the whole
leads to totally different item attributions. We need to avoid that in order to assess the
recovery time taken by infrastructure in case of a fault. Eventually, a feasible solution
encompasses the reallocation of existing telemetry items among available probing cycles
when a fault occurs. As observed in the figure, the solutions produced by Patcher add a
negligible amount of changes in comparison to ER (up to 28.5x) and PP (up to 4x), when
probe capacity is equal to 1500 Bytes.
Runtime. Figures 20 and 21 depict the runtime for the trivial solution and Patcher,

62 Chapter 4. Fault-Tolerant Probing Planning for In-band Network Telemetry

 0

 10

 20

 30

 40

 50

 60

100 200 400 800 1500A
v
g
.
ex

ch
an

g
ed

 i
te

m
s

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

Figure 19 – Average difference of |𝒯𝑝 ∩ 𝒯𝑝|.

 0.001

 0.01

 0.1

 1

 10

 100

10 20 30 40 50 100

R
u
n
ti

m
e(

s)
(L

o
g
 1

0
)

Network Size

ER(1)
PP(1)

ER(2)
PP(2)

Figure 20 – Trivial solution runtime.

respectively for 1 and 2 faulty nodes. The trivial solution consists of running the heuristic
again on top of faulty nodes. As it is possible to observe in Figure 20, the trivial solution
can be as costly as 100 seconds (to a network size of 100 nodes). In contrast, when
executing Patcher (Figure 21), we observe that the running time (even for large instances)
is bounded by at most 5 seconds.

4.4. Evaluation 63

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 20 30 40 50 100

R
u
n
ti

m
e(

s)
(L

o
g
 1

0
)

Network Size

Patcher(ER(1))
Patcher(PP(1))
Patcher(ER(2))
Patcher(PP(2))

Figure 21 – Patcher runtime.

65

5 FINAL REMARKS
In this chapter, we describe our envisioned next research steps in order to finalize

this work. We first provide an overview of the already accomplished results and then we
describe all required steps toward the final goal, as well as the corresponding schedule of
each activity.

In this work, we introduced two different optimization problems related to INT-
based network monitoring orchestration, namely Probing Planning for In-band Network
Telemetry (P2INT) and Fault-tolerant Probing Planning for In-band Network Telemetry
(FP2INT). P2INT is formalized employing a MILP model. It can be seen as a general-
ization of the Bin Packing problem and both problems (i.e., P2INT and FP2INT) can be
seen as a generalization of the Capacitated Arc Routing Problem (CARP). Both models
try to solve similar problems for programmable networks. P2INT aims to orchestrate how
probes are routed and generated across the network to cover all links while collecting all
telemetry items available. For that, we introduced a scalable mathematical-based heuris-
tic that iteratively chooses which variables would get fixed – i.e., remain static – and
which variables would be optimized (varied), prioritizing cycles with great potential for
optimization. In our results, our approach outperforms state-of-the-art heuristics (e.g.,
factor 6x with respect to probing cycles). However, it is still limited to (i) statistic solu-
tions over time (i.e., probing cycles do not change); and (ii) fixed-throughput of probing
packets (i.e., all probing cycles operated at the same packet rate). On the other hand, the
proposed FP2INT considers there is an initial feasible solution covering the network – such
as the provided by P2INT – and allows to reconstruct the initial solution to still cover the
network and collect required telemetry information when fails occur in network devices
(e.g., switches, routers). For that, Patcher iteratively iterates over existing probe cycles
and "patches” it whenever we find a faulty node, besides trying to optimize the current
solution and build more probe cycles prioritizing the collecting of remaining telemetry
items if needed. As shown, our solution (i) reduces the number of probes by a factor of
5.5x, (ii) makes better use of network resources by keeping the collector and transmission
overheads of probing cycles as low as possible, and (iii) requires up to 98% fewer changes
(in comparison to baselines) to implement our fault-tolerant mechanism.

5.1 Achievements

The development of this work has led to the publication of the following peer-
reviewed/journal papers:

1. Castro et al. Análise do Desempenho de Heurísticas na Coleta de Informações de
Telemetria In-Band. In: 17𝑎 Escola Regional de Redes de Computadores (ERRC
2019) (CASTRO et al., 2019)

66 Chapter 5. Final Remarks

2. Castro et al. Heurística construtiva para o problema de orquestração da coleta de
dados de telemetria in-band. In: Anais da XX Escola Regional de Alto Desempenho
da Região Sul (ERRC 2020) (CASTRO et al., 2020a)

3. Rumeningue et al. Orchestrating in-band data plane telemetry with machine learn-
ing. In: IEEE Communications Letters, 2019 (HOHEMBERGER et al., 2019)

4. Castro et al. Patcher: Towards fault-tolerant probing planning for in-band network
telemetry. In: IEEE Latin-American Conference on Communications(LATINCOM) (CAS-
TRO et al., 2020b)

5. Castro et al. Near-Optimal Probing Planning for In-band Network Telemetry. In:
IEEE Communications Letters (Castro et al., 2021)

6. Viegas et al. The Actual Cost of Programmable SmartNICs: diving into the exist-
ing limits. In: International Conference on Advanced Information Networking and
Applications (AINA 2021) (approved)

5.2 Future Work

In this section, we discuss what was not in the scope of our work and what we
plan to do in future directions to mitigate such limitations.

In both presented versions of the mentioned problem of orchestrating INT probes
across the network (i.e., P2INT and FP2INT) we do not consider temporal and space con-
straints required by monitoring applications as in a previous work (HOHEMBERGER
et al., 2019). Temporal constraints dictate on what frequency telemetry items should be
collected from the infrastructure, while space constraints determine telemetry informa-
tion should be gathered from a certain device or subset of devices. These constraints
are important to guarantee SLAs are being served by properly providing information to
monitoring applications (e.g., DDoS defender, firewall). In future work, we will add these
restrictions to the model, as part of the policy of creating probing cycles and test these
changes considering a real environment – e.g., with SmartNICs.

Patcher (Chapter 4) has a polynomial behavior, while the fix-and-optimize ap-
proach (Chapter 3) is exponential in worst-scenario cases – i.e., several telemetry items
and devices to be satisfied – which makes it very computationally costly for larger in-
stances. Currently, our solution provides quality solutions close to the optimum only for
midsize network instances (e.g., 100-200 nodes). It is important to mention that Patcher
does not work when (i) there is no minimum path from the predecessor point to the fail-
ure to the next node at the point of failure and when (ii) a failure occurs at a point that
connects the entire infrastructure (a bridge). However, no other solution covers the latter
and it is unlikely that an actual infrastructure will be designed with a critical point of
failure. In future work, alternatives to support hundreds/thousands of devices in a viable

5.2. Future Work 67

time with minimal use of resources (e.g., CPU, memory) will be explored. Last, when
a failed device happens to start working again, we could just utilize the initial solution
from a heuristic such as ER. However, this may take a considerable amount of time to
reconfigure all INT devices to configure the new routing policies and items’ attributions.
In future work, we aim to mitigate that problem to reduce the attribution overhead for
devices that are back up and running.

69

BIBLIOGRAPHY
ADRICHEM, N. L. V.; DOERR, C.; KUIPERS, F. A. Opennetmon: Network monitoring
in openflow software-defined networks. In: IEEE. 2014 IEEE Network Operations
and Management Symposium (NOMS). [S.l.], 2014. p. 1–8. Cited in page 35.

ALBERT, R.; BARABÁSI, A.-L. Topology of evolving networks: Local events and
universality. Physical Review Letters, American Physical Society, v. 85, p. 5234 –
5237, Dec 2000. Cited 2 times in the pages 47 and 58.

ALEXANDROV, E.; KAZYMOV, A.; PROKOSHIN, F. BigData tools for the
monitoring of the ATLAS EventIndex. [S.l.], 2018. Cited in page 31.

ARAKAKI, R. K.; USBERTI, F. L. An efficiency-based path-scanning heuristic for the
capacitated arc routing problem. Computers & Operations Research, Elsevier,
v. 103, p. 288–295, 2019. Cited in page 38.

Arista. 2018. Disponível em: <https://www.arista.com/en/solutions/
telemetry-analytics>. Cited in page 33.

BAS C. CASCONE, J. L. P. K. S. S. S. T. T. J. V. A. Y. T. A. p4language. [S.l.]:
GitHub, 2020. <https://github.com/p4lang>. Cited in page 33.

BASAT, R. B. et al. Constant time updates in hierarchical heavy hitters. In:
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. New York, NY, USA: ACM, 2017. (SIGCOMM ’17), p. 127–140. ISBN
978-1-4503-4653-5. Disponível em: <http://doi.acm.org/10.1145/3098822.3098832>.
Cited in page 35.

BASAT, R. B. et al. Pint: Probabilistic in-band network telemetry. arXiv e-prints, p.
arXiv–2007, 2020. Cited 2 times in the pages 37 and 38.

BELENGUER, J.-M. et al. Lower and upper bounds for the mixed capacitated arc
routing problem. Computers & Operations Research, Elsevier, v. 33, n. 12, p.
3363–3383, 2006. Cited in page 58.

BERDE, P. et al. Onos: towards an open, distributed sdn os. In: Proceedings of the
third workshop on Hot topics in software defined networking. [S.l.: s.n.], 2014.
p. 1–6. Cited in page 28.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. ACM
SIGCOMM 14, ACM, New York, NY, USA, v. 44, n. 3, p. 87–95, jul. 2014. ISSN
0146-4833. Cited 2 times in the pages 23 and 33.

CASADO, M. et al. Ethane: Taking control of the enterprise. ACM SIGCOMM
computer communication review, ACM New York, NY, USA, v. 37, n. 4, p. 1–12,
2007. Cited in page 28.

CASADO, M. et al. Sane: A protection architecture for enterprise networks. In:
USENIX Security Symposium. [S.l.: s.n.], 2006. v. 49, p. 50. Cited in page 28.

CASE M. FEDOR, M. S. C. D. J. Simple Network Management Protocol
(SNMP). [S.l.], 1989. Disponível em: <https://www.hjp.at/doc/rfc/rfc1098.txt>.
Cited in page 27.

https://www.arista.com/en/solutions/telemetry-analytics
https://www.arista.com/en/solutions/telemetry-analytics
https://github.com/p4lang
http://doi.acm.org/10.1145/3098822.3098832
https://www.hjp.at/doc/rfc/rfc1098.txt

70 Bibliography

CASTANHEIRA, L.; PARIZOTTO, R.; SCHAEFFER-FILHO, A. E. Flowstalker:
Comprehensive traffic flow monitoring on the data plane using p4. In: IEEE. ICC
2019-2019 IEEE International Conference on Communications (ICC). [S.l.],
2019. p. 1–6. Cited in page 36.

CASTRO, A. de et al. Heurística construtiva para o problema de orquestração da
coleta de dados de telemetria in-band. In: Anais da XX Escola Regional de Alto
Desempenho da Região Sul. Porto Alegre, RS, Brasil: SBC, 2020. p. 33–36. ISSN 2595-
4164. Disponível em: <https://sol.sbc.org.br/index.php/eradrs/article/view/10749>.
Cited in page 66.

CASTRO, A. G. et al. Patcher: Towards fault-tolerant probing planning for in-band
network telemetry. In: IEEE. 2020 IEEE Latin-American Conference on
Communications (LATINCOM). [S.l.], 2020. p. 1–6. Cited in page 66.

Castro, A. G. et al. Near-optimal probing planning for in-band network telemetry. IEEE
Communications Letters, p. 1–1, 2021. Cited in page 66.

CASTRO, A. G. de et al. Análise do Desempenho de Heurísticas na Coleta
de Informações de Telemetria In-Band. In: 17a Escola Regional de Redes
de Computadores. Alegrete-RS, Brasil: [s.n.], 2019. Disponível em: <http:
//errc.sbc.org.br/2019/papers/castro2019anlise.pdf>. Cited in page 65.

CHEN, X. et al. Fine-grained queue measurement in the data plane. In: Proceedings
of the 15th International Conference on Emerging Networking Experiments
And Technologies. New York, NY, USA: Association for Computing Machinery,
2019. (CoNEXT ’19), p. 15–29. ISBN 9781450369985. Disponível em: <https:
//doi.org/10.1145/3359989.3365408>. Cited in page 39.

CHEN, Y.; HAO, J.-K.; GLOVER, F. A hybrid metaheuristic approach for the
capacitated arc routing problem. European Journal of Operational Research,
Elsevier, v. 253, n. 1, p. 25–39, 2016. Cited in page 38.

Cisco. 2018. Disponível em: <https://www.cisco.com/c/en/us/solutions/
service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html>.
Cited in page 33.

CLAISE, B. et al. Cisco systems netflow services export version 9. RFC 3954, October,
2004. Cited in page 27.

CLARK, D. D. et al. A knowledge plane for the internet. In: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols
for computer communications. [S.l.: s.n.], 2003. p. 3–10. Cited in page 36.

FILHO, R. I. T. da C. et al. Scalable qoe-aware path selection in sdn-based mobile
networks. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. [S.l.: s.n.], 2018. p. 989–997. Cited in page 41.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.
ISBN 0716710447. Cited in page 25.

https://sol.sbc.org.br/index.php/eradrs/article/view/10749
http://errc.sbc.org.br/2019/papers/castro2019anlise.pdf
http://errc.sbc.org.br/2019/papers/castro2019anlise.pdf
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html

Bibliography 71

GENG, Y. et al. {SIMON}: A simple and scalable method for sensing, inference
and measurement in data center networks. In: 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19). [S.l.: s.n.], 2019.
p. 549–564. Cited 5 times in the pages 23, 24, 37, 38, and 39.

GOLDEN, B. L.; DEARMON, J. S.; BAKER, E. K. Computational experiments with
algorithms for a class of routing problems. Computers & Operations Research,
Elsevier, v. 10, n. 1, p. 47–59, 1983. Cited in page 58.

GOLDEN, B. L.; WONG, R. T. Capacitated arc routing problems. Networks, v. 11,
n. 3, p. 305–315, 1981. Cited in page 43.

GRAFANA. Grafana: The open observability platform. 2020. Disponível em:
<https://grafana.com/>. Cited in page 31.

GUDE, N. et al. Nox: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review, ACM New York, NY, USA, v. 38, n. 3, p.
105–110, 2008. Cited in page 28.

GUPTA, A. et al. Sonata: Query-driven streaming network telemetry. In: Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication. [S.l.: s.n.], 2018. p. 357–371. Cited in page 35.

HANDIGOL, N. et al. I know what your packet did last hop: Using packet histories
to troubleshoot networks. In: 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, 2014. p. 71–85. ISBN 978-1-931971-09-6. Disponível em: <https:
//www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol>. Cited
in page 34.

HOHEMBERGER, R. et al. Orchestrating in-band data plane telemetry with machine
learning. IEEE Communications Letters, v. 23, n. 12, p. 2247–2251, 2019. Cited 4
times in the pages 24, 25, 41, and 42.

HOHEMBERGER, R. et al. Orchestrating in-band data plane telemetry with machine
learning. IEEE Communications Letters, IEEE, 2019. Cited 2 times in the pages
39 and 66.

HOHEMBERGER, R. et al. A heuristic approach for large-scale orchestration of the
in-band data plane telemetry problem. In: BAROLLI, L. et al. (Ed.). Advanced
Information Networking and Applications. Cham: Springer International
Publishing, 2020. p. 381–392. ISBN 978-3-030-44041-1. Cited in page 53.

Huawei. 2018. Disponível em: <http://support.huawei.com/enterprise/en/doc/
EDOC1000173015?section=j006>. Cited in page 33.

HYUN, J.; HONG, J. W.-K. Knowledge-defined networking using in-band network
telemetry. In: IEEE. 2017 19th Asia-Pacific Network Operations and
Management Symposium (APNOMS). [S.l.], 2017. p. 54–57. Cited in page 36.

JEYAKUMAR, V. et al. Millions of little minions: Using packets for low latency
network programming and visibility. ACM SIGCOMM Computer Communication
Review, ACM New York, NY, USA, v. 44, n. 4, p. 3–14, 2014. Cited 3 times in the
pages 23, 35, and 39.

https://grafana.com/
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/handigol
http://support.huawei.com/enterprise/en/doc/EDOC1000173015? section=j006
http://support.huawei.com/enterprise/en/doc/EDOC1000173015? section=j006

72 Bibliography

Juniper. 2018. Disponível em: <https://www.juniper.net/documentation/en_US/
junos/topics/concept/junos-telemetry-interface-oveview.html>. Cited in page 33.

KIM, C. et al. In-band network telemetry via programmable dataplanes. In: ACM
SIGCOMM. [S.l.: s.n.], 2015. Cited in page 33.

Kreutz, D. et al. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, v. 103, n. 1, p. 14–76, 2015. Cited in page 27.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: rapid prototyping
for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. [S.l.: s.n.], 2010. p. 1–6. Cited in page 33.

LIN, Y. et al. Netview: Towards on-demand network-wide telemetry in the data center.
Computer Networks, Elsevier, p. 107386, 2020. Cited in page 37.

LIU, Z. et al. Netvision: Towards network telemetry as a service. In: IEEE ICNP. [S.l.:
s.n.], 2018. p. 247–248. ISSN 1092-1648. Cited 6 times in the pages 23, 24, 25, 37, 39,
and 53.

LUCKIE, M. J.; MCGREGOR, A. J.; BRAUN, H.-W. Towards improving packet
probing techniques. In: Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement. [S.l.: s.n.], 2001. p. 145–150. Cited in page 32.

MA, L. et al. Inferring link metrics from end-to-end path measurements: Identifiability
and monitor placement. IEEE/ACM Transactions on Networking, IEEE, v. 22,
n. 4, p. 1351–1368, 2014. Cited in page 39.

MARQUES, J. A. et al. An optimization-based approach for efficient network monitoring
using in-band network telemetry. Journal of Internet Services and Applications,
n. 1, p. 16, Jun 2019. Cited 5 times in the pages 24, 25, 37, 39, and 42.

MEDINA, A. et al. Brite: an approach to universal topology generation. In: IEEE
MASCOTS 2001. [S.l.: s.n.], 2001. p. 346–353. ISSN 1526-7639. Cited 2 times in the
pages 47 and 58.

MESTRES, A. et al. Knowledge-defined networking. SIGCOMM Comput. Commun.
Rev., Association for Computing Machinery, New York, NY, USA, v. 47, n. 3, p. 2–10,
set. 2017. ISSN 0146-4833. Disponível em: <https://doi.org/10.1145/3138808.3138810>.
Cited in page 36.

PAN, T. et al. Int-path: Towards optimal path planning for in-band network-wide
telemetry. In: IEEE INFOCOM. [S.l.: s.n.], 2019. p. 1–9. Cited 8 times in the pages
24, 25, 37, 39, 46, 47, 53, and 58.

PHAAL, P.; PANCHEN, S.; MCKEE, N. Inmon corporation’s sflow: A method for
monitoring traffic in switched and routed networks. RFC 3176, 2001. Cited in page 27.

PUTINA, A. et al. Telemetry-based stream-learning of bgp anomalies. In: Proceedings
of the 2018 Workshop on Big Data Analytics and Machine Learning
for Data Communication Networks. New York, NY, USA: ACM, 2018.
(Big-DAMA ’18), p. 15–20. ISBN 978-1-4503-5904-7. Disponível em: <http:
//doi.acm.org/10.1145/3229607.3229611>. Cited in page 33.

https://www.juniper.net/documentation/en_US/junos/topics/ concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/en_US/junos/topics/ concept/junos-telemetry-interface-oveview.html
https://doi.org/10.1145/3138808.3138810
http://doi.acm.org/10.1145/3229607.3229611
http://doi.acm.org/10.1145/3229607.3229611

Bibliography 73

RAMANATHAN, S.; KANZA, Y.; KRISHNAMURTHY, B. Sdprober: A software
defined prober for sdn. In: Proceedings of the Symposium on SDN Research.
[S.l.: s.n.], 2018. p. 1–7. Cited in page 35.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane. In:
Proceedings of the Symposium on SDN Research. New York, NY, USA:
Association for Computing Machinery, 2017. (SOSR ’17), p. 164–176. ISBN
9781450349475. Disponível em: <https://doi.org/10.1145/3050220.3063772>. Cited in
page 35.

TAMMANA, P.; AGARWAL, R.; LEE, M. Simplifying datacenter network debugging
with pathdump. In: 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). [S.l.: s.n.], 2016. p. 233–248. Cited 2 times in
the pages 35 and 39.

TAMMANA, P.; AGARWAL, R.; LEE, M. Distributed network monitoring and
debugging with switchpointer. In: 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18). [S.l.: s.n.], 2018. p. 453–456.
Cited 2 times in the pages 36 and 39.

The P4.org Applications Working Group. In-band Network Telemetry (INT)
Dataplane Spec ification. 2020. Disponível em: <https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_1.pdf>. Cited in page 44.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), Wiley Online Library, v. 58,
n. 1, p. 267–288, 1996. Cited in page 38.

TIRKOLAEE, E. B.; MAHDAVI, I.; ESFAHANI, M. M. S. A robust periodic capacitated
arc routing problem for urban waste collection considering drivers and crew’s working
time. Waste Management, Elsevier, v. 76, p. 138–146, 2018. Cited in page 38.

TU, N. V. et al. Intcollector: A high-performance collector for in-band network
telemetry. In: IEEE. 2018 14th International Conference on Network and
Service Management (CNSM). [S.l.], 2018. p. 10–18. Cited in page 36.

Van Tu, N.; Hyun, J.; Hong, J. W. Towards onos-based sdn monitoring using
in-band network telemetry. In: 2017 19th Asia-Pacific Network Operations and
Management Symposium (APNOMS). [S.l.: s.n.], 2017. p. 76–81. Cited 2 times in
the pages 35 and 36.

WU J. STRASSNER, A. F. Q.; ZHANG., L. Network Telemetry and
Big Data Analysis. 2016. Disponível em: <https://tools.ietf.org/html/
draft-wu-t2trg-network-telemetry-00>. Cited in page 33.

YASEEN, N.; SONCHACK, J.; LIU, V. Synchronized network snapshots. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. [S.l.: s.n.], 2018. p. 402–416. Cited in page 36.

YU, C. et al. Software-defined latency monitoring in data center networks. In:
SPRINGER. International Conference on Passive and Active Network
Measurement. [S.l.], 2015. p. 360–372. Cited in page 35.

https://doi.org/10.1145/3050220.3063772
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://tools.ietf.org/html/draft-wu-t2trg-network-telemetry-00
https://tools.ietf.org/html/draft-wu-t2trg-network-telemetry-00

74 Bibliography

ZHOU, Y. et al. Flow event telemetry on programmable data plane. In: Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. [S.l.: s.n.], 2020. p. 76–89. Cited 2 times
in the pages 37 and 38.

ZHU, Y. et al. Packet-level telemetry in large datacenter networks. In: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication.
[S.l.: s.n.], 2015. p. 479–491. Cited 2 times in the pages 35 and 39.

ZIMMERMANN, H. Osi reference model-the iso model of architecture for open systems
interconnection. IEEE Transactions on communications, IEEE, v. 28, n. 4, p.
425–432, 1980. Cited in page 30.

75

ANNEX A – ORCHESTRATING IN-BAND DATA PLANE
TELEMETRY WITH MACHINE LEARNING

1

Orchestrating In-Band Data Plane Telemetry with Machine Learning
Rumenigue Hohemberger, Ariel G. Castro, Francisco G. Vogt, Rodrigo B. Mansilha, Arthur F. Lorenzon, Fabio

D. Rossi, Marcelo C. Luizelli

Abstract—In-band network telemetry (INT) is an emerging
network monitoring paradigm. By collecting low-level telemetry
items in real time, INT can substantially enhance network-wide
visibility - allowing, for example, timely detection problems such
as micro-burst. Recent studies have focused on (i) developing
INT mechanisms to increase network-wide visibility; and (ii) to
design new monitoring solutions. However, little has been done to
coordinate the process of collecting telemetry items in this new
paradigm. This is particularly challenging because depending on
which network telemetry items are collected, it might degrade
network-wide visibility in terms of consistency/freshness. In this
letter, we theoretically formalize the In-band Network Telemetry
Orchestration Plan Problem and propose a machine learning
based orchestration model. Results show that our approach
outperforms state-of-the-art heuristics by up a factor of 8x
with respect to the number of network anomalies identified, for
instance.

I. INTRODUCTION

In-band network telemetry has recently emerged as a
promising monitoring alternative to provide higher network-
wide visibility to network operators [1]. This finer-grained data
plane monitoring mechanism allows to cope with short-lived
problems, such as network flow contention, micro-burst, and
load imbalance – just to name a few [2], [3]. Yet, data plane
telemetry is paramount to the success of real-time network
applications with stringent responsiveness requirements, such
as virtual/augmented reality [4] and self-driving cars [5]. Much
of the progress in the field has been enabled by recent advances
in programmable network devices and high-level domain-
specific networking description and query languages [6].

By using programmable devices, in-band data plane teleme-
try allows to collect and encapsulate low-level telemetry
information into production network traffic whenever possible.
Packets contain header fields that are interpreted as telemetry
instructions by network devices. These instructions instrument
these devices to collect and write into the packet network
states [1]. This telemetry information might encompass switch-
internal states (e.g., queue occupancy and switchID) and
network performance metrics (e.g., data plane processing time
and latency), for instance. In the process of in-band telemetry,
the collected information is carried into a packet along its
routing path and, at some point in the network, it is extracted
and reported to a monitoring application. Then, the monitoring
applications process and eventually react to spurious networks
events.

Recent approaches [1], [2], [3], [7], [8] have striven to
deliver the best out of the in-band telemetry to improve
network-wide visibility. PathDump [7] and SwitchPointer [3]
combines in-network programmability and the available end-
host resources to collect and monitor telemetry data in order
to debug networks events. More recently, Liu et al.[1] and

In-Band	Network	Telemetry	Plan

M1 M2 ...

Network	Infrastructure

f1
f2

f3f4

A B

C D E

F G H I

Monitoring	Application

Mn

Telemetry	Data

B→F

A→I

D→I

C→I

Network	Flows

Fig. 1. Example of in-band network telemetry planning. The example
illustrates a snapshot where four active network flows (f1, f2, f3, f4) collect
telemetry data from forwarding devices. Telemetry data are then sent to
monitoring applications according to their needs.

proposed NetVision, an attempt to provide network telemetry
as a service, while Marques et al. [9] provided the first effort
towards in-band network orchestration. Despite these efforts
to make real-time in-band telemetry a reality in programmable
networks, little has yet been done to dynamically coordinate
how to collect network information in this new paradigm.
This is particularly challenging mainly for two reasons. First,
depending on which network telemetry items are collected, it
might degrade network-wide visibility in terms of coverage,
consistency, and freshness [9]. Second, depending on how
network telemetry is collected, it might impact the network
monitoring application’s performance.

In this letter, we introduce the In-band Network Telemetry
Orchestration Plan Problem as a machine learning aided
optimization model. The main idea consists of dynamically
(and wisely) guiding the in-band data acquisition by means of
a learning mechanism. To tackle this problem, we theoretically
formalize it as a Mixed Integer Linear Programming (MILP)
model. The model can be seen as a generalization of the
well-known Bin Packing problem [10] and, therefore, it is
an NP-hard problem. Despite the scalability limitations on
solving NP-hard problems, this exact formulation represents an
optimal bound for future in-band network telemetry approxi-
mations. To the best of our knowledge, this is the first attempt
to formulate this problem. Results show that the proposed
model outperforms [9] by up a factor of 8x with respect
to the number of network anomalies identified, increasing

2

the number of telemetry data collected, and maintaining the
consistency and freshness of network visibility.

II. THE IN-BAND NETWORK TELEMETRY
ORCHESTRATION PLAN PROBLEM

A. Problem Overview

The in-band network telemetry consists of embedding
telemetry information into production flow packets. Fig. 1
illustrates a given network infrastructure with four active net-
work flows (namely, f1, f2, f3, and f4) being routed through
a set of forwarding devices – ranging from A to I . Network
flow f1 can collect telemetry items from its forwarding devices
{A,B,E, I}. On top of the network, there exists a set of
specialized monitoring application {M1,M2, ...,Mn}. These
applications are in charge of making inference about specific
network problems or (mis)behaviors (e.g., identify network
congestion or malicious network attacks) and eventually react
to them, demanding different pieces of information from the
infrastructure. For instance, let us consider that application M1

aims to predict and identify (transient) network congestion.
It requires network flows to collect from forwarding devices
the number of active network flows (4), queue occupancy
(©), and processing time directly from data planes (�). In
turn, M2 identifies SYN flood attacks. For that, it requires
to constantly monitor the number of active network flows
(4), and the number of incomplete TCP handshakes (♦).
Observe that these monitoring applications are not limited
to the given examples and may demand different subsets of
telemetry items (coverage) to be continuously collected in a
given rate (freshness) so that the inference accuracy can be
met over time.

The In-band Network Telemetry Plan Problem consists of
dynamically orchestrating the process of collecting network
information to maximize network monitoring applications
performance without, however, penalizing production network
flows. The problem is far from being trivially solved. This
is due to (i) monitoring applications might have completely
different requirements – which implies that some telemetry
items might be collected more frequently than others; and (ii)
network packets have limited unused resources (in general, up
to the MTU data link limit) – and, therefore, it is unfeasible
to collect all items within the same time unit. To illustrate
how challenging this problem is, consider the scenario from
Fig. 1. Let us assume network flows can collect and carry a
maximum fixed amount of telemetry items at a specific time
unit (e.g., two items at a time unit). There are a few alternatives
to orchestrate the acquisition of INT items. First, a naı̈ve
solution consists of collecting all telemetry items in every
single time unit. For building such a solution, we relax the
assumption that network packets/frames are space-bounded.
A second (and more realistic) strategy takes into account an
upper-bound limit on the amount of collected telemetry items.
Therefore, the number of telemetry items collected by network
flows are rather constrained than the naı̈ve strategy. In fact,
it turns out that introducing this set of constraint makes the
problem NP-hard (as it is a generalization of the well-studied
Bin Packing problem [10]). In spite of having hard constraints

on the number of items to be collected in a single time unit, a
relaxed solution (with respect to time) might be built by round-
robining the collection of telemetry items over time. Although
this might represent a feasible (but relaxed) solution over time,
it misses one fundamental aspect of network telemetry, namely
to identify which telemetry items are in fact important to be
collected. This information is rather important in order to
ensure network-wide visibility of the network infrastructure
accurately.

B. Model description and notation

The optimization model we propose to solve the orches-
tration problem defined above considers a physical network
infrastructure G = (D,L), a set of active network flows F , a
set of telemetry items V , and a set of monitoring applications
M . Set D in network G represents programmable forwarding
devices D = {1, ..., |D|}, while set L links interconnecting
pair of devices (d1, d2) ∈ (D ×D). Each forwarding device
d ∈ D is able to embed a subset of items Vd ⊆ V into packets
of flow f ∈ F . Each telemetry item v ∈ V has its size defined
by function S : V → N+.

Network flows F are used to collect real-time telemetry
data from forwarding devices D. A flow f ∈ F has two
endpoints (i.e., ingress and egress forwarding devices) and is
routed through the network infrastructure G using a simple
path Pt. We denote the path taken by flow f as function
Pt : F → {D1 × ...×D|D|}. Network flows F are encapsu-
lated in a forwarding protocol (e.g., NSH1, IPv4). Therefore,
the amount of available space to embed telemetry items in
packets is bounded by a constant Kf ∈ N+. Observe that a
single packet of flow f ∈ F can collect at most

∑
∀d∈Pt(f) Vd

telemetry items from the network infrastructure G at a given
time frame. Unless Kf assumes a sufficient large value (i.e.,
Kf ≥

∑
∀d∈Pt(f) |Vd|), it is not possible to collect all items

from all forwarding devices in the routed path Pt(f).
Monitoring application m ∈M requires a subset of teleme-

try items Rm ⊆ V to operate properly. These telemetry
items might have spatial and temporal dependencies. We
say two or more telemetry items have spatial dependency
iff they must be collected from the same forwarding device
d ∈ D. Spatial dependencies are represented by the set of sets
Rsm ⊆P(Rm). In turn, we say that a set of telemetry items
have temporal dependency iff they must be collected within a
given deadline. Temporal dependencies are represented by the
set of sets Rtm ⊆ Rsm, and the required deadline is expressed as
a function T f : Rtm → N+. The model keeps track of the last
time unit an item P ∈ Rtm was collected by means of a func-
tion Hf : Rtm → N+. When (∀P ∈ Rtm) : Hf (P) > T f (P),
item P is out of date (i.e., the deadline has expired).

C. Naı̈ve Orchestration Model

Given a network infrastructure G, a set of network flows
F , a set of monitoring applications M , a set of telemetry
items V and a constant Kf , the optimization problem seeks
a feasible solution that maximizes the number of spatial and

1https://tools.ietf.org/html/rfc8300

3

temporal dependencies. The model output is denoted by a 3-
tuple χ = {Y, Sb, T b}. Variables from Y = { yd,v,f , ∀ d ∈
D, v ∈ V, f ∈ F} indicate that a forwarding device d embed
telemetry item v into packets of network flow f . Variables
from Sb = { sbm,d,P , ∀m ∈ M,d ∈ D,P ∈ Rsm} and
T b = { tbm,P , ∀m ∈ M,P ∈ Rtm} are used to keep track
of spatial and temporal dependencies satisfied by the model.
Next, we describe the MILP formulation for this orchestration
problem.

Maximize
∑

m∈M

∑

p∈P∈Rs
m

∑

d∈D
sbm,d,p + tbm,p (1)

Subject to:∑

d∈Pt(f)

∑

v∈Vd

yd,v,f · S(v) ≤ Kf ∀f ∈ F (2)

∑

f∈F
yd,v,f ≤ 1 ∀d ∈ D, v ∈ Vd, (3)

sm,d,p =
∑

v∈P

∑

f∈F
yd,v,f ∀m ∈M,p ∈ P ∈ Rsm, d ∈ D (4)

tm,p =
∑

v∈P

∑

d∈D

∑

f∈F
yd,v,f ∀p ∈ P ∈ Rtm : Hf (p) > T f (p)

(5)

sbm,d,p ≤
sm,d,p
|P | ∀m ∈M,p ∈ P ∈ Rsm, d ∈ D (6)

tbm,p· ≤
tm,p
|P | ∀m ∈M,p ∈ P ∈ Rtm (7)

yd,v,f ∈ {0, 1} ∀d ∈ D, v ∈ V, f ∈ F (8)

sm,d,p ∈ N+ ∀m ∈M,d ∈ D, p ∈ P ∈ Rsm (9)

sbm,d,p ∈ {0, 1} ∀m ∈M,d ∈ D, p ∈ P ∈ Rsm (10)

tm,p ∈ N+ ∀m ∈M,p ∈ P ∈ Rtm (11)

tbm,p ∈ {0, 1} ∀m ∈M,p ∈ P ∈ Rtm (12)

Constraint set (2) ensures that a network flow f ∈ F does
not exceed its capacity (i.e., Kf). Constraint set (3) ensures
that a single telemetry item is collected at most by a single
network flow f ∈ F in a given device d. Constraints sets (4)
and (6) aim to account whether or not a spatial dependency
is met. Given a spatial dependency, constraint set (4) count
the number of telemetry items collected in a device d, while
constraint set (6) verify whether or not the dependency is
met (i.e., checking if all items were collected). Similarly,
constraints sets (5) and (7) count the number of temporal
dependencies that are satisfied. Last, constraints sets (8)-(12)
define the domains of output variables.

D. Machine Learning based Orchestration Model

The orchestration model proposed in the previous subsec-
tion is able to maximize the number of collected telemetry
items. However, it still misses the fundamental orchestration
question: which telemetry items are in fact important to be
collected? Similar models in the literature (e.g. [11]) handle
the importance of a given item by means of arbitrary weights,

which needs to be manually fine-tuning from time to time,
in a static fashion. To fill in this gap, we plug in our model
a learning mechanism in order to dynamically (and wisely)
instrument the collection of telemetry items from the network.

The importance of a telemetry item depends on the re-
quirements of monitoring applications, which changes dy-
namically over time according to the network behavior. We
assume that in a given time unit t, the proposed learning
model knows a subset of telemetry items, represented by
V t ⊆ ∑t

t−W
∑
m∈M Rsm, where W ∈ N+ represents a

given time window. An element P ∈ V t represents a |P |-
dimensional space tuple P = (v1, v2, · · · v|P |), where each
dimension represents a telemetry information collected from
the infrastructure, i.e. v|S| ∈ R+. Given a set V t of telemetry
data collected within the last W time units, we model the
In-Band Network Telemetry Plan layer (as shown in Fig. 1)
as multiple online clustering models. The idea consists of
clustering network behaviors based on telemetry items that
share the same dependencies. The orchestration model, there-
fore, can coordinate which telemetry items are important to
be collected next (e.g., telemetry items observing unusual
behaviors). Each cluster keeps track of items having the same
|P | dimensions. We partition V t = {V t,1, V t,2, ..., V t,P(V t)}
so that each subset has items of the same |P | dimensions. We
then cluster subsets V t,i ∈ V t into Ki exclusive partitions,
i.e. (∀i ∈ {1, ...,P(V t)}) : V t,i1 , V t,i2 , ..., V t,iKi

. The centroid
of a subset V t,ik is defined as C(V t,ik). An element P ∈ V t,i
is assigned to a cluster V t,ik if the distance of v to (V t,ik) is
minimal. We omit the definition of the clustering problem (as
an optimization problem) due to space constraints. However,
it is important to mention that clustering problems are well-
known NP-hard problems [12] – even for planar graphs.

Next, we define how the model keeps cluster consistency
and freshness over time. In order to capture the network
dynamics, we propose a fading function that estimates how
long the model keeps telemetry data in it. Telemetry data
measured with higher variance in a time frame W tends to
be spanned through a lower number of time units than those
with lower variance. The variance of a telemetry item (or a P -
tuple) is defined according to its dispersion index. We denote
the dispersion index as I(v) = σ2

v

µ . The number of time units
a telemetry item is kept in V t is defined according to a piece-
wise function T (P) : V t → N+, defined as follow:

T (P) =

{
W I(P) ≤ 1

W · (1− ρ) I(P) > 1
(13)

Telemetry data points P ∈ V t that are under-dispersed (i.e,
I(P) ≤ 1) are kept in the clustering for at least W time
units. In turn, over-dispersed data points (i.e., I(P) > 1) tends
to be in the cluster for fewer time units (W is decayed as
with respect to ρ ∈ [0, 1]). Observe that this approach allows
the model to capture transient events (e.g., short-time queue
occupancy) and also persist events the endure to longer time
units (e.g., physical disruption in a forwarding device). We
denote by V + ⊆ V t and V − ⊆ V t the subset of telemetry
items that are over- and under-dispersed, respectively. Over-

4

dispersed items with spatial dependencies are represented by
set R+s

m = {P ∈ R+s
m |P ∈ Rsm ∧ (P ∩ V + 6= ∅)}.

Similarly, under-dispersed items with spatial dependencies by
set R−sm = {P ∈ R−sm |P ∈ Rsm ∧ (P ∩ V − 6= ∅)}. We
are interested in optimizing how we evolve over time the
information we know about the infrastructure G, maintaining
V t,i ∈ V t clusters over time. We assume most of the time, the
value of telemetry points evolves smoothly. Abrupt changes
happen to the network state, but with low probability. This
assumption is realistic to in-band network telemetry. Our main
goal is to reduce the acquisition of irrelevant telemetry data
and, at the same time, maintaining the accuracy of acquired
telemetry data. The machine learning based orchestration
model replaces Equation (1) by Equation (14).

Maximize α ·
∑

m∈M

∑

p∈P∈R+
m

∑

d∈D
sbm,d,p + tbm,p

+β ·
∑

m∈M

∑

p∈P∈R−
m

∑

d∈D
sbm,d,p + tbm,p (14)

The combined objective function tries to wisely maximize
the number of collected over-dispersed and under-dispersed
items from G. Observe that the objective function prioritizes
the collection of over- and under-dispersed items according
to parameters α and β. That is explained because, in regular
network operation, the dispersion index tends to lower while
there is not a suspicious event. On the event of a suspicious
event, the index would tend to increase and therefore there
will high the chances to be collected.

III. EVALUATION

Setup. We ran the proposed model using IBM CPLEX
Optimization Studio 12.9 to obtain optimum solutions and
implemented the online version of K-Means [13] using Java
language to dynamically ponderate the importance of teleme-
try items2. Experiments were performed on a machine with
four Intel Xeon E5-2670 processors and 56 GB of RAM, using
the Ubuntu Server 11.10. We considered different physical net-
work instances that were generated with Brite [14], following
the Barabasi-Albert model [15]. We used physical infrastruc-
tures consisting of 50 forwarding devices and, on average, 200
physical links. On top of each infrastructure instance, there
was a set F of active flows. We varied the amount of network
flows from 50 to 200. Each flow f ∈ F interconnected two
random endpoints in the infrastructure and, was routed using
the shortest path algorithm. We consider IP-based network
flows and, therefore, we vary uniformly the constant Kf from
10-30 Bytes. Further, we assume that forwarding devices have
8 possible telemetry items to export3, varying S(v) from 2 to
20 Bytes [16]. We consider a set of monitoring applications,
ranging from 2 to 12. Each application requires at most 4
spatial dependencies, each having at least 2 items (i.e., switch
ID + monitored metric) and at most 4. We consider α = 1,

2Reproducible material available on https://github.com/mcluizelli/comml-
int19

3In-band Network Telemetry: https://p4.org/assets/INT-current-spec.pdf

β = 1, W = 5, and ρ = 0.5. These parameters can be fine-
adjusted to prioritizes the collection of spatial dependencies
over temporal ones and to adjust the fading functions. Our
experiment ran in 200 time units. At each time unit, our model
and algorithms are run. Each experiment is repeated 30 times
to ensure a confidence level of 95% or higher.

Baseline. We compare our proposed model against (i)
two state-of-the-art orchestration heuristics proposed by [9],
namely Gather and Balance, and (ii) three heuristics:
Round-Robin (RR), Least-Recently Collected (LRC), Random-
Fit (RndFit). The heuristic RR strives to assign telemetry
items to network flows in a round-robin way. LRC prioritizes
the collection of telemetry items that have not been collected
recently. Finally, RndFit chooses randomly telemetry items
and tries to assign to random network flow.

Results. We focus our analysis on two key aspects of
network monitoring: (i) network-wide visibility (in terms of
coverage), and (ii) network monitoring applications perfor-
mance. For that, we evaluate network telemetry coverage (i.e.,
the number of telemetry items collected), a number of spatial
dependencies satisfied, and the ability to identify network
anomalies. Fig. 2(a) illustrates the average amount of telemetry
items collected over time for an increasing number of active
network flows. We observe that (i) number of network flows
directly impacts on the network visibility (i.e., the more active
network flows, the higher the network coverage) and (ii) the
proposed orchestration model on average outperform evaluated
heuristics by up a factor of 1.7x when comparing to RndFit.
This behavior is due to the ability to optimally assign telemetry
items to network flows. In contrast, evaluated heuristics make
local decisions on which item assign (e.g., least recently
collected) to each flow, leading to sub-optimal solutions. On
average, our proposed orchestration model covers 60% of
telemetry items in each time unit (considering 400 teleme-
try items in total). Next, we evaluate the number of times
(frequency) telemetry items are collected, illustrated in Fig.
2(b) by means of a CDF (Cumulative Distribution Function).
Despite showing in Fig. 2(a) that the number of items collected
by our model and by the baselines are similar, we observe
in Fig 2(b) that each method prioritizes the collections of
different subsets of telemetry items. This difference occurs
due to (i) the heuristic assignment policy and (ii) the number
of active network flows available to assign telemetry items.
The latter point can be explained by the presence of highly
interconnected forwarding devices in the network topologies
– in which telemetry items are potentially collected more
frequently than others. This fact is further exacerbated as
active network flows are routed using shortest paths. Ob-
serve that our orchestration model, differently from evaluated
heuristics, prioritizes the collection of a subset of telemetry
items – on average, 25% of telemetry items are collected
more intensely (more than 80% of the time units). In contrast,
up to 40% of telemetry items are collected less frequently
(less than 40% of the time units). Fig. 2(c) illustrates the
average number of spatial dependencies satisfied over time. As
observed, our model outperforms evaluated heuristics by up a
factor of 2.5x (for 150 active network flows). The number of
spatial dependencies satisfied is essential input information to

5

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

50 100 150 200

#
 T

el
em

et
ry

 I
te

m
s

C
o
ll

ec
te

d

Active Network Flows

RndFit
LRU

RR
Balance
Gather

Our Approach

(a) Telemetry Items collected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

C
D

F
C

o
ll

ec
ti

o
n
 F

re
q
u
en

cy
 o

f
T

el
em

et
ry

 I
te

m
s

Telemetry Items

RndFit
LRU

RR
Balance
Gather

Our Approach

(b) Number of times telemetry items
are collected (200 network flows).

 0

 50

 100

 150

 200

 250

 300

50 100 150 200

#
 S

p
at

ia
l

R
eq

u
ir

em
en

ts

S
at

is
fi

ed

Active Network Flows

RndFit
LRU

RR
Balance
Gather

Our Approach

(c) Spatial requirements satisfied.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

Id
en

ti
fi

ed
 A

n
o
m

al
ie

s
(%

)

Monitoring Applications

RndFit
LRU

RR
Balance
Gather

Our Approach

(d) Anomaly events detected (200 net-
work flows).

Fig. 2. In-band telemetry orchestration performance metrics.

learning models, which required coupled telemetry informa-
tion – otherwise, telemetry data are useless for the learning
process. Last, Fig. 2(d) illustrates the average number of
network anomalies identified. For this experiment, we consider
an increasing number of monitoring applications running in
parallel and, therefore increasing the need for a higher number
of spatial dependencies. Further, we assume that telemetry
items values follow a normal distribution, defined by an
average and standard deviation (e.g., queue occupancy given
by the average of 100 and deviation of 20). We then inject
anomalies to these items (i.e., values out from the expected
range), lasting for 5 times units (on average) on (at most)
10% of forwarding devices. When the number of monitoring
applications is relatively small (up to 2 monitoring applica-
tions), machine learning mechanism can identify up to 50-60%
of network anomalies with the input provided by telemetry
data collected by the evaluated approaches. However, as the
number of monitoring applications increases (and, therefore,
the number of spatial dependencies), the ability to identify
network anomalies decreases considerably, reaching up to 5-
10% of identified anomalies. The reason is correlated with
the frequency with that telemetry items are collected from the
network. Baseline algorithms strive to collect telemetry items
in a fairly way (e.g., round-robin) – which lowers the overall
frequency that telemetry items are collected and therefore
higher the chances to miss the collection of anomalous events.
In contrast, our model can cope with the increasing number
of monitoring applications. The input provided by our model
can feed machine learning mechanisms models in order to
identify up to 97% of network anomalies (up to 4 monitoring
applications). From 4-12 network monitoring applications, the
accuracy of identifying network anomalies decreases by 20%
(i.e., 8x higher than the baselines).
we intend to investigate the design of dynamic and scalable

IV. FINAL REMARKS

In this letter, we formalize the In-band Network Telemetry
Orchestration Plan by means of a MILP model. The main
idea consists of dynamically guiding the acquisition process
of telemetry data using learning mechanisms. We showed that
our proposed model can effectively collect the most important
telemetry items and provide accurate network-wide visibility
to monitoring applications. Our model outperforms state-of-
the-art heuristics by a factor of 2.5x with respect to the number
of spatial dependencies satisfied and by a factor of 8x when
comparing the number anomalies identified. As future work,

heuristic/approximation algorithms, derive upper-bounds to the
proposed model and to integrate to commercial offerings.

REFERENCES

[1] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards network
telemetry as a service,” in 2018 IEEE 26th International Conference on
Network Protocols (ICNP), Sep. 2018, pp. 247–248.

[2] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T.
Loo, and G. Outhred, “007: Democratically finding the cause of packet
drops,” in 15th USENIX NSDI 18. Renton, WA: USENIX Association,
2018, pp. 419–435.

[3] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with switchpointer,” in 15th USENIX NSDI 18, Renton,
WA, 2018, pp. 453–456.

[4] R. I. T. da Costa Filho, M. C. Luizelli, M. T. Vega, J. van der Hooft,
S. Petrangeli, T. Wauters, F. De Turck, and L. P. Gaspary, “Predicting
the performance of virtual reality video streaming in mobile networks,”
in ACM MMSys ’18. New York, NY, USA: ACM, 2018, pp. 270–283.

[5] G. Ananthanarayanan, P. Bahl, P. Bodk, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM 14, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[7] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with pathdump,” in 12th USENIX OSDI 16), Savannah, GA,
2016, pp. 233–248.

[8] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry
in large datacenter networks,” in ACM SIGCOMM 15. New York, NY,
USA: ACM, 2015, pp. 479–491.

[9] J. A. Marques, M. C. Luizelli, R. I. T. Da Costa, and L. P. Gaspary, “An
optimization-based approach for efficient network monitoring using in-
band network telemetry,” Journal of Internet Services and Applications,
vol. 10, no. 1, p. 16, Jun 2019.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[11] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Information Processing Letters, vol.
100, no. 4, pp. 162 – 166, 2006.

[12] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is np-hard,” Theoretical Computer Science, vol. 442, pp. 13 –
21, 2012.

[13] E. Liberty, R. Sriharsha, and M. Sviridenko, “An algorithm for online
k-means clustering,” in Proceedings of the Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 81–89.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to
universal topology generation,” in Proceedings of the IEEE MASCOTS,
Aug 2001, pp. 346–353.

[15] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234 –
5237, Dec 2000.

[16] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for in-
band network-wide telemetry,” in IEEE INFOCOM 19, Apr 2019, pp.
1–9.

81

ANNEX B – PATCHER: TOWARDS FAULT-TOLERANT PROBING
PLANNING FOR IN-BAND NETWORK TELEMETRY

Patcher: Towards Fault-Tolerant Probing Planning
for In-band Network Telemetry

Ariel G. Castro∗, Victor H. S. Lopes∗, Francisco G. Vogt∗, Fabio D. Rossi+,
Arthur F. Lorenzon∗, Marcelo C. Luizelli∗
∗Federal University of Pampa (UNIPAMPA)

+Federal Institute Farroupilha (IFFAR)

Abstract—In-band Network Telemetry (INT) is a recent net-
work monitoring approach. Despite the existence of a few initia-
tives to orchestrate the collection of in-band network statistics,
little has yet been done to coordinate active INT probes to collect
network information efficiently while considering the possibility
of device failures (e.g., power failure, hardware failure). In this
paper, we introduce Patcher – fault-tolerant probing planning for
INT. It reconstructs probing cycles affected by failure nodes and
optimizes them while ensuring all non-affected links/statistics are
still being traversed/collected. Results show that Patcher reduces
the number of probe cycles needed up to 5.5x compared to a
state-of-the-art solution, while not increasing the INT collectors’
load.

I. INTRODUCTION

In-band Network Telemetry (INT) is a paramount network
monitoring mechanism enabled by programmable network
infrastructure [1]. INT provides the instrument and collects
low-level (and per-packet) data plane statistics in (near) real-
time, boosting the design of tailored monitoring applications.
To do this, INT allows encapsulating switch-internal states
(a.k.a. data plane telemetry) by programmable network devices
(e.g., switches and SmartNICs) into network traffic packets
(for example, queue occupancy, data plane processing time,
or aggregate statistics).

INT data can be embedded into either active network
flows or specially-crafted probing packets. These packets carry
specific telemetry instructions interpreted by network devices,
and setting forwarding devices to collect the required network
states [2]. Therefore, at some predefined point in the network,
the collected telemetry data is extracted and reported to an INT
collector. Based on the above, INT has been applied to many
networking use cases, including congestion control [3], path
tracing [4], fast reroute [5] – to name a few applications. How-
ever, providing fault-tolerant probing cycles at the design is
particularly challenging. In case a network link or forwarding
device fails, all (or a substantial part) of the INT monitoring
mechanism that relies on that device is compromised, affecting
directly active monitoring applications.

Despite a few research efforts towards the orchestration
of INT [1], [2], [6], [7], [8], [9], little has been done to
provide fault-tolerant orchestration of INT mechanisms in
programmable network infrastructures. Current strategies have
relied on their strategies either on Euler Circuits [1], [2]
or on actual routing paths [7], [8], [9] to instrument the
forwarding of probes on the embedding of INT data into

network packets. In this paper, we introduce Patcher – fault-
tolerant probing planning for in-band network telemetry. In the
event of faulty forwarding devices, Patcher efficiently rebuild
and fix monitoring cycles by applying “patches” to ensure
that all links are visited and the required INT data is collected
correctly. Patcher is the first effort to provide fault-tolerant
INT probing cycles. It is worth mentioning that solutions
supplied by Patcher can be either used by the control plane
(to re-actively fix monitoring cycles) or directly by the data
plane (to proactively sets alternative INT routing strategies).
To tackle this problem, we theoretically formalize the Fault-
Tolerant Probing Planning for In-band Network Telemetry. The
model can be seen as a generalization of the Capacitated Arc
Routing problem [10] and, therefore, it is an NP-hard problem.
To solve this problem efficiently, we introduce a heuristic
that wisely finds a high-quality solution. To the best of our
knowledge, this is the first attempt to formally define and
solve this problem. Results show that Patcher outperforms the
state-of-the-art solution [1] by a factor of 5.5x related to the
number of probes, at the same time that makes better usage of
available resources and decreases the transmission overhead to
INT collectors.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work in the area of in-band
network telemetry. In Section 3, we formalize the fault-tolerant
probing planning for INT. In Section 4, we introduce our
heuristic approach to solve it. In Section 5, we present and
discuss the results of an evaluation of the heuristic. Last,
in Section 6 we conclude the paper with final remarks and
perspectives for future work.

II. RELATED WORK

To the best of our knowledge, the in-band network telemetry
plan problem has not been investigated before the inception
of programmable data planes. We discuss the most prominent
studies related to network telemetry.

A. In-band Network Telemetry Monitoring Mechanisms

Recent advances in forwarding devices have enabled to push
telemetry information continuously (i.e., via streaming) to data
collectors – known as Model-Driven Telemetry (MDT) [11].
In this context, Putina et al. [12] proposed a mechanism for
real-time detection of BGP anomalies, relying on machine-
learning techniques and MDT-based telemetry data streaming.

978-1-7281-8903-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

Other studies have focused on the concept of in-band network
telemetry (INT) [13]. Mazières et al. [14] introduced the sem-
inal work on in-band telemetry. They proposed the concept of
a tiny packet program (TPP). In turn, Everflow [15] extended
INT concept by exploring the “match-and-mirror” functional-
ity of commodity switches. Everflow uses the INT concept to
filter packets that satisfy given patterns (i.e., matching) and
send (mirroring) them to multiple data analyzers, which then
can send “guided probes” to investigate potential faults.

Gupta et al. [16] designed SONATA, a high-level interface
to express telemetry queries. Based on programmable data
plane constraints, monitoring queries are partitioned and pro-
cessed in multiple devices, ensuring, therefore, that monitoring
queries and the packet forwarding still operate at line rate for
high traffic volumes and rates. Omnimon [17] takes a step
further to achieve resource efficiency and full accuracy teleme-
try for data center networks (DCN). It splits the execution
among different entities (i.e., end-hosts, switches, controller)
to monitor flows across the entire network. Similarly, Concerto
[18] splits queries between switches to reduce the stream
processor’s load. The switches execute queries in a best-
effort manner, i.e., the queries are executed only if available
resources exist on the switches.

In turn, PathDump [19] is a mechanism designed to identify
and debug anomalous behaviors in programmable network
infrastructure. The approach is based on the route taken by
network packets and on the subsequent analysis of it. For
that, PathDump keeps track of the packet’s route, employing
INT instruction in the forwarding devices. SwitchPointer [20]
extends PathDump by proposing to collect end-host telemetry
information to enhance the debugging capabilities – in addition
to in-network telemetry information. In turn, NetSeer [21]
leverages programmable switches and NICs to allow operators
to troubleshoot network problem anomalies. It selects packets
that experience flow events, minimize false-positives (duplica-
tion of reported flows events), and aggregate sequential event
(e.g., congestion) packets from flow into a single flow event
to aid on the location of anomalies (e.g., packet drops) in the
network. Other studies [22] have proposed to execute specific
telemetry operations (e.g., heavy hitters identification) directly
in the data plane. However, telemetry operations are limited by
the available capabilities (e.g., memory) in forwarding devices.

B. Orchestration of In-band Network Telemetry

The INT orchestration problem has recently gained atten-
tion from academia. Marques et al. [7] and Liu et al. [2]
were the first to introduce the problem. Marques et al. [7]
propose two heuristic strategies for collecting telemetry data,
namely, concentrate and balance. The proposed heuristics
assign network flows to forwarding devices. Liu et al. [2]
proposed NetVision, an attempt to provide an architectural
design to offer network telemetry as a service. NetVision
enhance network visibility by dynamically changing the rout-
ing policies applied to network flows. Hohemberger et al. [8]
further improved previous solutions by designing a machine
learning-based model that wisely choose and collect INT data

based on its importance. Their model outperforms state-of-the-
art solutions. Yet, Hohemberger et al. [9] introduced a meta-
heuristic approach based on Iterated Local Search to scale the
resolution of the orchestration problem [8].

In turn, Pan et al. [1], and Geng et al. [6] have focused
on performing network telemetry through active INT-based
probing packets. These strategies have relied either on Euler
Circuits [2], [1] or actual routing paths [6] to instrument
the forwarding of probes. Pan et al. [1] propose INT-path,
a network-wide telemetry system that embeds source routing
into INT probes and develop an Euler trail-based algorithm
to cover the whole network with non-overlapping INT paths.
Geng et al. [6] proposes SIMON, a measurement system that
reconstructs the network state by collecting key network state
variables such as queuing times, link utilization, and queue
composition. NICs retrieve data on an edge-based approach
and a mesh of probes to reconstruct DCN networks by
covering the paths on a per-packet or per-flow basis.

As can be observed, current research efforts related to
the in-band telemetry are still restricted to mechanisms that
mostly utilizes collected telemetry data for new monitoring
solutions(e.g., [12], [14], [15], [16], [17], [18]). The studies
introduced by [2] and [7] represent the first steps towards the
orchestration of in-band network telemetry. This work is a
first step in the direction of a fault-tolerant solution for the
aforementioned problem. As will be shown later, our proposed
approach is able to outperform state-of-the-art, coming up with
feasible, high-quality solutions for larger scenarios.

III. PATCHER: A FAULT-TOLERANT PROBING PLANNING
FOR IN-BAND NETWORK TELEMETRY

A. Problem Overview

The probing planning problem consists of designing probing
cycles to cover a network infrastructure in terms of telemetry
data and links – that is, collecting data plane telemetry statis-
tics at near real-time using probing packets. By covering the
network infrastructure, INT enables building and maintaining
an updated network-wide state – which is crucial to large-scale
networks. While previous studies have focused on building
feasible solutions to the in-band probing planning problem
(e.g., [1], [2], [9]), Patcher is the first effort to tackle fault-
tolerance at design. Patcher focuses on building a feasible
solution when (multiple) node failures occur. Suppose a given
set of programmable devices fail. To keep the in-band network
telemetry monitoring alive, the control plane (or the data
plane) has to react and reorganize existing probing cycles in
order to keep the network-wide visibility timely. Patcher is
the first effort towards a feasible solution to this problem.
Figure 1(b) illustrates the case when a single programmable
device fails (i.e., node I). In this case, it affects the monitoring
cycles performed by f1 and f2. Patcher focuses on efficiently
rebuilding those cycles to ensure that all links are still being
covered, while collecting the required INT data from the data
planes. For that, Patcher tries to minimize the changes in
the current solution by applying “patches” on affected cycles
(and, therefore, the name Patcher). Figure 1(b) illustrates a

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

(a) Example of a feasible solution for the probing plan-
ning problem.

(b) Example of a feasible solution provided by Patcher
when network device I is faulty.

Fig. 1. Scenarios with (rightmost) and without (leftmost) failure nodes

feasible solution that fixes probing cycle f1 (affected by the
failure), consisting of rerouting the probing cycle through
nodes G → H → D → A, instead of G → I → A (where
node I has failed).

Re-optimizing probing cycles is an NP-hard problem and,
therefore, it is not trivially solved. The hardness of this prob-
lem is due to (i) existing space constraints on probing packets
(in the figure, they support up to six telemetry data); and (ii)
ensuring cycle connectivity without any sub-tour (i.e., nodes
on a cycle are all connected to each other). A simple and naive
solution consists of generating all probing cycles on the event
of node failures. Although it represents a feasible solution,
it impacts the operation of active (and unaffected) monitoring
cycles as all probing cycles would need to be reprogrammed by
the control plane. Patcher, in contrast, focuses only on affected
cycles and, therefore, can be efficiently used by the control
plane to instrument probing cycles on the event of failures, or
directly by the data plane as a fast-failover mechanism.

B. Model description and notation

Input. The optimization model considers as input a physical
network infrastructure G = (D,L), a set of telemetry items
V , a set of active probing cycles P , and a set of faulty nodes
D∗ ⊆ D. Set D in network G represents programmable de-
vices D = {1, ..., |D|}, while set L consists of unidirectional
links interconnecting pair of devices (i, j) ∈ (D ×D). There
exists a set of telemetry items V available in the network
G. Each device i ∈ D is able to embed a subset of items
Vi ⊆ V into a probing packet. Each telemetry item v ∈ V
has its size defined by function S : V → N+. Telemetry items
are collected by probing cycles P = {1, ..., |P |}. We denote
the routing cycle followed by probing p ∈ P as function
C : P → {D1 × ... × D|D|}. Probing cycles p ∈ P can
collect telemetry items from forwarding devices i ∈ C(p). The
capacity of probing packets (e.g., the MTU) is upper bounded
by a given constant, defined as U : P → N+. The subset of
telemetry data collected by probing cycle p ∈ P is represented
by a set of pairs (i, v) : i ∈ D, v ∈ Vi and is given by the
function T : P → {(D × V) × (D × V), ..., (D × V)}. For
simplicity, a pair (i, v) ∈ T is indexed as [1] and [2] to refer
to the first and second element, respectively.

Constraints. Next, we describe the main feasibility con-
straints related to the problem. The problem is subject to

(i) network telemetry coverage constraints; (ii) network link
coverage constraints; (iii) cycle capacity; and (iv) cycle con-
nectivity constraints.

(i) Network telemetry coverage: all network telemetry statis-
tics available on data plane devices Vi : (∀i ∈ D) need to
be collected by at least on active probing cycle P . For each
network device i ∈ D, we keep track of collected telemetry
items by existing probing cycles. Formally,
∣∣(⋃

(p∈P,(j,v)∈T (p)
| i=j)

(j, v)[2]
)⋂

Vi

∣∣ =
∣∣Vi

∣∣ : (∀i ∈ D) (1)

(ii) Network link coverage: Network links L from the
network G need to be covered by at least on probing cycle P .
For each network link (k, l) ∈ E, we count the occurrences
on existing probing cycles P (which should be greater than
one). Formally,

∣∣
i≤(|C(p)|−1)⋃

(p∈P,i=1
| C(p)[i]=k

∧C(p)[i+1]=l)

(C(p)[i], C(p)[i+1])
∣∣ ≥ 1 : (∀(k, l) ∈ L) (2)

(iii) Cycle capacity: Probing cycles are upper bounded by
U(p) to embed data plane statistics and accounting for used
links and nodes. Usually, INT procedures utilize up to 1 byte
to store device/link ID. We sum the cycle length (i.e., |C(p)|)
with the telemetry usage to avoid creating unrealistic, lengthy
cycles.
(∑

(i,v)∈T (p)

(j, v)[2] · S(v)
)
+ |C(p)| ≤ U(p) : (∀p ∈ P) (3)

(iv) Cycle connectivity: Probing cycles need to be well
constructed. A valid cycle C : P → {D1 × ... × D|D|} is
the one that starts and ends at the same device (Equation 4),
while all devices i ∈ C(p) are pairwise strongly connected,
i.e., any pair of devices in C(p) are reachable to each other.
To describe this property, we recall a auxiliary function
δ : (P × D × D) → {true, false} that returns true in case
there exists a path between node i and j in probing path P ,
i.e. C(p)[i] → ... → C(p)[j], where (C(p)[i], C(p)[i+1]) ∈ L.
Otherwise, function δ returns false.

C(p)[1] = C(p)[|C(p)|] : (∀p ∈ P) (4)

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

δ(p, i, j) = true : (∀p ∈ P), ∀(i, j) ∈ (C(p)× C(p)) (5)

Given the feasibility constraints defined above, we assume
there exists an assignment function A : (G, V) → (C, T)
that, given a network infrastrucutre G, and a set of telemetry
items V , it returns a feasible solution (C, T), with respect to
constraints (i), (ii), (iii), and (iv).

Objective. Given a feasible solution (C, T) and a set of
faulty nodes D∗, the optimization problem seeks a new assign-
ment A : (G−{D∗}, V)→ (C, T) that minimizes the number
of changes in the current solution (C, T). In other words,
the solution of A and A should be as similar as possible,
despite the required changes with respect of faulty nodes D∗

The objective function aims to minimize the changes made on
current probing cycles by maximizing the intersection between
the current and the new solution. Equation (6) describes the
objective function. Observe that parameters α and β are used
for weighting the importance of probing cycle structures (i.e.,
α) and telemetry items assignments (i.e., β).

Maximize α ·
∑

p∈P

|Cp ∩ Cp|+ β ·
∑

p∈P

|Tp ∩ Tp| (6)

IV. PROPOSED HEURISTIC APPROACH

To tackle the above problem efficiently and provide a
quality-wise solution, we propose a heuristic procedure that
only rebuilds parts of probing cycles affected by the faulty
nodes. Next, we overview the ideas behind our proposed
heuristic, and then we discuss the pseudo-code and its com-
plexity analysis.

The heuristic procedure aims to maintain all network links
covered while collecting all telemetry items from available
devices. The main idea consists of reconstructing only affected
cycles by faulty nodes D∗. Algorithm 1 summarizes our
proposed approach. Our heuristic receives as input a feasible
solution (C, T) and the set of faulty nodes D∗. In lines
1-5, we “patch” all affected cycles by directly connecting
the predecessor and the successor of a given faulty node
i ∈ D∗. We perform this new interconnection using the
shortest path. As we do not control the length of this new
interconnection, it could be that the applied “patch” violates
the probe’s capacity. In this case, we exclude telemetry items
from the affect cycles until it does not (lines 6-11). Then,
we iterate over the unsatisfied items Udv (i.e., those removed
from probing cycles) and look for a probing p ∈ P that is able
to collect it again (lines 12-19). If the existing probing paths
P could not collect all the remaining items, we then create
new probing cycles for that purpose (lines 20-29). We sort
telemetry items Udv with respect to forwarding devices D so
as to ensure that we collect items in a given order. Finally, we
apply a local search procedure (line 30) that further optimizes
our incumbent solution. The local search procedure strives to
minimize the number of probing cycles by removing cycles in
which forwarding devices have already been covered by other
probes. We iterate over each pair of probing cycles, checking
whether or not it is possible to delete. Our proposed approach
has a worst-case time complexity of O(D ·V ·P), considering
the most consuming code section (lines 12-18).

Algorithm 1 Overview of the patcher procedure.
Input: (C, T): initial solution; D∗: subset of faulty nodes.

1: for all devices i ∈ C(p) : (∀p ∈ P) do
2: if i ∈ D∗ then
3: C(p) ← C(p)− i ∪ ShortestPath(C(p)[i−1], C(p)[i+1])
4: end if
5: end for
6: for all cycles p ∈ P such that Equation (3) is not satisfied do
7: while capacity U(p) constraint is not satisfied do
8: exclude a collected item, until it does
9: Save item on Udv

10: end while
11: end for
12: for all unsatisfied items (d, v) ∈ Udv do
13: for all p ∈ P the cycles do
14: if cycle p has residual capacity U(p)− S(v) ≥ 0 then
15: Udv ← Udv − (d, v); U(p) ← U(p)− S(v)
16: T (p) ← T (p) ∪ (d, v)
17: end if
18: end for
19: end for
20: Sort (d, v) ∈ Udv regarding device d.
21: while Udv �= ∅ do
22: P ← new probe containing a cycle C(pnew) which prioritizes

unsatisfied items Udv

23: while (d, v) ∈ Udv do
24: if cycle p has residual capacity U(p)− S(v) ≥ 0 then
25: Udv ← Udv − (d, v); U(p) ← U(p)− S(v)
26: T (p) ← T (p) ∪ (d, v)
27: end if
28: end while
29: end while
30: Apply local search
31: return new solution (C, T)

V. EVALUATION

Setup. All experiments were performed on a machine with
AMD Threadripper 2920X processor and 80 GB of RAM,
using the Ubuntu 16.04 operating system. We considered
physical network instances that were generated with Brite [23],
following the Barabasi-Albert model [24]. We used physical
network infrastructures varying from 10 to 100 forwarding
devices. We vary the amount of available space to embed
telemetry items in probing packets (i.e. U(p)) from 100 to
1500 Bytes. Further, we assume that forwarding devices have
8 possible telemetry items to export1, varying its size S(v)
uniformly from 2 to 20 Bytes [1]. Yet, we consider that there
exist a single faulty node (i..e, |D∗| = 1) in the network
infrastructure G. In each execution, we vary this set to cover
all devices i ∈ D, ensuring that all devices fail individually.
We consider α = 1 and β = 1. As future work, we left the
evaluation of higher values for |D∗|, as well the fine-tuning
of α and β.

We compare the results obtained by Patcher against (i)
the Edge Randomization (ER) [25], and (ii) the recent
state-of-the-art work proposed by Pan et al. [1], namely
PathPlanning (PP). Edge Randomization is a well-
known heuristic procedure used to build feasible solutions to
the arc routing problem. We modify such a strategy to the
problem in hand as follows. We randomly select a starting

1In-band Network Telemetry: https://p4.org/assets/INT-current-spec.pdf

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

 0
 50

 100
 150
 200
 250
 300

100 200 400 800 1500

of

 p
ro

be
s

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

(a) Number of probing cycles for an in-
creasing network size.

 0
 10
 20
 30
 40
 50
 60

1 2 3 4 5

C
ol

le
ct

or
 o

ve
rh

ea
d

(#
 o

f
pr

ob
es

)

of collectors

PP
ER

Patcher(PP)
Patcher(ER)

(b) Collector load.

 0

 5

 10

 15

 20

 25

1 2 3 4 5

A
vg

. t
ra

ns
m

is
si

on
ov

er
he

ad
 (

in
 h

op
s)

of collectors

PP
ER

Patcher(PP)
Patcher(ER)

(c) Minimum distance to the closest col-
lector.

 0
 5

 10
 15
 20
 25
 30

100 200 400 800 1500A
vg

. e
xc

ha
ng

ed
 li

nk
s

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

(d) Average difference of |Cp ∩ Cp|.

 0
 10
 20
 30
 40
 50
 60

100 200 400 800 1500A
vg

. e
xc

ha
ng

ed
 it

em
s

Probe capacity

PP
ER

Patcher(PP)
Patcher(ER)

(e) Average difference of |Tp ∩ Tp|.

Fig. 2. In-band probing cycles performance metrics.

device d ∈ D to start the probing cycles p. While the capacity
U(p) is not violated, we collect all telemetry items Vi of
the current node i and randomly select a next forwarding
device to further expand the current probing cycle. At the
point that the capacity U(p) is reached, we return to the
origin forwarding device (the procedure ensures that there is
enough capacity to make the way back). Our initial solution
to the problem (Section III) is given according to the above
algorithms (i.e., ER and PP). On the event of a failure in
devices D∗, we apply Patcher on top of existing solutions –
mentioned as Patcher(ER) or Patcher(PP). Alternatively, we
re-execute algorithms ER and PP from scratch (considering
faulty nodes D∗) as a baseline comparison.

Metrics. We focus our evaluation on five metrics: (i) number
of probing cycles, (ii) INT collector overhead (i.e., the number
of probing cycles assigned to a given INT collector), (iii)
transmission overhead (i.e., the distance between the probing
cycles and the closest INT collector), (iv) the number of
changes in current solution regarding links (i.e., the difference
between sets Cp and Cp), and (v) the number of changes in
current solution regarding telemetry data (i.e., the difference
between sets Tp and Tp).

Results. Number of probing cycles. Figure 2(a) illustrates
the average amount of probing cycles after a given faulty
node, varying probing cycle from 100 to 1500. Note that in
all graphs, we show the average considering all faulty nodes
D∗. Patcher can substantially reduce the number of probing
cycles after an observed fault in comparison to ER (up to 82%)
and PP (up to 27.3%). This is mostly due to reorganizing
existing probing cycles, instead of rebuilding a new solution
from scratch. The number of probing cycles is reduced as
fewer network telemetry items are to be collected (and links
to be covered) in a faulty situation.

Collector and transmission overheads. Figure 2(b) and
Figure 2(c) illustrate the collector and transmission overhead,
respectively. In both figures, we increase the number of INT
collectors from 1 to 5. These metrics are calculated consid-

ering the optimal placement of INT collectors. That is, given
a set of probing cycles, we place the available INT collectors
in a given set of forwarding node D to minimize the value
of these metrics. Figure 2(b) illustrates the average collector
overhead: the amount of probing cycles assigned to each of
them. The lower the number of INT collectors, the higher is the
overhead. When there is a fault in the network, we analyze how
this collector load is affected. Observe that Patcher reduces
(up to 3x) this overhead as a consequence of reducing the
number of probing cycles (illustrated in Figure 2(a)). In turn,
Figure 2(c) illustrates the average transmission overhead (i.e.,
the number of hops between probing cycles and placed INT
collectors). Similarly to the collector overhead, the transmis-
sion overhead is affected by the number of INT collectors. The
more INT collectors, the lower is the transmission costs – as
this increases the chance of having an INT collector closer to
a given probing cycle. When a fault occurs, the transmission
costs are maintained (or reduced up to 60.9%) in comparison
to re-executing the whole solution.

Changes in existing solutions. Figure 2(d) and Figure 2(e)
illustrate the average amount of changes required to implement
a new solution on the event of a fault – regarding changes in
links and telemetry items assignments. Observe that these two
metrics are rather important in order to assess the recovery
time taken by programmable network infrastructure in the
case of a fault. Note, as well, that these changes can be
instrumented directly by the control plane (e.g., by installing
new rules in forwarding devices) or be encoded into INT
probing packets to be handled directly by the data plane.
In either case, a low number of changes are expected in
order to reduce the recovery time or the resource usage of
probing packets. Figure 2(d) illustrates the number of probing
cycle links that have been changed from the initial solution
to the new one (e.g., given by Patcher or re-executing the
algorithms from scratch). Observe that, in general, Patcher
reduces substantially the number of observed changes in
existing solutions as it applies “patches” only on affected parts

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

of probing cycles. Patcher can reduce up to 27 (98.5%) and 8
(43%) link changes in comparison to ER and PP, respectively.
In turn, Figure 2(e) shows the number of telemetry items data
has been reassigned from one probing cycle to another. This
happens due to space constraints in existing cycles. Eventually,
a feasible solution encompasses the reallocation of existing
telemetry items among available probing cycles when a fault
occurs. As observed in the figure, the solutions produced by
Patcher add a negligible amount of changes in comparison to
ER (up to 96.5%) and PP (up to 74.8%).

VI. FINAL REMARKS

In this paper, we proposed Patcher fault-tolerant probing
planning for INT. To the best of our knowledge, Patcher is
the first mechanism to consider network failures and create
dynamic solutions over time. As shown, our solution (i)
reduces the number of probes by a factor of 5.5x, (ii) makes
better use of network resources by keeping the collector and
transmission overheads of probing cycles as low as possible,
and (iii) requires up to 98% fewer changes (in comparison
to baselines) to implement our fault-tolerant mechanism. As
future work, we intend to evaluate the impact of multiple
simultaneous failures on Patcher’s efficiency.

ACKNOWLEDGEMENTS

This work was partially funded by National Council for Sci-
entific and Technological Development (CNPq 2018/427814),
Foundation for Research of the State of Sao Paulo (FAPESP
2018/23092-1), and Foundation for Research of the State of
Rio Grande do Sul (19/2551-0001224-1, 19/2551-0001266-7).

REFERENCES

[1] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for in-
band network-wide telemetry,” in IEEE INFOCOM, Apr 2019, pp. 1–9.

[2] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards network
telemetry as a service,” in IEEE ICNP, Sep. 2018, pp. 247–248.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p. 503–514, Aug.
2014. [Online]. Available: https://doi.org/10.1145/2740070.2626316

[4] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proceedings of the INFO-
COM ’97. Sixteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Driving the Information Revolution, ser.
INFOCOM ’97. USA: IEEE Computer Society, 1997, p. 1014.

[5] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński,
G. Nikolaidis, and S. Schmid, “Purr: A primitive for reconfigurable
fast reroute: Hope for the best and program for the worst,” in
Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, ser. CoNEXT ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1–14.
[Online]. Available: https://doi.org/10.1145/3359989.3365410

[6] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat, “SIMON: A simple and scalable method for sensing,
inference and measurement in data center networks,” in USENIX NSDI
19. Boston, MA: USENIX Association, Feb. 2019, pp. 549–564.

[8] R. Hohemberger, A. G. Castro, F. G. Vogt, R. B. Mansilha, A. F.
Lorenzon, F. D. Rossi, and M. C. Luizelli, “Orchestrating in-band data
plane telemetry with machine learning,” IEEE Communications Letters,
vol. 23, no. 12, pp. 2247–2251, 2019.

[7] J. A. Marques, M. C. Luizelli, R. I. T. Da Costa, and L. P. Gaspary, “An
optimization-based approach for efficient network monitoring using in-
band network telemetry,” Journal of Internet Services and Applications,
no. 1, p. 16, Jun 2019.

[9] R. Hohemberger, A. F. Lorenzon, F. D. Rossi, and M. C. Luizelli, “A
heuristic approach for large-scale orchestration of the in-band data plane
telemetry problem,” in Advanced Information Networking and Applica-
tions, L. Barolli, F. Amato, F. Moscato, T. Enokido, and M. Takizawa,
Eds. Cham: Springer International Publishing, 2020, pp. 381–392.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[11] A. F. Q. Wu, J. Strassner and L. Zhang. (2016, Mar.) Network
telemetry and big data analysis. [Online]. Available: https://tools.ietf.
org/html/draft-wu-t2trg-network-telemetry-00

[12] A. Putina, D. Rossi, A. Bifet, S. Barth, D. Pletcher, C. Precup, and
P. Nivaggioli, “Telemetry-based stream-learning of bgp anomalies,” in
Proceedings of the 2018 Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, ser. Big-DAMA ’18.
New York, NY, USA: ACM, 2018, pp. 15–20. [Online]. Available:
http://doi.acm.org/10.1145/3229607.3229611

[13] m. . j. y. . . u. . h. The P4.org Applications Working Group, title = In-
band Network Telemetry (INT) Dataplane Specification.

[14] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network
programming and visibility,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM ’14. New York,
NY, USA: ACM, 2014, pp. 3–14. [Online]. Available: http:
//doi.acm.org/10.1145/2619239.2626292

[15] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan,
D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-
level telemetry in large datacenter networks,” in Proceedings of the
2015 ACM Conference on SIGCOMM, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 479–491. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787483

[16] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proceedings of the 2018 ACM Conference on SIGCOMM, ser. SIG-
COMM ’18. New York, NY, USA: ACM, 2018.

[17] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in Proceedings of the ACM SIGCOMM, 2020, pp. 404–421.

[18] Y. Li, K. Gao, X. Jin, and W. Xu, “Concerto: cooperative network-wide
telemetry with controllable error rate,” in Proceedings of the 11th ACM
SIGOPS Asia-Pacific Workshop on Systems, 2020, pp. 114–121.

[19] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with pathdump,” in 12th USENIX OSDI 16), Savannah, GA,
2016, pp. 233–248.

[20] ——, “Distributed network monitoring and debugging with switch-
pointer,” in 15th USENIX NSDI 18, Renton, WA, 2018, pp. 453–456.

[21] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi et al., “Flow event telemetry on programmable data
plane,” in Proceedings of the ACM SIGCOMM, 2020, pp. 76–89.

[22] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and
E. Waisbard, “Constant time updates in hierarchical heavy hitters,”
in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17. New York,
NY, USA: ACM, 2017, pp. 127–140. [Online]. Available: http:
//doi.acm.org/10.1145/3098822.3098832

[23] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to
universal topology generation,” in IEEE MASCOTS 2001, Aug 2001, pp.
346–353.

[24] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234 –
5237, Dec 2000.

[25] J.-M. Belenguer, E. Benavent, P. Lacomme, and C. Prins, “Lower and
upper bounds for the mixed capacitated arc routing problem,” Computers
& Operations Research, vol. 33, no. 12, pp. 3363–3383, 2006.

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:21:02 UTC from IEEE Xplore. Restrictions apply.

89

ANNEX C – NEAR-OPTIMAL PROBING PLANNING FOR IN-BAND
NETWORK TELEMETRY

1089-7798 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3053485, IEEE
Communications Letters

1

Near-Optimal Probing Planning for In-Band Network Telemetry

Ariel G. Castro, Arthur F. Lorenzon, Fábio D. Rossi, Roberto I. T. da Costa Filho,
Fernando M. V. Ramos, Christian E. Rothenberg, Marcelo C. Luizelli

Abstract—In-band Network Telemetry (INT) is gaining trac-
tion as an advanced network monitoring approach. Despite a few
recent initiatives to orchestrate the collection of in-band network
statistics, state-of-the-art approaches fall short when it comes to
efficiently collect telemetry items while subjected to real-world
constraints. In this letter, we propose Probe Planning for In-Band
Network Telemetry (P2INT) to coordinate how probing packets
are generated and routed to ensure that all links are covered so
that the required in-band network telemetry data is collected.
We theoretically formalize the problem as a Integer Linear
Programming model and propose an efficient mathematical
programming-based heuristic to solve it. Our results show that
P2INT outperforms the closest contender by a factor of up to 6x
concerning the number of probing cycles generated.

Index Terms—In-band Network Telemetry; INT; Math-
heuristic; MILP; data plane programability; P4.

I. INTRODUCTION

In-band Network Telemetry (INT) has recently emerged as
a promising near real-time network monitoring to improve
network visibility [1], [2], [3]. Due to the rich spectrum
of benefits behind INT, there is increasing attention from
the networking ecosystem fostered by the rapid adoption of
programmable data planes and domain-specific networking
description languages (e.g., P4 [4]). In short, INT consists
of instrumenting the collection of low-level network statistics
directly from the data plane. In the classic hop-by-hop INT
(a.k.a INT-MD (eMbed Data)1), an INT source node embeds
instructions into production network packets. Then, INT transit
nodes embed metadata while an INT sink node strips the
instruction out of the packet and sends the accumulated
telemetry data to an INT collector.

In this work, we consider using probe packets to instruct
network devices to collect telemetry data. Figure 1 illustrates
the entire INT process. In the first step, probing packets are
generated aiming at instrumenting the collection of telemetry
data along a given path. For example, the red flow (i.e. f1) –
that is routed through the devices A, E, F , G, H , and I –
carries instructions to collect telemetry data from devices A to

This research was partially supported by National Council for Scientific
and Technological Development (CNPq) (grant 427814/2018-9), São Paulo
Research Foundation (FAPESP) (grant 2018/23092-1), Rio Grande do Sul Re-
search Foundation (FAPERGS) (grants 19/2551-0001266-7,20/2551-000483-
0, 19/2551-0001224-1) and by the Portuguese national funds through FCT
via UIDB/50021/2020 and PTDC/CCI-INF/30340/2017 (uPVN) projects.

Ariel G. Castro, Arthur F. Lorenzon, and Marcelo C. Luizelli are with the
Federal University of Pampa, Brazil.

Fabio D. Rossi is with the Federal Institute Farroupilha, Brazil.
Roberto I. T. da Costa Filho is with Instituto Federal de Educação, Ciência

e Tecnologia Sul-Rio-Grandense, Brazil.
Fernando M. V. Ramos is with the University of Lisbon, Portugal.
Christian E. Rothenberg is with the University of Campinas, Brazil.
1INT specification: https://github.com/p4lang/p4-applications/blob/master/

docs/INT v2 1.pdf

Probes flows

AE
B

C
F

G
H

DI

INT Collector

Telemetry data Probe packet

(1)

(2)

(3) (4)

f1
f2

f3

(5)

Fig. 1. Example of a solution for the probing planning problem, illustrating
a snapshot where probing packets (f1, f2, f3) collect telemetry data from
selected network devices.

H . In the second step, the collected telemetry data is extracted
and reported to an INT collector.

Recently, investigations have made the first efforts towards
the orchestration of INT data collection to improve network-
wide visibility. Liu et al. [2], Pan et al. [3], Bhamare et al.[5],
and Geng et al. [6] have focused on performing network
telemetry through active INT-based probing packets. These
strategies have relied either on Euler Circuits [2], [3] or on
actual routing paths [5], [6] to instrument the forwarding of
probes. In turn, Marques et al. [7] and Hohemberger et al. [8]
have focused on the embedding of INT data into produc-
tion network packets. Marques et al. [7] designed heuristic
approaches to orchestrate how network flow packets collect
network telemetry data, while Hohemberger et al. [8] designed
a machine learning-based model to wisely choose and collect
INT data based on its importance. Further, others studies [9]
have focused on the design of operational INT mechanisms
and on reducing the amount of INT messages being reported.

Despite current efforts towards near real-time in-band net-
work telemetry, the coordination of INT probing packets to
collect network information efficiently is still full of gaps
and challenges. The first attempts [2], [3], [5] to tackle this
problem contributed with initial steps but suffer from (i)
uncoordinated probing packet generation, and (ii) neglected
capacity constraints. By using uncoordinated probes, there is
an increasing transmission overhead from active probes to the
INT collectors (as discussed later on). Furthermore, relaxing
capacity constraints of probing packets simplifies the problem
– but unrealistic from an operational point of view2. In this
letter, we introduce P2INT – Probe Planning for In-Band
Network Telemetry – to coordinate how probing packets are
generated and routed in order to ensure that all links are visited
and all required INT data is collected. Although existing
solutions have either focused on INT probes to monitor link

2For instance, in the Netronome SmartNIC architecture, the ingress times-
tamp has 64 bits, while the ingress port 16 bits.

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:12:23 UTC from IEEE Xplore. Restrictions apply.

1089-7798 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3053485, IEEE
Communications Letters

2

connectivity (e.g. [2], [3]) or focused on the collection itself of
INT data (e.g. [7], [8]), they still miss how to jointly optimize
the way to collect telemetry data and cover network links.
To tackle this problem, we theoretically formalize P2INT as
a Integer Linear Programming model. The model consists of
a generalization of two well-known optimization problems –
namely, Capacitated Arc Routing problem and Bin Packing
problem [10] and, therefore, it is an NP-hard problem. We
introduce a novel mathematical programming-based heuristic
that wisely guides the MILP model to find a high-quality
solution. Results show that P2INT outperforms the state-of-
the-art solution [3] by a factor of 6x related to the number of
probes, at the same time that makes better usage of available
resources (up to 3x) and decreases the transmission overhead
to INT collectors (up to 2x).

II. P2INT: PROBING PLANNING FOR IN-BAND NETWORK
TELEMETRY

A. Problem Overview

The P2INT problem consists of defining optimized probing
cycles to cover a given network infrastructure, i.e., in terms
of telemetry data and network connectivity. It is noteworthy
that the complete network coverage, both in terms of links and
nodes, enables the assessment of end-to-end metrics based on
different composition rules (e.g., multiplicative, additive, and
concave) [11]. This approach is crucial for operating in large-
scale networks such as the 5G device-to-device ecosystem,
where path-based measurements are prohibitive due to the
massive number of available paths. The P2INT problem is not
trivially solved. First, probing packets are space-bounded (i.e.,
w.r.t. bytes), and therefore it is infeasible (in most cases) to
collect all network telemetry data with a single packet. Second,
routing a probing packet is challenging. Probes need to be
routed in such a manner that telemetry data requirements are
met, while avoiding extra overheads on production network
traffic (e.g., excessive generation of probing cycles). Figure 1
illustrates a network infrastructure with nine programmable
forwarding devices (ranging from A to I), each having exactly
one equal-sized telemetry data (represented by colored rect-
angles). These telemetry data represent data planes’ internal
states (e.g., queue occupancy or processing time), which are
used by specialized monitoring applications [8] (e.g., DDoS
detection). In the example, probing packets are limited to
collect at most five telemetry data. There exists a set of active
probing cycles (i.e., f1, f2, and f3) which are responsible for
continuously (i) collecting telemetry data and (ii) checking
network connectivity. Probing cycles f1, f2, and f3 are routed
and instrumented to collect a given subset of telemetry data.
For instance, probing cycle f1 collect telemetry data from
forwarding devices A to H , while probing cycle f3 from
devices D and I . Observe that all network links are covered
by at least one probing cycle.

B. Model description and notation

The proposed optimization model considers a physical net-
work infrastructure G = (D,L) and a set of telemetry items
V . Set D in network G represents programmable forwarding

devices D = {1, ..., |D|}, while set L consists of unidirec-
tional links interconnecting pair of devices (i, j) ∈ (D ×D).
Similarly to the recent literature [7], [8], we consider that there
exists a set of telemetry items V available. Each forwarding
device i ∈ D is able to embed a subset of items Vi ⊆ V
into a probing packet. Each telemetry item v ∈ V has its size
defined by function S : V → N+.

We consider there is at most |P | probing cycles (i.e.,
P = {1, 2, ..., |P |}) to collect telemetry items from forwarding
devices D. Packets in a probing cycle are encapsulated in a
forwarding protocol, and therefore the amount of available
space to embed telemetry items in packets is bounded by
a constant, defined by function U : P → N+ (e.g., U(p)
lower or equal to the MTU data link). The larger is this
set P , the higher is the amount of decision variables in the
model – and so the search space. A worst-case upper-bound
for |P | can be estimated as |P | = |V | · |D| · |L|. Probing
cycles P are routed within the network infrastructure G – i.e.,
the packet is generated in a given source device, is routed
through a subset of devices, and returns to its origin. We
denote the cycle taken by the probing p ∈ P as function
C : P → {D1 × ... × D|D|}. Probing cycles p ∈ P can
collect telemetry items from forwarding devices i ∈ C(p). The
set of telemetry items collected by probing cycle p ∈ P is
represented by pairs (i, v) : i ∈ D, v ∈ Vi and is given by the
function T : P → {D×V }. A feasible cycle satisfy the upper-
bound U(p), that is

∑
i∈C(p)

∑
v∈Vi:(i,v)∈T (p) S(v) ≤ U(p).

Observe that a given cycle p ∈ P can visit a forwarding
device i ∈ C(p) and not necessarily collect the set of telemetry
items associated. Yet, our model does not restrict a cycle
p ∈ P to collect any telemetry item3. We denote the origin
(starting/ending device) of each cycle p ∈ P as function
O : P → D. Therefore, our model is generic to consider
single- and multi-source probing cycle scenarios (i.e., cycles
might start at different INT sources).

Given the problem input, the optimization problem seeks a
feasible solution that minimizes the number of probing cycles,
while visiting all network links and collecting the required
telemetry data. The model output is denoted by a 3-tuple
χ = {Z,X, Y }. Variables from Z = { zp,v,i , ∀ p ∈ P, v ∈
V, i ∈ D} indicate that a forwarding device i embed telemetry
item v into a probing packet from cycle p. Variables from
X = {xp,i,j , ∀p ∈ P, (i, j) ∈ L} indicates that network link
(i, j) ∈ L is used to route probing cycle p ∈ P . Last, variable
Y = { yp , ∀p ∈ P} is used to keep track of probing cycles
used by the solution. Next, we describe the ILP formulation.

Minimize
P∑

p=1

yp (1)

Subject to:∑

p∈P

zp,v,i = 1 ∀i ∈ D, v ∈ Vi (2)

zp,v,i ≤
∑

j∈D

xp,j,i ∀p ∈ P, i ∈ D, v ∈ Vi (3)

zp,v,i + xp,i,j ≤ 2 · yp ∀p ∈ P, (i, j) ∈ L, v ∈ Vi (4)

3Telemetry items might be only available to specific queues inside the data
plane.

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:12:23 UTC from IEEE Xplore. Restrictions apply.

1089-7798 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3053485, IEEE
Communications Letters

3

∑

j∈D

xp,i,j −
∑

j∈D

xp,j,i = 0 ∀p ∈ P, i ∈ D (5)
∑

p∈P

xp,i,j + xp,j,i ≥ 1 ∀(i, j) ∈ L (6)
∑

i∈D

∑

v∈Vi

zp,v,i · S(v) +
∑

i∈D

∑

j∈D

xp,i,j ≤ U(p) ∀p ∈ P (7)

∑

i∈S

∑

j∈S

xp,i,j ≤ |S| − 1 ∀p ∈ P, S ⊆ {D −Op}, |S| ≥ 2 (8)

zp,v,i ∈ {0, 1} ∀p ∈ P, v ∈ Vi, i ∈ D (9)

yp ∈ {0, 1} ∀p ∈ P (10)

xp,i,j ≥ 0 ∀p ∈ P, v ∈ Vi, i ∈ D (11)

Constraint set (2) ensures that generated probing cycles
collect the required network telemetry data. Constraint set (3)
ensures that if telemetry item v is collected from forwarding
device i, then there should have a probe being routed through
i. Constraint set (4) accounts for the number of probing
cycles in use. In short, it sets a cycle p as active whenever
variables zp,v,i = 1 or xp,i,v = 1. Constraint set (5) ensures
flow conservation on probing cycles. In other words, they
generate probing cycles without ramification or self-loops. In
turn, constraint set (6) guarantees a probing cycle covers at
least one link direction. Constraint set (7) ensures that the
available capacity is not violated either by the telemetry items
collected or by the network links being covered. Observe that∑
i∈D

∑
j∈D xp,i,j limits the probing cycle length. Constraint

set (8) is the well-known sub-tour elimination constraints,
ensuring that generated cycles are strongly connected [12].
Last, constraint sets (9)–(11) define the domains of output
variables. It is worth mentioning that the complexity of the
proposed model comes from (i) capacitated probe packets, (ii)
non-uniform size of telemetry data, and (iii) cycle definition.

III. A MATH-HEURISTIC APPROACH TO P2INT
To tackle the P2INT complexity and come up with

near-optimum solutions, we introduce a mathematical
programming-based heuristic. To minimize the number of
probing cycles in the solution χ, our strategy optimizes a
few probing cycles at once, to merge them by reallocating
telemetry data to other cycles. The idea consists of iteratively
choosing a subset of probing cycles to be optimized (i.e., their
variables Z,X, Y are freely changed), while the others remain
fixed. Algorithm 1 presents the proposed approach. We first
compute a feasible solution χ to the P2INT problem (line 1).
Then, we iteratively select a subset of k probing cycles (lines
5-10), and enumerate the list of variables xp,i,j ∈ D ⊆ X
related to them (line 11); variables listed in D will be subject
to optimization, while others will remain unchanged (line 12).

We take advantage of meta-heuristic VNS (Variable Neigh-
borhood Search) to systematically iterate over subsets of
probing cycles. Further, we prioritize subsets with higher
potential for improvement – i.e., probing cycles that might
be merged (discussed in Subsection III-C). For each subset of
probing cycles, we submit its set of variables D along with χ
to a mathematical programming solver. The goal is to obtain
a set of values to those variables listed in D, so that a better
solution is found. In case there is no improvement, we rollback

Algorithm 1 Overview of the fix-and-optimize heuristic.
Input: Tglobal: global time limit, Tlocal: time limit for each solver run,

Kinit,Kend: initial/final neighborhood size, Kinc: increment for neighborhood
size, NoImprovmax: max. rounds without improvement

Output: χ: best solution found to the optimization model
1: χ← initial feasible solution
2: if a feasible solution does not exist then fail else
3: k ← Kinit
4: while Tglobal is not exceeded and k ≤ Kend do
5: Nk ← current neighborhood, i.e. tuples of k probing cycles
6: Nk,shr ← tuples from Nk , whose cycles share devices
7: Nk,any ← Nk \ Nk,shr

8: NoImprov ← 0
9: while {Nk,shr,Nk,any} 6= ∅ and

NoImprov ≤ NoImprovmax do
10: T ← next unvisited neighbor (w.r.t Equation 16)
11: D ← list of variables xp,i,j from cycles in neighbor T
12: χ′ ← solution χ optimized by the solver, under time

limit Tlocal, and making variables not in D as fixed
13: if χ′ is a better solution than χ then
14: update χ to reflect solution χ′;
15: k ← Kinit;
16: break
17: else
18: NoImprov ← NoImprov + 1
19: end if
20: end while
21: if no improvement was made then k ← k +Ninc end if
22: end while
23: return χ
24: end if

and pick the probing cycle subset that follows. We run this
process iteratively until a better solution is found. Once it
happens, we replace the incumbent solution with χ′ (line 14),
and restart the process (i.e., k ← Kinit). This loop continues
until we have explored the most promising combinations of
available cycles, or Tglobal execution time is exceeded.

A. Obtaining an initial solution

The first step of our algorithm (line 1) is generating a
feasible solution χ. The solution is one that satisfies all
constraints, though not necessarily a high-quality one, in terms
of used probing cycles. There are several ways to generate
feasible solutions to P2INT. We propose two approaches.
The first consists of adapting the Edge Randomization
(ER) heuristic – an approach widely applied in Arc Routing
Problems. ER starts a probing cycle from a random unvisited
network link. Then, the algorithm randomly chooses an adja-
cent forwarding device and collect as many network telemetry
items as possible. While the probing capacity is not depleted,
the algorithm keeps repeating this procedure. Once it happens,
the probing cycle returns to its origin using the shortest-
path approach. The procedure is repeated until all network
telemetry items are collected and all network links are visited.

The second approach is based on recent state-of-the-art
work PathPlanning proposed by Pan et al. [3].Their
proposal does not consider probe capacity, nor data plane
telemetry items. We adapt their DFS-like algorithm to consider
both requirements in the best effort approach. Our adaptation
of the proposed DFS-like strategy only moves on to a next
network link iff there is enough capacity on the current probe
to collect telemetry data and to return to its origin.

B. Neighborhood selection and prioritization

We carefully choose the subset of probing cycles D ∈ X
that will be optimized. We explore the search space using

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:12:23 UTC from IEEE Xplore. Restrictions apply.

1089-7798 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3053485, IEEE
Communications Letters

4

VNS. In a nutshell, VNS organizes the search space in k-
neighborhoods. Each neighborhood is determined as a function
of the incumbent solution (χ), and a neighborhood size k.
We build a neighborhood as a combination of any k probing
cycles. Formally, we define a k-neighborhood as a set com-
posed of k-tuples Nk = { p | p ⊆ P ∧ yp = 1 }. The number
of neighbors in a k-neighborhood is given by the binomial
coefficient

(∑P
p=1 yp
k

)
. We focus only on active probing cycles

to build our neighborhood, since other variables in the model
are easily inferred once the probing cycles are defined.

The time required by the solver to optimize a solution χ
and a subset D ⊆ X is often small. However, processing
every candidate subset D from the entire k-neighborhood
is impractical. Therefore, we prioritize those neighbors that
might lead to a better solution. We prioritize tuples in the k-
neighborhood set Nk according to two observations: (i) it is
more probable to merge probing cycles if they are not over-
committed (i.e., the higher the residual capacity, the better);
and (ii) it is easier to merge cycles that are close to each
other. We define a tuple priority, as a function of its residual
capacity. The residual capacity of a tuple T ∈ Nk is given by
r : T → R+, according to Equation 16.

r(T) =
∑

p∈T


U(p)−

(∑

i∈D

∑

v∈Vi

zp,v,i · S(v) +
∑

i∈D

∑

j∈D

xp,i,j

)

 (16)

We break down a k-neighborhood set into two distinct sets.
The first one is formed by tuples whose probing cycles sharing
forwarding devices (Nk,shr) – i.e., ∩p∈T 6= ∅. The second set
is formed by remaining tuples in Nk (Nk,any = Nk \Nk,shr),
i.e. those tuples whose cycles do not share any forwarding
device. We first process the tuples of Nk,shr. Then, we
process the remainder ones (Nany). Last, our approach takes
as input NoImprovmax. It indicates the maximum number of
iterations without improvement that is allowed over a given
neighborhood. We stop processing the current neighborhood
once NoImprov exceeds NoImprovmax (line 9).

IV. EVALUATION

A. Setup

The proposed model was ran using IBM CPLEX Opti-
mization Studio 12.9 to obtain optimum solutions, while the
proposed heuristic approach was implemented using Java lan-
guage. Experiments were performed on a machine with AMD
Threadripper 2920X processor and 80 GB of RAM, using
the Ubuntu 16.04 operating system. We considered different
physical network instances that were generated with Brite [13],
following the Barabasi-Albert model [14]. We used physical
network infrastructures varying from 10 to 200 forwarding
devices. We vary the amount of available space to embed
telemetry items in probing packets (i.e. U(p)) from 100 to
1500 Bytes. Further, we assume that forwarding devices have
from 2 to 8 possible telemetry items to export, varying its size
S(v) uniformly from 2 to 20 Bytes [3]. P2INT considers the
following parameters Tglobal = 6h, Tlocal = 600s, Kinit = 2,
Kend = 4, Kinc = 1, and NoImprovmax = 15. The fine-tuning
and sensitive analysis of these parameters is out of the scope
of this work. For example, P2INT can trade solution quality

for resolution time by adjusting Tglobal and Tlocal. Using the
t-test method, we found that 30 runs of each experiment is
enough to achieve a confidence level 95% or higher.
Baseline. We compare P2INT against (i) the optimal solution
(OPT), (ii) the Edge Randomization (ER), and (iii) the
recent state-of-the-art work PathPlanning (PP) [3].
Reproducibility. Our implementation is publicly available in
order to encourage full reproducibility of our experiments4 and
foster the design of new solutions.

B. Results

We analyze the quality of the proposed approach by eval-
uating: (i) the number of probing cycles generated; (ii) the
resource usage of probing cycles; (iii) the data transmission
overhead to INT collectors; (iv) the INT collector usage; and
(v) the network link coverage.
Probing cycles. Figure 2(a) illustrates the amount of probing
cycles generated for an increasing size of network infras-
tructures (from 10 to 200). P2INT comes up with quality-
wise solutions compared to the optimal and the state-of-the-
art approach PP. Our solution is able to approach the optimal
value for small network infrastructures (up to 20 nodes)5 At
the same time, the PP produces solutions with up to 2x the
number of probes considering small networks. For medium- to
large-scale networks, P2INT produces (on average) solutions
with 2.2x and 3.70x fewer cycles compared to PP and ER,
respectively. This behavior is explained by the ability of P2INT
to jointly route probing packets and collect items.
Probe scalability. Figure 2(b) depicts the impact of probing
packet capacity with respect to the number of generated cycles.
For the purpose of this evaluation, we show the results of a 50
node network infrastructure6. As the probe capacity increases,
we observe a sharp reduction in the number of probing cycles –
as there is more room to accommodate network telemetry data.
When comparing P2INT to its contenders, we observe that it
is able to generate solutions with up to 5.5x and 4.6x fewer
cycles than PP and ER, respectively – e.g., to U(p) = 1500.
Probe capacity. Figure 2(c) illustrates the average probing
capacity usage by generated cycles. Observe that P2INT
can utilize up to 3x more available capacity than PP (e.g.,
U(p) = 1500). On average, P2INT utilizes 70% of available
resources, while the other strategies (PP and ER) 48% and
50%, respectively. By using available resources efficiently,
P2INT produces solutions with minimum overheads.
Network efficiency. Probing cycles might be computed in a
way that they are not routed through an INT collector. In
this case, at some point in the generated cycle, the collected
INT data needs to be sent to a given monitoring sink. For the
purpose of this evaluation, we consider that there are up to five
INT collectors placed optimally according to the requirements
of each solution. In other words, the INT collectors were
placed connected to a forwarding device in a way that the

4Available implementation of our simulation:
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/

5Optimal solutions for large-scale (|D| > 20) networks are unfeasible due
to NP-hardness. For small instances, the computing time surpasses 24h.

6The results for other network infrastructures follow the same behavior.

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:12:23 UTC from IEEE Xplore. Restrictions apply.

1089-7798 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3053485, IEEE
Communications Letters

5

 1

 10

 100

10 20 30 40 50 100

#
 o

f
p

ro
b

es

Network size

Optimal
Our Approach

PP
ER

(a) Number of probing cycles for an in-
creasing network size.

 0

 50

 100

 150

 200

 250

100 200 400 800 1500

#
 o

f
p

ro
b

es

Probe capacity

Our Approach
PP
ER

(b) Number of probing cycles for differ-
ent probe capacity.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1500

P
ro

b
e

u
sa

g
e

(%
)

Probe capacity

Our Approach
PP
ER

(c) Probe capacity usage.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

A
v

g
.

tr
an

sm
is

si
o

n
o

v
er

h
ea

d
 (

in
 h

o
p

s)

of INT collector

Our Approach
PP
ER

(d) Transmission overhead.

 0

 10

 20

 30

 40

1 2 3 4 5

A
v

g
.

#
 o

f
p

ro
b

es
p

er
 I

N
T

 c
o

ll
ec

to
r

of INT collector

Our Approach
PP
ER

(e) Collector load.

 0

 2

 4

 6

 8

100 200 400 800 1500

L
in

k
 o

v
er

h
ea

d

Probe capacity

Our Approach
PP
ER

(f) Link overhead.

Fig. 2. In-band probing cycles performance metrics.

distance (in hops) to probing cycles is minimized. Figure 2(d)
illustrates the transmission cost (in hops) to the closest INT
collector. We opt to illustrate this cost in hops as the volume
of transmitted data depends on the probe capacity/usage and
the frequency that probe packets are generated. Observe that
the more INT sinks are available in the infrastructure, the
lower is the transmission overhead. Also, note that P2INT
keeps this transmission cost as low as possible even when
there exists just one INT collector. On average, PP and ER
generate solutions with 1.38x and 2.26x higher transmissions
overheads than P2INT, respectively.
Collector load. Figure 2(e) shows the collector load as the
number of probing cycles assigned to each INT collector.
Considering two INT collectors, solutions can cover 83% (our
approach), 82% (PP) and 78% (ER) of all probing cycles. Note
that the observed controller load can be substantially reduced
if a data plane filtering mechanism is considered (e.g., [9]).
Network coverage. Figure 2(f) depicts the network link cov-
erage as the average probing cycles per network link. Higher
values indicate that network links are being over-covered (i.e.,
multiple times), representing a waste of resources. P2INT, on
average, keeps this value close to one, while the other strate-
gies produce solutions with network links begin covered by
up to seven probing cycles (i.e., 7x more than the necessary).

V. FINAL REMARKS

In this letter, we formalized the Probing Planning for In-
band Network Telemetry (P2INT) employing a MILP model
and introduced a scalable mathematical-based heuristic to
solve it. While our approach outperforms state-of-the-art
heuristics (e.g., factor 6 w.r.t probing cycles), it is still limited
to (i) static solutions over time (i.e., probing cycles do not
change); (ii) fixed-throughput of probing packets (i.e., all
probing cycles operates at the same packet rate); and (iii)
agnostic to network services (i.e., probing cycles are not aware
of running functions or services). Addressing these limitations
from the theoretical and operational point of view (e.g., control
and data plane integration) is part of our future work.

REFERENCES

[1] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network
programming and visibility,” ACM SIGCOMM CCR, vol. 44, no. 4, pp.
3–14, 2014.

[2] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards network
telemetry as a service,” in IEEE ICNP, Sep. 2018, pp. 247–248.

[3] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for in-
band network-wide telemetry,” in IEEE INFOCOM, Apr 2019, pp. 1–9.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM 14, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[5] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, and J. Taheri,
“Intopt: In-band network telemetry optimization for nfv service chain
monitoring,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–7.

[6] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat, “SIMON: A simple and scalable method for sensing,
inference and measurement in data center networks,” in USENIX NSDI
19. Boston, MA: USENIX Association, Feb. 2019, pp. 549–564.

[7] J. Marques, M. Luizelli, R. Da Costa, and P. Gaspary, “An optimization-
based approach for efficient network monitoring using in-band network
telemetry,” Journal of Internet Services and Applications, no. 1, p. 16,
Jun 2019.

[8] R. Hohemberger, A. G. Castro, F. G. Vogt, R. B. Mansilha, A. F.
Lorenzon, F. D. Rossi, and M. C. Luizelli, “Orchestrating in-band data
plane telemetry with machine learning,” IEEE Communications Letters,
vol. 23, no. 12, pp. 2247–2251, 2019.

[9] J. Vestin, A. Kassler, D. Bhamare, K. Grinnemo, J. Andersson, and
G. Pongracz, “Programmable event detection for in-band network
telemetry,” in 2019 IEEE 8th International Conference on Cloud Net-
working (CloudNet), 2019, pp. 1–6.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. NY, USA: W. H. Freeman & Co.,
1979.

[11] R. C. Filho, W. Lautenschläger, N. Kagami, M. Luizelli, V. Roesler,
and L. Gaspary, “Scalable qoe-aware path selection in sdn-based mobile
networks,” in IEEE INFOCOM, April 2018, pp. 989–997.

[12] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Journal of the Operations Research Soci-
ety of America, vol. 2, no. 4, pp. 393–410, 1954.

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to
universal topology generation,” in IEEE MASCOTS 2001, 2001.

[14] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234 –
5237, Dec 2000.

Authorized licensed use limited to: Universidade Federal dos Pampas (UNIPAMPA). Downloaded on April 29,2021 at 02:12:23 UTC from IEEE Xplore. Restrictions apply.

95

ANNEX D – THE ACTUAL COST OF PROGRAMMABLE
SMARTNICS: DIVING INTO THE EXISTING LIMITS

The Actual Cost of Programmable
SmartNICs: diving into the existing
limits

Pablo B. Viegas, Ariel G. de Castro, Arthur F. Lorenzon, Fábio D. Rossi,
Marcelo C. Luizelli

Abstract

Programmable Data Planes is a novel paradigm that enables efficient of-
floading of network applications. An important enabler for this paradigm is
the current available SmartNICs, which should satisfy rigid network require-
ments such as high throughput and low latency. Despite recent research in
this field, not much attention was given to understand the costs and limi-
tations of offloading network applications into SmartNIC devices. Existing
offloading approaches either neglect the existing limitations of SmartNICs
or assume that as an ongoing cost – leading, therefore, to sub-optimal of-
floading approaches. In this work, we conduct a comprehensive evaluation of
SmartNICs in order to quantify existing performance limitations. We provide
insights on network performance metrics such as throughput and packet la-
tency while considering different key building blocks of complex P4 programs
(e.g., registers, cryptography functions, or packet recirculation). Results show
that line-rate throughput can degrade up to 8x, while latency can increase
as much as 80x when performing memory-intensive operations in the data
plane.

1 Introduction

Programmable Data Planes (PDP) is a mainstream technology that has been
recently redesigning the networking domain. PDP allows to (re)define the
behavior of network devices (e.g., programmable routers and SmartNICs),

Pablo B. Viegas, Ariel G. de Castro, Marcelo C. Luizelli, Arthur F. Lorenzon

Federal University of Pampa (UNIPAMPA)
Alegrete, Brazil, e-mail: {pabloviegas.aluno,arielcastro.aluno,marceloluizelli,

arthurlorenzon}@unipampa.edu.br

Fabio D. Rossi
Federal Institute Farroupilha (IFFAR)

Alegrete, Brazil, e-mail: fabio.rossi@iffarroupilha.edu.br

1

2 Viegas et al.

allowing to deliver specialized packet processing mechanisms [2]. Recent ad-
vances in data plane programmability have enabled offloading typical control
plane applications to the data plane (e.g., machine learning algorithms [19],
routing [12], or network monitoring [4, 8, 9]). On shifting the operation of
these applications to the data plane, it brings the benefit to process every
single packet and react to network conditions in the order of nanoseconds,
with minimum control plane intervention. Despite that, data plane opera-
tion might become complex – and the complexity comes at a price: lower
throughput and higher latency.

Current SmartNIC architectures (e.g., [11]) do not limit the number of
operations performed by the data plane in a single pipeline stage. For ex-
ample, a PDP application could trigger the read and write of an unbounded
number of registers in a given stage of the packet processing pipeline. Yet,
the same application could recirculate the ingress packet multiple times in
order to mimic a loop-based mechanism. These are straightforward exam-
ples of simple operations commonly used by more complex PDP applications
(e.g., in-network clustering [19]). Therefore, understanding the current per-
formance limitations of existing SmartNICs is paramount to the design of
efficient PDP applications.

A recent study [7] has made the first effort to understand the existing
limitations of SmartNICs. Harkous et al. [7] have focused on evaluating the
performance of general PDP metrics such as parsers, control blocks, and
header modifications in P4 programs. Despite this effort, no study has yet
thoroughly evaluated key building blocks of complex P4 programs (e.g., reg-
isters, cryptography functions, or packet recirculation) – which are essential
for most recent P4 applications. To fill in this gap, we perform an exten-
sive performance evaluation of SmartNICs to understand and quantify PDP
application primitives and existing limitations. We focus our evaluation on
measuring the performance in terms of latency and throughput for a variety of
packet sizes (from 64B to 1500B) when (i) operating multiple registers of dif-
ferent sizes/widths (e.g., used to implement bloom filter alike structures [1]),
(ii) matching on multiple tables in the ingress and egress pipeline (e.g., used
to implement machine-learning algorithms [19]), (iii) performing packet re-
circulation (e.g., used to implement IoT data desegregation [17]), and (iv)
using cryptography functions and arithmetic operations. Results show that
network throughput can degrade up to 8X, while latency can increase as much
as 80X when performing memory-intensive operations in the data plane. The
main contributions of this paper can be summarized as:

• an in-depth performance evaluation of SmartNICs;
• a discussion of current limitations in SmartNIC architectures; and
• an open-source code of all experiments in order to foster reproducibility.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the SmartNIC architecture used in this work. In Section 3, we overview
the recent literature regarding PDP applications and performance evaluation.
In Section 4, we present and discuss the obtained results and, in Section 5,
we conclude this paper with final remarks.

The Actual Cost of Programmable SmartNICs: diving into the existing limits 3

Ingress

MAC

Ingress

PPC
Distributed Switch Fabric

Egress

PPC

Egress

MAC

Crypto IMU EMU

PCIeARM

FPC Island

ME0

Code

Data

ME1

Code

Data

���

ME7

Code

Data

Cluster

Target

Memory

CPP - Command Push Pull

Fig. 1 An overview of the Netronome SmartNIC architecture.

2 SmartNIC Architecture

The hardware techniques used to deliver high-speed network packet process-
ing require context switching on the order of nanoseconds and very high
degrees of processing parallelism to scale the performance of P4-based pro-
grams to Gb/s of throughput and beyond [11]. This is particularly challenging
given the ever-increasing complexity of offloaded codes to network adapters.
Current programmable NICs (also referred to as SmartNICs) rely their ar-
chitectures on multi-threaded, multicore flow processor units to cope with
this increasing and stringent demand. Next, we focus our discussion on the
general architectural details of the Netronome SmartNIC architecture [11] –
which is used later in our experiments.

The SmartNIC Netronome NFP4000 architecture is illustrated in Figure 1
and organizes its flow processing cores (FPC) in multiple islands. FPC is a
32-bit machine, and therefore, all of its internal registers and local memory
are formed from 32-bit words. Each FPC contains eight Micro Engines (MEs)
– a separate processor with its own instruction store (code) and local memory
(data). Because of that, every ME can run in parallel with all other MEs. Each
ME has 8 threads that can be used for co-operative multithreading, in the
way that at most one thread is executing code from the same program at any
given moment. Hence, each FPC runs at most 8 parallel threads at 1.2Ghz
(one thread per ME). FPCs follow a Harvard Architecture, and therefore code
and data occupy different memories. Usually, 4K bytes are shared between
all 8 threads for data and private memory of 8K instructions for the coding
store.

In each FPC, local memory is composed of a set of 32-bit registers, shared
between all 8 threads. These registers are divided into: (i) general-purpose
registers (256 32-bits registers) – used by default to store any register of up
to 32-bits size; (ii) transfer registers (512 32-bits registers) – used for copying
register over the interconnection bus (e.g., from or to other FPCs or mem-
ories); (iii) next-neighbor registers (128 32-bits registers) – used mainly to
communicate with neighboring FPCs; and last (iv) local memory (1024 32-bit
registers) – which is a little bit slower than general register (3 cycles access,

4 Viegas et al.

instead of just 1 cycle). When there is a need for more memory than avail-
able space in local FPC registers, variables are automatically and statically
allocated to other in-chip memory hierarchies.

There are four other kinds of memory which are available to FPCs: (i)
Cluster Local Scratch (CLS) (20-50 cycles); (ii) Cluster Target Memory
(CTM) (50-100 cycles); (iii) Internal Memory (IMEM) (120-250 cycles); and
(iv) External Memory (EMEM) (150-590 cycles). In summary, the local mem-
ory register is used for data that is used in every packet. The CLS is used for
data, which is needed for most packets and small shared tables. The CTM is
used for packet headers and coordination between other sub-systems. Then,
IMEM is used for packet bodies and medium-sized shared tables. Finally,
EMEM is used for large shared tables.

As packets are received from the network, an FPC thread picks up the
packet from the Distributed Switch Fabric and processes it (i.e., on-path
SmartNIC [6]). Additional threads are allocated to new packets as they ar-
rive. For instance, the SmartNIC NFP-4000 supports up to 60 FPCs, each
supporting up to 8 threads. Then, the device is able to process up to 480
packets simultaneously.

3 Related Work

In this section, we discuss the most recent efforts towards P4 SmartNIC
offloading and the performance evaluation of them in PDP.

DAIET [15] is a network system that performs in-network data aggre-
gation. It uses Machine Learning (ML) to judiciously decide which parti-
tion of the application (e.g., MapReduce) is deployed into PDP to reduce
network traffic while maintaining the correctness of the overall computa-
tion. FairNIC [6] utilizes SmartNICs to decrease CPU host utilization while
providing performance isolation in a multi-tenant environment. It provides
an abstraction that allows network applications to access NIC resources. In
turn, Clara [13] provides performance clarity for SmartNIC offloading. It an-
alyzes network functions (NFs) and predicts their performance when ported
to SmartNIC targets. It uses a logical SmartNIC model to capture SmartNIC
architecture. Then, an intermediate representation identifies the code blocks
and maps them onto the logical model while optimizing for a performance
objective. Finally, it outputs the performance profile for the original NF input
on a particular workload. Similarly, SmartChain [18] minimizes the redundant
packet transmission by analyzing service function chaining (SFC) forward-
ing paths and reducing the packet transmissions between the SmartNIC and
the host CPU. In the same direction, iPipe [10] allows to offload distributed
applications onto SmartNICs. At its core, a scheduler combines first-come &
first-serve strategy with deficient round-robin to tolerate applications with
variable execution costs.

In addition to the efforts mentioned above towards enabling efficient of-
floading of network applications to SmartNICs, there are also recent initia-

The Actual Cost of Programmable SmartNICs: diving into the existing limits 5

tives to offload ML algorithms to PDPs. In this context, N2Net [16] and San-
vito et al.[14] represent the first steps toward in-network inference. N2Net [16]
is a compiler that generates a P4 program configuration for an RMT-like
switch pipeline [3] based on a binary neural network (BNN) model descrip-
tion while Sanvito et al.[14] introduce BaNaNa SPLIT, a system capable of
offloading BNNs from CPUs to SmartNICs through a quantization process
that transforms the NN model into a format that can be appropriately exe-
cuted on PDPs. More recently, Xiong et al. [19] propose to deploy trained ML
classification algorithms into PDPs. The proposed approach relies on multi-
ple match-action tables and, therefore, is portable between different PDP
targets.

As one can observe, most of the existing efforts are still restricted to of-
floading mechanisms to PDP. However, to the best of our knowledge, these
studies do not take into account the current limitations of existing Smart-
NICs on the offloading process. Therefore, these solutions might either lead
to infeasible solutions (e.g., using more resources than available) or suffer
high penalties on the expected performance. One noticeable exception is the
recent study conducted by Harkous et al. [7]. They evaluate different P4
programs and their impact on the packet processing latency. They gradu-
ally increase the complexity of a SmartNIC pipeline (i.e., including parser,
control blocks, and deparser) to identify the most influential variables for
predicting packet latency. Despite this effort, the work conducted by [7] is
still full of gaps considering key building blocks of complex P4 programs (e.g.,
registers, cryptography functions, packet recirculation, or multiple tables) –
which are essential in P4 applications (especially ML applications). In this
work, we take a step further into thoroughly understanding the performance
of SmartNICs and their existing limitations.

4 Deployment Evaluation

In this section, we evaluate the performance of Netronome SmartNIC for P4
programs concerning their properties and achieved throughput and latency.
We start describing our environment setup and performance metrics, followed
by the discussion of results.

4.1 Setup

Our environment setup consists of two high-end servers. Each server has an
Intel Xeon 4214R processor with 32 GB RAM. One server is our Device Un-
der Test (DUT) – i.e., the server in which P4 programs are loaded – and
the other is our traffic generator. Both servers have a Netronome SmartNIC
Agilio CX 10 Gbit/s network device with two network interfaces, which are

6 Viegas et al.

physically connected. We use MoonGen[5] as our DPDK1 traffic generator.
We instruct MoonGen using the Netronome Packet Generator2. In our ex-
periments, we send IPv4 packets at line rate (i.e., 10Gbit/s) with random
source and destination prefixes. For our evaluation, we varied the packet size
from 64B to 1500B. All experiments were run at least 30 times to ensure a
confidence level higher than 90%.

4.2 Metrics

In our evaluation, we aim to measure the performance of P4 programs with
respect to the achieved throughput and latency, and identify existing hard-
ware limitations. We evaluate the impact on those metrics regarding (i) the
number of operations on registers, (ii) the number of access to match+action
tables, (iii) the number of packet recirculation, (iv) the number of applied
cryptography functions, and (v) the number of performed arithmetic oper-
ations. To evaluate these metrics, we automatically generate P4 codes with
the properties to be analyzed. All P4 codes have at least one match+action
table used to perform IP forwarding between physical ports. After generating
the P4 source codes, we compiled them using the Netronome compiler and
loaded the generated firmware into the physical SmartNIC. Then, we pump
network traffic with MoonGen and collect the obtained throughput and la-
tency. To measure data plane latency (i.e., the amount of time a packet stays
on PDP), all P4 programs have at least one register which keeps that informa-
tion (i.e., the difference between the ingress and egress timestamps). During
our experiments, we read that register data using the Netronome CLI. The
obtained throughput (measured in packets per second) is obtained directly
from MoonGen. In order to foster reproducibility, our experimental codes are
public available3. It is important to note that other SmartNICs and compilers
can be easily adapted to our experimental codes.

4.3 Results

4.3.1 The cost of reading and writing at multiple registers

We start by analyzing the cost of performing multiple register operations in
the P4 pipeline. Register operations are one of the main building blocks of
recent P4 applications (e.g., [1, 17, 19]). In the experiments, we varied the
number of register operations performed sequentially by the P4 program from
10 to 200 registers while varying the register width from 32- to 512-bit words.

1 https://www.dpdk.org/
2 https://github.com/emmericp/MoonGen/tree/master/examples/netronome-packetgen
3 https://github.com/mcluizelli/performanceSmartNIC

The Actual Cost of Programmable SmartNICs: diving into the existing limits 7

1Mpps

2Mpps

4Mpps

8Mpps

12Mpps

15Mpps

10 20 30 40 50 60 70 80 90 100 150 200

T
h
ro

u
g
h
p
u
t

 (
in

 p
p
s)

of registers

Read
Write

Read/Write

(a) Measured throughput for different
register operations (packet size 64B).

 0

 50000

 100000

 150000

 200000

 250000

10 20 30 40 50 60 70 80 90 100 150 200

L
at

en
cy

 (

in
 n

an
o
se

co
n
d
s)

of registers

Read
Write

Read/Write

(b) Measured latency for different regis-
ter operations (packet size 64B).

1Mpps

2Mpps

4Mpps

8Mpps

10Mpps

10 20 30 40 50 60 70 80 90 100 150 200

T
h
ro

u
g
h
p
u
t

 (
in

 p
p
s)

of registers

64B
128B
256B
512B

1024B
1500B

(c) Measured throughput for different
packet sizes.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10 20 30 40 50 60 70 80 90 100 150 200
L

at
en

cy

 (
in

 n
an

o
se

co
n
d
s)

of registers

64B
128B
256B
512B

1024B
1500B

(d) Measured latency for different
packet sizes.

1Mpps

2Mpps

4Mpps

8Mpps

12Mpps

15Mpps

10 20 30 40 50 60 70 80 90 100 150 200

T
h
ro

u
g
h
p
u
t

 (
in

 p
p
s)

of registers

32 bits
64 bits

128 bits
256 bits
512 bits

(e) Measured throughput for different

register width.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

10 20 30 40 50 60 70 80 90 100 150 200

L
at

en
cy

 (

in
 n

an
o
se

co
n
d
s)

of registers

32 bits
64 bits

128 bits
256 bits
512 bits

(f) Measured latency for different regis-

ter width.

Fig. 2 Measured throughput and latency for register operations.

We consider that registers are placed in the ingress pipeline and are either
read, write, or read & write. Our goal is to quantify the impact on through-
put and latency, as well as to quantify the existing limitation of the current
architecture. Figure 2 illustrates the measured throughput (in packets per
second) and latency (in nanoseconds).

Packet intense line-rate network throughput. Figures 2(a) and 2(b)
depict the measured throughput and latency, respectively, for small packets
(64 Bytes) and register width of 32 bits. As the number of registers increases
(and consequently the number of P4 instructions), there is a sharp perfor-
mance degradation on observed throughput and latency. The line rate for 10
Gbit/s (i.e., 14.88 million packets per second – Mpps) can be sustained for
reading operations to only 10 registers (Figure 2(a)). Even with 10 registers,
the bandwidth degradation for writing operations is 30% (and it reaches
50% for read & write) – as they demand more micro engine cycles to be

8 Viegas et al.

performed. After, we observe a linear decrease of up to 87% (i.e., 2 Mpps)
considering 200 registers. In Figure 2(b), the latency increases linearly as the
number of operations performed by each processed packet in the pipeline.
For a small number of registers (i.e., 10), there is an acceptable overhead of
8650ns (reading), 20296ns (writing), and 35839ns (both operations). How-
ever, this overhead can be as high as 0.12 and 0.24 milliseconds for 50 and
200 registers, respectively.

Line rate network throughput for different packet sizes. Figures 2(c)
and 2(d) depict the measured throughput and latency, respectively, for dif-
ferent packet sizes (from 64B to 1500B). We fixed the register width to 32
bits and the register operation to read & write (as it is the most resource-
consuming one). Observe that the larger the packet size (and, consequently,
the less the number of packets per second to achieve 10Gbit/s), the more reg-
ister operations can be sustained at line rate. For instance, to 512B-size pack-
ets, the line rate throughput can be sustained up to 60 registers being read
and write (2Mppps). For 1024B-size packets and higher, there is no through-
put degradation – even for 200 registers. Although there is no throughput
degradation, Figure 2(d) illustrates that per-packet latency increases sub-
stantially. For instance, for 1500B-size packet, the latency increases up to 3X
(from 7983ns to 22172ns), while for small packet sizes (and, consequently,
higher packet throughput), this latency overhead can be as high as 0.25 mil-
lisecond per packet (i.e., a 34X increase).

Line rate network throughput for different register width. Fig-
ure 2(e) and Figure 2(f) illustrate the throughput and the latency for a
varying width of registers. We fixed the packet size to 64B and the oper-
ation to read – as the goal is to quantify the performance degradation with
respect to the achieved line rate. As one can observe, the line-rate operation
is kept for a register width of up to 128 bits (and 10 registers). Larger register
width demands more cycles to fetch the data from memory. As discussed in
Section II, Netronome SmartNIC follows a 32-bit architecture. Therefore, any
register width wider than that requires extra cycles to be fetched. In addition
to that, it is important to mention the memory hierarchy. The more register
is needed, the more external memories are used – which directly affects the
time to fetch data.

Current limitations. Is there any limitation on operating registers in a
SmartNIC? In our experiments, we were able to define at most six arrays
of 32-bit registers, each having 130M positions. This limitation is due to the
amount of memory available on the board (see Section II). Although we could
instantiate such a large number of registers, we could not access all of them
in a single pipeline pass because micro engines have a limited code space
to store the instruction set (i.e., at most 8K instruction). Differently from
traditional languages, P4 does not have go-to primitives, and therefore all
instructions are defined at compiling time. For that reason, we were able to

The Actual Cost of Programmable SmartNICs: diving into the existing limits 9

1Mpps

2Mpps

4Mpps

8Mpps

12Mpps

15Mpps

0 1 2 3 4 5 6 7 8 9 1011121314151617181920304050

T
h

ro
u

g
h

p
u

t
 (

in
 p

p
s)

of packet recirculations

64B
128B
256B
512B

1024B
1500B

(a) Measured throughput.

200K

400K

600K

800K

1M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50

L
at

en
cy

 (

in
 n

an
o

se
co

n
d

s)

of packet recirculations

64B
128B
256B
512B

1024B
1500B

(b) Measured latency.

Fig. 3 Analysing the effect of packet recirculation in the P4 pipeline.

operate at most 200 registers in a single P4 program (considering that our
P4 program has also other instructions to perform the forwarding).

4.3.2 Impact of packet recirculation

Next, we evaluate the impact of performing packet recirculation in the
P4 pipeline. As previously mentioned, the P4 language does not support
iteration-based structures, and therefore, packet recirculation has been used
as a way to circumvent such limitations. In short, packet recirculation con-
sists of sending a packet back to the ingress pipeline after processing it (and
therefore, mimic a loop-based structure). In the experiments, we varied the
number of packet recirculation made (from 0 to 50) in each packet while vary-
ing the packet size (from 64B to 1500B). We consider that our P4 program is
just forwarding network traffic from physical interfaces. Figure 3 illustrates
the measured throughput and latency.

Figure 3(a) illustrates the throughput behavior as the number of packet
recirculations increases (it decreases in a super-linear manner). For small-
packet network traffic, we observe that fewer packet recirculations are sus-
tained at line rate (e.g., three packet recirculations for 128B size packets).
In contrast, for larger packets (e.g., 1024B), it can maintain line rate even
for up to two dozen packet recirculations. As the packets are recirculated,
more packets are being pushed into the data plane – which enqueue them,
and eventually dropped occurs (reducing throughput). In turn, Figure 3(b)
depicts the observed latency. As one can observe, there is a non-negligible
increase in latency as packets recirculate. For instance, even for large packets
(e.g., 1500B) – in which we observe little or no throughput degradation, the
per-packet latency doubles on performing just 3 packet recirculations (from
5610ns to 10688ns). This overhead is even sharper as the number of recir-
culations increases. For example, there is a 6x latency increase (32762ns)
for doing 10 recirculations, and an 80x latency increase (450062ns) for 50
recirculations. As one can observe, this overhead is even greater for small
packets.
Current limitations. In our experiments, we observe that the Netronome
architecture does not allow for recirculating custom-made metadata struc-

10 Viegas et al.

ture. This limits substantially the ability to write complex P4 programs
– especially the ones using packet recirculation to circumvent the lack of
iteration-based structure.

4.3.3 Impact of using multiple tables

We evaluate the impact of using multiple match-action tables. Unlike tradi-
tional forwarding devices that use match+action tables exclusively for routing
(i.e., to look up network addresses), the P4 language has opened up new pos-
sibilities for this construction type. For instance, Xiong et al. [19] have used
multiple tables to implement data plane clustering approaches (e.g., k-means
with a table per cluster). Similar to the work conducted by Harkous et al. [7],
we also observe that the performance of P4 programs is not affected by the
size of tables – as a hash-based data structure implements them. Usually,
large match+action tables are already placed on larger and slow memories
(e.g., DRAM). Here, instead, we aim at analyzing the impact of using multiple
match+action tables at different stages of the pipeline. In the experiments,
we varied the number of existing tables in our P4 programs (from 1 to 10),
and we ensure that every packet is always matched sequentially on all tables.
An action is invoked to read a single 32-bit data from the table and store
it in a metadata structure on a packet matching. We varied the packet size
(from 64B to 1500B) and the number of tables per pipeline (either on the
ingress or egress pipeline). Figure 4 illustrates the measured throughput and
latency.

Figure 4(a) illustrates the measured throughput for an increasing number
of match+action tables. As observed, the throughput for 64B packets (most
packet intensive network traffic) is almost negligible for up to 5 match+action
tables (i.e., it keeps the line rate). However, we observe an abrupt decay af-
ter 5 tables, followed by a constant throughput behavior (up to 10). In the
Netronome architecture, a P4 program can only have 5 tables in each pipeline
(ingress/egress). Therefore, tables 1 − 5 are located in the ingress pipeline,
while 6− 10 in the egress. As all the memory is statically allocated for a P4
program, the Netronome compiler tends to use faster, closer available mem-
ory to micro engines to allocate ingress tables. Even when defining tables
only in the egress pipeline, the compiler tends not to use faster memory. We
empirically show this behavior in Figure 4(c). We incrementally place 5 tables
either in the ingress or egress pipeline. We observe that the ingress pipeline
is always faster to use available tables (w.r.t. latency) – even in the cases
where no tables are used in the ingress. Last, Figure 4(b) illustrates the per-
packet latency for an increasing number of tables (both in the ingress/egress
pipeline). On average, there in an increase of 40-50% in the latency in the
ingress pipeline (between 1 and 5 tables).

Current limitations. As mentioned, the Netronome architecture poses a
limit on the number of match+action tables one can use in a P4 program (i.e.,
at most 5 in each pipeline). That limits the applicability of more complex

The Actual Cost of Programmable SmartNICs: diving into the existing limits 11

1Mpps

2Mpps

4Mpps

8Mpps

12Mpps

15Mpps

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
 (

in
 p

p
s)

of tables

64B
128B

256B
512B

1024B
1500B

(a) Measured throughput.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 2 3 4 5 6 7 8 9 10

L
at

en
cy

 (

in
 n

an
o

se
co

n
d

s)

of tables

128B
256B
512B

1024B
1500B

(b) Measured latency.

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 3 4 5

L
at

en
cy

 (

in
 n

an
o

se
co

n
d

s)

of tables

Egress pipeline
Ingress pipeline

(c) Measured latency in the

egress/ingress pipeline.

Fig. 4 Analysing the effect of using multiple tables on the P4 pipeline.

algorithms (e.g., [7]) in SmartNICs. Further, we also observe performance
differences w.r.t. to the incurred latency (i.e., tables placed in the ingress
behave 20% faster).

4.3.4 Impact of using cryptography functions and arithmetic
operations

Next, we evaluate the impact of using cryptography functions in our P4 pro-
grams. Bloom filters or hash-based data structures widely use them (e.g.,
to identify heavy-hitters [1]). Cryptography functions are target-dependent
(i.e., the implementation depends on the hardware), and in the Netronome
architecture, they are implemented by specific micro engines (named Crypto
in Figure 1). Netronome implements eight hash functions: (i) crc32, (ii)
crc16, (iii) identity, (iv) csum16, (v) crc32custom, (vi) crc16custom,
(vii) random, and (viii) xor16. In the experiments, we analyse the impact
of applying consecutive calls to these cryptography functions (from 0 to 30)
in each packet being processed. For the purpose of this experiment, we keep
the packet size in 64B and consider that our P4 program just forward net-
work traffic between physical interfaces. Figure 5 illustrates the measured
throughput and latency.

Figures 5(a) and 5(b) illustrate the throughput and latency, respectively.
As one can observe, only three out of the eight cryptography functions (
crc32-custom, random, and csum16) do not lead to performance degrada-
tion w.r.t. throughput and latency when increasing the number of calls to
them. The remaining ones (i.e., crc32, crc16, identity, crc16-custom, and
xor16) lead to some performance degradation from applying 10 cryptogra-
phy functions (e.g., 23% of throughput degradation for applying xor16). This
overhead is even higher for 30 cryptography functions (up to 55% overhead
for cryptography function xor16). In turn, Figure 5(b) illustrates the incurred
per-packet latency. For up to 10 cryptography functions, the per-packet la-
tency remains acceptable (i.e., below 10000ns). However, on applying higher
number of cryptography functions (e.g., from 15-20 and on), the latency cost
grows exponentially. For instance, the xor16 function reaches up to 7X higher
latency (applying 30 functions) in comparison to the simple forwarding (the
case of 0 cryptography functions). We further evaluate the impact of using

12 Viegas et al.

1Mpps
2Mpps
4Mpps

8Mpps

12Mpps

15Mpps

0 1 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
 (

in
 p

p
s)

of hash functions

crc32
crc16

csum16
identity

crc32−custom
crc16−custom

random
xor16

(a) Measured throughput.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

0 1 5 10 15 20 25 30

L
at

en
cy

 (

in
 n

an
o

se
co

n
d

s)

of hash functions

crc32
crc16

csum16
identity

crc32−custom
crc16−custom

random
xor16

(b) Measured latency.

Fig. 5 Analysing the effect of applying multiple hash functions on the P4 pipeline.

1Mpps

2Mpps

4Mpps

8Mpps

12Mpps

15Mpps

10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
 (

in
 p

p
s)

Micro Engines (ME)

Operations = 0
Operations = 20

Operations = 40
Operations = 60

(a) Measured throughput.

10000

30000

50000

70000

90000

110000

10 20 30 40 50 60

L
at

en
cy

 (

in
 n

an
o

se
co

n
d

s)

Micro Engines (ME)

Operations = 0
Operations = 20

Operations = 40
Operations = 60

(b) Measured latency.

Fig. 6 Analysing the effect of using multiple Micro Engines (CPU cores) to process net-

work traffic.

arithmetic operations in our P4 programs (i.e, +, −, ∗, /, %, and << (bit-
shifting)). In the experiments, we analyse the impact of applying consecutive
arithmetic operations (varying from 10 to 10000 operations) for intensive
packet processing (i.e., 64B packets). We also consider that our P4 program
just forwarding network traffic between physical interfaces. In this experi-
ment, we do not observe any statistically significant latency or throughput
degradation.
Current limitations. Netronome architecture poses a few limitations re-
stricting the design of more complex P4 programs to its SmartNICs. For
instance, multiplication and division are only performed over an integer.
Further, the architecture restricts multiplication and division operations of
fixed-size operands (i.e., at most 32 bits operands). This limits, for instance,
the implementation of precise fixed-point representation for real numbers.
Another limitation is the bit shifting operation. The current architecture re-
quires bit-shifting to be static-compiled with predefined values – limiting its
applicability. Last, the number of arithmetic operations is limited to 10000
operations per pipeline – related to the number of instructions a micro engine
can store.

The Actual Cost of Programmable SmartNICs: diving into the existing limits 13

4.3.5 Analysing used cores and energy consumption.

Last, we evaluate the impact of varying the number of micro engines used
by the SmartNIC (from 10 to 60 ME). The goal is to verify whether or not
it affects the obtained performance. We keep the packet size at 64B for this
experiment and consider that our P4 program forwards network traffic be-
tween physical interfaces. We varied the number of reading operations (from
0 to 60) in existing 32-bit registers to stress out the hardware. Figure 6(a)
illustrates the measured throughput. As expected, the more ME is available,
the more throughput is achieved (in general). However, we can observe that
the SmartNIC does not need all ME working in parallel for the evaluated
workload. For instance, for 0 read operations, the line rate throughput is
achieved using 40 ME. When considering the case of 60 read operations, we
observe that more than 20 ME does not affect the performance. Yet, we also
observe that allocating a higher number of ME is not always the best strat-
egy. In some cases (e.g., for 20 read operations), the performance is worsened
by increasing the number of MEs from 40 to 50-60. Figure 6(b) depicts the
measured latency. As one can observe, there is always a latency reduction
when increasing the available ME (even when there is no improvement in the
throughput). Finally, we evaluated the energy consumption. In our experi-
ments, the energy consumption varied 0.2 Watt between using 10 ME and 60
ME.

5 Final Remarks

In this paper, we performed an extensive performance evaluation of Smart-
NICs to understand and quantify existing limitations. We focus our evalua-
tion on measuring the performance in terms of latency and throughput for
a plethora of packet memory-intensive scenarios. We showed that the line-
rate throughput is bounded by (i) the number of register operations (up to
10 operations), (ii) the number of multiple match+action tables user in the
pipeline (up to 5), (iii) the number of cryptography operations (up to 10).
As future work, we intend to build an analytical model that can accurately
estimate the performance of P4 applications executing on SmartNICs.

Acknowledgements

This work was partially funded by National Council for Scientific and
Technological Development (CNPq) (grant 427814/2018-9), São Paulo Re-
search Foundation (FAPESP) (grant 2018/23092-1), Rio Grande do Sul Re-
search Foundation (FAPERGS) (grants 19/2551-0001266-7,20/2551-000483-
0, 19/2551-0001224-1)

14 Viegas et al.

References

1. Ben Basat, R., Einziger, G., Friedman, R., Luizelli, M.C., Waisbard, E.: Constant
time updates in hierarchical heavy hitters. In: Proceedings of the ACM SIGCOMM.
p. 127–140. SIGCOMM ’17, ACM, New York, NY, USA (2017)

2. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: Programming protocol-
independent packet processors. ACM SIGCOMM 14 44(3), 87–95 (Jul 2014)

3. Bosshart, P., Gibb, G., Kim, H.S., Varghese, G., McKeown, N., Izzard, M., Mujica,
F., Horowitz, M.: Forwarding metamorphosis: Fast programmable match-action pro-
cessing in hardware for sdn. ACM SIGCOMM CCR 43(4), 99–110 (2013)

4. Castro, A.G., Lorenzon, A.F., Rossi, F.D., Da Costa Filho, R.I.T., Ramos, F.M.V.,
Rothenberg, C.E., Luizelli, M.C.: Near-optimal probing planning for in-band network
telemetry. IEEE Communications Letters pp. 1–1 (2021)

5. Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle, G.: Moongen: A
scriptable high-speed packet generator. In: Proceedings of the ACM IMC. p. 275–287.
IMC ’15, ACM, New York, NY, USA (2015)

6. Grant, S., Yelam, A., Bland, M., Snoeren, A.C.: Smartnic performance isolation with
fairnic: Programmable networking for the cloud. In: Proceedings of the ACM SIG-
COMM. pp. 681–693 (2020)

7. Harkous, H., Jarschel, M., He, M., Priest, R., Kellerer, W.: Towards understanding
the performance of p4 programmable hardware. In: ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems. pp. 1–6. IEEE (2019)

8. Hohemberger, R., Castro, A.G., Vogt, F.G., Mansilha, R.B., Lorenzon, A.F., Rossi,
F.D., Luizelli, M.C.: Orchestrating in-band data plane telemetry with machine learn-
ing. IEEE Communications Letters 23(12), 2247–2251 (Dec 2019)

9. Hohemberger, R., Lorenzon, A.F., Rossi, F.D., Luizelli, M.C.: A heuristic approach
for large-scale orchestration of the in-band data plane telemetry problem. In: Barolli,
L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) Advanced Information
Networking and Applications. pp. 381–392. Springer International Publishing (2020)

10. Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., Gupta, K.: Offloading dis-
tributed applications onto smartnics using ipipe. In: Proceedings of the ACM Special
Interest Group on Data Communication, pp. 318–333 (2019)

11. Netronome: Internet (2020), https://www.netronome.com/static/app/img/

products/silicon-solutions/WP_NFP4000_TOO.pdf

12. Pizzutti, M., Schaeffer-Filho, A.E.: Adaptive multipath routing based on hybrid data
and control plane operation. In: IEEE INFOCOM. pp. 730–738 (2019)

13. Qiu, Y., Kang, Q., Liu, M., Chen, A.: Clara: Performance clarity for smartnic offload-
ing. In: Proceedings of the ACM Hot Topics in Networks. pp. 16–22 (2020)

14. Sanvito, D., Siracusano, G., Bifulco, R.: Can the network be the ai accelerator? In:
Proceedings of the Workshop on In-Network Computing. pp. 20–25 (2018)

15. Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M., Kalnis, P.: In-network computation
is a dumb idea whose time has come. In: Proceedings of the 16th ACM Workshop on
Hot Topics in Networks. pp. 150–156 (2017)

16. Siracusano, G., Bifulco, R.: In-network neural networks. arXiv preprint
arXiv:1801.05731 (2018)

17. Wang, S.Y., Wu, C.M., Lin, Y.B., Huang, C.C.: High-speed data-plane packet aggrega-
tion and disaggregation by p4 switches. Journal of Network and Computer Applications
142, 98 – 110 (2019)

18. Wang, S., Meng, Z., Sun, C., Wang, M., Xu, M., Bi, J., Yang, T., Huang, Q., Hu, H.:
Smartchain: Enabling high-performance service chain partition between smartnic and
cpu. In: IEEE International Conference on Communications. pp. 1–7. IEEE (2020)

19. Xiong, Z., Zilberman, N.: Do switches dream of machine learning? toward in-network
classification. In: Proceedings of the 18th ACM Workshop on Hot Topics in Networks.
pp. 25–33 (2019)

111

INDEX
AMD, 47
API, 30
ASIC, 30

BGP, 33

DCN, 34
DDoS, 39, 66
DFS, 25
DPDK, 29

FP2INT, 11, 13, 26, 53, 65, 66
FPGA, 29, 30

HPCC, 38

IBM, 47
IETF, 23
INT, 11, 13, 23–26, 31–33, 35–38, 53, 55,

59, 60, 67
ISP, 23, 34

KDN, 36

MDT, 33
MIB, 31
MILP, 25, 65
MTU, 33, 42, 54

NIC, 30
NP, 26
NPU, 29
NSH, 33

OID, 31
ONOS, 35, 36

P2INT, 11, 13, 25, 26, 41, 44, 46–51, 65,
66

P4, 23, 29, 30, 33, 36
POF, 29
PTP, 36

QoE, 23

RAM, 47
RTT, 27

SDN, 36
SLA, 23, 27, 66
SNMP, 23, 27, 30, 31

TCP, 32, 33

UDP, 31, 32

VNS, 26

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Contents
	Introduction
	Context and Motivation
	Research Problem
	Objectives and Contributions
	Outline

	Background and Related Work
	Network Programmability
	Control Plane Programmability
	Data Plane Programmability
	Network Monitoring
	Traditional Network Monitoring vs INT monitoring
	In-band Network Telemetry

	Related Work
	Programmable Control Plane
	Programmable Data Plane

	Optimal and Scalable Probe Planning for In-band Network Telemetry
	Problem Overview
	Proposed Model
	A Math-Heuristic Approach to P2INT
	Overview
	Obtaining an initial solution
	Neighborhood selection and prioritization

	Results
	Setup
	Results

	Fault-Tolerant Probing Planning for In-band Network Telemetry
	Problem overview
	Model description and notation
	Proposed Heuristic Approach
	Evaluation
	Setup.
	Results

	Final Remarks
	Achievements
	Future Work

	Bibliography
	Orchestrating In-Band Data Plane Telemetry with Machine Learning
	Patcher: Towards Fault-Tolerant Probing Planning for In-band Network Telemetry
	Near-Optimal Probing Planning for In-band Network Telemetry
	The Actual Cost of Programmable SmartNICs: diving into the existing limits
	Index

