
FEDERAL UNIVERSITY OF PAMPA

Gustavo Girardon dos Reis

PerfMoon: Proposal of a Tool for
Monitoring the Performance of Web

Applications

Alegrete
2019

Gustavo Girardon dos Reis

PerfMoon: Proposal of a Tool for Monitoring the
Performance of Web Applications

Term Paper presented in Software Engineer-
ing Graduation Course in the Federal Uni-
versity of Pampa as a partial requirement for
obtaining the title of Software Engineering
Bachelor

Supervisor: Maicon Bernardino da Silveira

Co-supervisor: Elder de Macedo Rodrigues

Alegrete
2019

Acknowledgements
First of all, I would like to thank my parents Sueli and Juca. They always sup-

ported unrestrictedly my decisions, and endowed me with moral values. I also want to
thank my love, Évelen, that held the pieces together. Be sure, my love, that it is recipro-
cal, and being with you is of major importance to me. Having you by my side gave me
strength and inspiration to overcome the challenges I have been facing.

Probably I would never have been able to finish this term paper without the
guidance of my advisor, help from friends, girlfriend and support from my family.

I would like to express my deepest gratitude to my advisor and friend, Maicon
Bernardino, for his guidance and patience.

Thanks to my colleagues from the LESSE Group at UNIPAMPA, Victor Costa,
Rodrigo Machado, Neto Iung and Allan Pedroso who were always willing to help and give
the best suggestions. It would have been a lonely journey without you.

Thank you to all people who have helped me in any way in this journey and who
I did not mention here.

Thank you all!

“I have not failed.
I’ve just found 10,000 ways that won’t work.“

(Thomas A. Edison)

Abstract

The knowledge and application of tools to automate performance testing and monitoring
is essential to ensure software reliability and therefore its quality. To investigate, identify
and characterize existing performance testing tools reported in the literature, a proto-
col was formulated and executed according to the guidelines for performing systematic
mapping in Software Engineering. The performance testing and monitoring tools were
classified according to their relevance in the literature, highlighting the most commonly
used tools, their supported input approaches, workload approaches, monitored metrics
and logging strategies. From the analysis of these results a taxonomy on performance
monitoring tools was proposed. With the results of this study, it was possible to quantify
and qualify research related to existing performance testing tools in the literature, and
also to characterize these tools. This study also proposes a Performance Monitoring tool
called PerfMoon, which is a versatile and light-weight, also collects hundreds of thousands
of metrics per second and delivers this information as time-series in near real-time. Data is
collected using methods which collect and periodically send their metrics data to another
analysis tool. Designed as a component that is integrated into a larger system, PerfMoon
is light-weight, with little impact on the system resources and it is easy to install and to
configure. This study also contemplates an experimental benchmark where the developed
tool has its results compared with another tool.

Key-words: Monitoring, Application software, Software quality, Costs, Soft-
ware testing, Performance monitoring, Performance analysis

Resumo

O conhecimento e a aplicação de ferramentas para automatizar testes de desempenho e
monitoramento é uma tarefa essencial para garantir a confiabilidade do software e, por-
tanto, sua qualidade. Para investigar, identificar e caracterizar ferramentas de testes de
desempenho existentes relatadas na literatura, um protocolo foi formulado e executado de
acordo com as diretrizes para a realização de mapeamentos sistemáticos em Engenharia de
Software. As ferramentas de teste e monitoramento de desempenho foram classificadas de
acordo com sua relevância na literatura, destacando as ferramentas mais comumente us-
adas, suas abordagens de entrada suportadas, abordagens de carga de trabalho, métricas
monitoradas e estratégias de registro. A partir da análise desses resultados, foi proposta
uma taxonomia sobre ferramentas de monitoramento de desempenho. Com os resultados
deste estudo, foi possível quantificar e qualificar a pesquisa relacionada às ferramentas
de testes de desempenho existentes na literatura, bem como caracterizar essas ferramen-
tas. Este estudo também propõe uma ferramenta de monitoramento de desempenho
chamada PerfMoon, que é versátil e leve, responsável por monitorar determinadas métri-
cas e fornecer essas informações como séries temporais quase em tempo real para outra
ferramenta de análise. Este estudo também contempla um benchmark experimental onde
a ferramenta desenvolvida tem seus resultados comparados com outra ferramenta.

Palavras-chave: Monitoramento, Software de aplicação, Qualidade de software, Custos,
Teste de software, Monitoramento de desempenho, Análise de desempenho, Experimento

List of Figures
Figure 1 – Types of Research Methods . 27
Figure 2 – Research Design . 28
Figure 3 – Integration of SPE in the software development process 32
Figure 4 – The monitoring process . 35
Figure 5 – SMS Process . 37
Figure 6 – Search String. 39
Figure 7 – Input approach Venn diagram. 44
Figure 8 – Taxonomy of performance testing tools represented by feature model . 49
Figure 9 – COSMOS - LESSE’s Performance Testing Solution. 57
Figure 10 – PerfMoon Architecture . 61
Figure 11 – Expected VUser Ramp Up. 68
Figure 12 – CPU Usage - Monitored by PerfMoon 70
Figure 13 – CPU Usage - Monitored by Google StackDriver 71
Figure 14 – Memory Usage - Monitored by PerfMoon 71
Figure 15 – Memory Usage - Monitored by Google StackDriver 71
Figure 16 – Disk I/O Consumption - Monitored by PerfMoon 72
Figure 17 – Disk I/O Consumption - Monitored by StackDriver 73
Figure 18 – Network Throughput Consumption - Monitored by PerfMoon 73
Figure 19 – Network Throughput Consumption - Monitored by StackDriver 74
Figure 20 – Response Time - Monitored by PerfMoon 74
Figure 21 – Response Time - Monitored by StackDriver 75

List of Tables
Table 1 – Research Synthesis. 29
Table 2 – Objective according to the GQM paradigm 38
Table 3 – PICOC structure . 38
Table 4 – Search string definition. 39
Table 5 – Tools and references. 43
Table 6 – Tools and workload input approaches. 46
Table 7 – Monitored metrics and Persistence strategies. 47
Table 8 – Related work summary. 55
Table 9 – Test Scenario. 65
Table 10 – SUT Hardware Configuration. 67
Table 11 – Ramp up configuration. 68
Table 12 – Testbed Hardware Configuration. 68
Table 13 – Cosine Application. 75
Table 14 – Schedule. 83

List of acronyms

BPMN Business Process Model and Notation

CNPQ Conselho Nacional de Desenvolvimento Científico e Tecnológico

CR Capture Replay

DdS Distributed Denial of Service Attack

DoS Denial of Service Attack

EC Exclusion Criteria

FR Functional Requirements

IC Inclusion Criteria

LESSE Laboratory of Empirical Studies in Software Engineering

MBT Model-Based Testing

NFR Non-Functional Requirements

QoS Quality of Service

RQ Research Question

SBS Web Service Based Systems

SE Software Engineering

SLA Service Level Agreements

SMS Systematic Mapping Study

SPE Software Performance Engineering

SUT System Under Test

UNIPAMPA Federal University of Pampa

VU Virtual Users

WBS Web Based Systems

Table of Contents

1 INTRODUCTION . 23
1.1 Motivation . 24
1.2 Objectives . 24
1.3 Contribution . 25
1.4 Organization . 25

2 METHODOLOGY . 27
2.1 Introduction . 27
2.2 Research Design . 28
2.3 Research Synthesis . 29
2.4 Chapter Summary . 29

3 BACKGROUND . 31
3.1 Software Testing . 31
3.2 Software Performance Engineering 31
3.3 Performance Testing . 32
3.4 Performance Monitoring . 33
3.5 Performance Testing Tools . 34
3.6 Chapter Summary . 35

4 SYSTEMATIC MAPPING STUDY 37
4.1 Protocol . 37
4.1.1 Scope and Objective . 37
4.1.2 Question Structure . 38
4.1.3 Research Question . 38
4.1.4 Search Process . 38
4.1.5 Inclusion and Exclusion Criteria 39
4.1.6 Quality Assessment Criteria . 40
4.1.7 Selection Process . 41
4.1.8 Data Extraction Strategy . 42
4.1.9 Data Analysis Strategy . 42
4.2 Systematic Mapping Study Results 42
4.3 Taxonomy of Performance Testing Tools 48
4.3.1 Input Approaches . 48
4.3.1.1 Capture Replay . 48
4.3.1.2 Model-Based Testing . 50
4.3.1.3 Scripting . 50
4.3.2 Load Generator . 50
4.3.2.1 Architecture . 50

4.3.2.2 Implementation . 51
4.3.3 Monitor . 51
4.3.3.1 Metrics . 51
4.3.3.2 Data Persistence . 53
4.3.4 Analysis . 53
4.3.4.1 Representation . 53
4.3.4.2 Result Analysis . 53
4.4 Threats to Validity . 54
4.5 Related Work - Systematic Mapping Review 54
4.6 Chapter Summary . 55

5 PERFMOON’S DESIGN . 57
5.1 Initial Considerations . 57
5.2 Aspects of Analysis . 57
5.3 PerfMoon Requirements . 58
5.3.1 Functional Requirements . 58
5.3.2 Non-Functional Requirements . 59
5.4 Design Decisions . 60
5.5 Architecture . 61
5.6 Chapter Summary . 62

6 EXPERIMENTAL BENCHMARKING: PERFMOON’S . . . 63
6.1 Initial Considerations . 63
6.2 Experimental Benchmarking Design 63
6.3 Collecting Data Evidence . 65
6.4 Test Environment . 66
6.4.1 System Under Test (SUT) Environment 66
6.4.2 Testbed Environment . 67
6.4.3 Environment Toolkit . 68
6.5 Experimental Benchmarking Analysis 70
6.5.1 CPU Consumption . 70
6.5.2 Memory Consumption . 71
6.5.3 Disk I/O Consumption . 72
6.5.4 Network Throughput Comparison 72
6.5.5 Response Time . 74
6.5.6 Deviation Results . 74
6.6 Threats to Validity . 75
6.6.1 Internal Validity . 76
6.6.2 External Validity . 76
6.6.3 Construct Validity . 76

6.6.4 Conclusion Validity . 77
6.7 Chapter Summary . 77

7 CONCLUSIONS AND FUTURE WORK 79
7.1 Conclusions . 79
7.2 Lessons Learned . 80
7.2.1 Efficient Systematic Mapping Protocol 80
7.2.2 Testing Tools Classification . 80
7.2.3 Software Testing . 80
7.2.4 Performance Testing . 80
7.2.5 Performance Monitoring . 81
7.3 Publications . 81
7.4 Schedule . 82

BIBLIOGRAPHY . 85

Index . 93

23

1 INTRODUCTION
The process of testing software is an essential activity in Software Engineering. In

simplest terms, it amounts to observing the execution of a software system to validate
whether it behaves as intended and identify potential malfunctions. Tests are widely used
in software projects to ensure quality, by directly scrutinizing the software in execution
(BERTOLINO, 2007).

Although there are few works published describing approaches to software perfor-
mance testing and monitoring, it is nonetheless an extremely significant issue for many
projects (WEYUKER; VOKOLOS, 2000). Often, the primary problems that projects
report after field release are not system crashes or incorrect system responses, but rather
system performance degradation or problems handling required system throughput. When
queried, it is not uncommon to learn that, although the software system has gone through
extensive functionality testing, it was never really tested to assess its expected perfor-
mance (WEYUKER; VOKOLOS, 2000).

Myers e Sandler (2004) highlighted, the software testing is a key part for develop-
ing quality software products. When compared to other software development life cycle
phases, which can represent up to 60% of the total development, software testing activities
require many resources, such as time and money.

The purpose of testing includes quality assurance, verification, validation and re-
liability estimation. To balance team expectations, and due to time-to-market pressures,
software projects usually present different points of view in terms of effort investment.
For instance, it is common to observe conflicts of interest among project managers, who
deal with time schedules, test managers, who deal with quality assurance, and company
managers focusing on budgeting. In this sense, empirical works provided many evidences
suggesting that time invested in testing saves money in software projects (MYERS; SAN-
DLER, 2004), (PERRY, 2007), (AMMANN; OFFUTT, 2016).

With the high demand for Web systems, such as e-commerce and corporate appli-
cations, the data flow demand of these systems grows daily, making these systems capable
of receiving a large number of requests in a short time.

While this technology is widely expected to enable the interoperation of hetero-
geneous systems and the reuse of distributed functions, the industry uptake of this tech-
nology has been slow (LANGDON, 2003). Some research has revealed that the lack of
quality assurance and guarantee is one of the main factors (DEGWEKAR; SU; LAM,
2004).

The behavior of these systems is not only determined by their own software, but
also by many other factors, for example, hardware, network and even customer requests.
Limited hardware resources or low network bandwidth tend to cause a long response time,
many customer requests may be lost or too long.

All these unexpected results are deviations of Web applications behavior from

24 Chapter 1. INTRODUCTION

the requirements. Monitoring certain run-time information about these behavior-related
factors is an important issue to ensure the consistency of Web services behavior.

In practice, load tests are rarely an integral part of the development process, see
(SHAMS; KRISHNAMURTHY; FAR, 2006). The main reasons besides lack of money
or time may be the common prejudice that load tests are very difficult to create and
maintain. There are also statistics that report that the benefits of load tests do not
outweigh their costs.

1.1 Motivation

For modern Web applications it is critical to remain available and guarantee short
response times even if accessed by large numbers of concurrent users. Studies show that
response times above one second cause dissatisfaction, which makes users switch to a
competitor sooner or later (CHEUNG; LEE, 2005).

Building applications that meet these performance requirements starts with plan-
ning and testing these requirements the early stages of the development process. Load
tests are carried out to ensure that the required number of customers can be served si-
multaneously without exceeding a certain response time and performance requirements
such as throughput and utilization (BENEDIKT; FREIRE; GODEFROID, 2002).

In computing undergraduate courses, only a few disciplines are allocated for test-
ing activities when compared to other activities in the software development process.
Although the test activity has a small participation in the curricular time load, it is
commonly found in undergraduate courses in the computing area.

The main motivation of this work was the importance of software testing for the
development of high quality and reliable software systems and also the lack of open
source tools available to assist in the monitoring process with specific metrics for software
available on Web.

1.2 Objectives

The general objective of the proposed work is to specify, design and implement an
open source tool that performs monitoring activities on certain Web software metrics, in
order to standardize procedures for performing these tasks, independently of the system,
minimizing the complexity involved in each one these tasks.

Order to achieve the general objective, the following specific objectives are defined:

∙ Conduct empirical research through the scientific literature to find and study pro-
posed and applied performance testing tools and methods;

∙ Specify requirements, architecture, use cases, functionalities, draw up diagrams,
design decisions and implement the proposed tool, so that it can add value among

1.3. Contribution 25

the tools researched and, above all, remedy the weaknesses observed in existing
solutions;

∙ Evaluation the proposed monitoring tool using a experimental benchmark, in com-
parison with techniques, methods or usual approaches for performance monitoring;

∙ Evaluate the proposed tool and analyzing the representation power of the character-
istics of the monitoring test by expert groups in the field whereby the experimental
benchmark, case study and/or research was conducted;

∙ Documenting and reporting the study results in the scientific publications.

1.3 Contribution

This study is an independent module that will be integrated into a complete per-
formance and monitoring test solution, which is being developed by the Laboratory of
Empirical Studies in Software Engineering (LESSE)1. Additional information about the
research group can also be found on the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPQ)2 platform.

The main contribution of this study is the development and implementation of a
monitoring tool, called PerfMoon, described in detail in the Chapter 5.

In order to make the main contribution possible, previous studies was conducted,
such as the execution of a Systematic Mapping Study SMS. This study mapping of the
primary studies in the area of performance and monitoring tests allowed the identification
of possible gaps in the area. The conduction of this study also resulted in a taxonomy
proposal, used to identify and characterize performance testing tools and monitoring
according to their characteristics, described in Section 4.1.

1.4 Organization

This document is organized according to the following:

∙ Chapter 2: Methodology: Details of the the methodology adopted for the execution
of this study.

∙ Chapter 3: Background: Details of main concepts related to our work, such as, per-
formance testing and monitoring.

∙ Chapter 4: Related Work: This chapter reviews other work in the area of performance
and monitoring testing and reports how they relate to this work.

∙ Chapter 5: PerfMoon’s Design: Provides details of the design and implementation
of the proposed tool.

1 LESSE’s Website is available at: <http://lesse.com.br/>
2 CNPQ’s Website is available at: <http://dgp.cnpq.br/dgp/espelhogrupo/5867775896704418>

http://lesse.com.br/
http://dgp.cnpq.br/dgp/espelhogrupo/5867775896704418

26 Chapter 1. INTRODUCTION

∙ Chapter 6: Experimental Benchmarking: This chapter presents the experimental
benchmarking performed of this study.

∙ Chapter 7: Conclusions: This chapter presents the publications and general conclu-
sions about this study.

27

2 METHODOLOGY
This chapter discusses the methodology adopted for the execution of this study.

The following sections describe the specific procedures or techniques used to identify,
select, process, and analyze information. Section 2.1 lists the sorts of search types. Section
2.2 describes how this research was conducted. Section 2.3 describes how the study was
formalized and 2.4 briefly presents chapter information.

2.1 Introduction

According to Wazlawick (2017), studies generally have a chapter for elucidating the
methodology. However, analyzing the term semantically, the methodology would be the
study of methods. Research methods can be defined as ”a systematic scientific procedure
of data collection, compilation, analysis, interpretation, and implication pertaining to any
problem” (CHAWLA; SODHI, 2011). Types of research methods can be classified into
several categories according to the nature, purpose and approach of the study and other
attributes.

Figure 1 – Types of Research Methods

Source – Adapted from Kumar (2008)

Figure 1 shows the classification of our research by its nature, purpose, approach
and research design. The classification used in this work is represented by the gray classes
and are explained in this Section.

According to Kumar (2008), descriptive research usually involves surveys and stud-
ies that aim to identify the facts. In other words, descriptive research mainly deals with
the ”description of the state of affairs as it is at present”, and there is no control over
variables in descriptive research. This method was used in this work to assist in the
description of the characteristics of the monitoring tools already existing in the literature.

The purpose of the study is a applied research. Applied research is also referred
to as an action research, problems are analysed from the point of one discipline, gener-
alisations are preferred and reports are compiled in a language of technical language of
discipline.

According to the approach two research methods were widely used:

28 Chapter 2. METHODOLOGY

∙ Quantitative: This method was used to describe the auxiliary in the process of
collecting numerical data, in the summary of these data and in the collection of
inferences from the data;

∙ Qualitative: This method was used to observe and base non-numerical and non-
quantifiable information. Any information that can not be analyzed by mathemat-
ical techniques has been included in this group.

Based on the research design represented in Section 2.2, the type of research
method used was exploratory. Exploratory research is conducted to have a better under-
standing of the existing problem and used to investigate a problem which is not clearly
defined.

2.2 Research Design

The structuring the research design is one of the phases of the methodological
process and is based on different stages, being the formulation of the problem to be
questioned, the conception of hypotheses to be verified, data collection, data tabulation,
data analysis, discussion of results, conclusions, writing of the text and presentation of
scientific work.

For the conduction of this study, a research design was developed. This design
was created from the process management notation known as Business Process Model
and Notation (BPMN) and is represented by Figure 2.

Figure 2 – Research Design

Publish

Research Design

P
ha

se
1

Theoretical Base
Plan a Systematic

Mapping Study (SMS)
on Performance Testing

Tools

Execute the
SMS

Conception

Define the Appropriate
Technologies to

Develop the Solution
DesignAnalysis

P
ha

se
2

Development Evaluation

Develop a
prototype

Verification
and

Validation

Plan the
Experiment
Benchmark

Conduct the
Experiment
Benchmark

Gather Data
from the

Experiment
Benchmark

Analyze and
Report the

Obtained Results

Publish SMS

Write and Defend
Term Paper I

Write and
Defend

Term Paper II

Source: author.

The process described in Figure 2 was developed with well-defined activities. The
first phase began with the formulation of the theoretical foundation where was need for
well-founded definitions. This phase was completed with the end of SMS execution.

2.3. Research Synthesis 29

In the conception phase, the analysis was performed and the essential requisites
were defined and documented, as well as the definition of the appropriate technologies
to develop the solution. From those results a solution was designed and can be seen
in Chapter 5. Once this is done, the development and implementation of a testable
prototype will begin in the development phase, so that the testing can be performed and
the prototype evaluated.

The prototype evaluation activities are contained in the evaluation group and
include the planning of a controlled experiment, the execution of the experiment parallel
to the data collection and, afterwards, a report with the results obtained will be developed
and included in term paper II.

2.3 Research Synthesis

Based on the objectives presented in Section 1.2, to formalize this study, the
following research synthesis was elaborated:

Table 1 – Research Synthesis.

Subject Performance Testing
Topic Performance Monitoring
Research Question Would the state of practice benefit from a open source performance monitoring

tool for Web application to integrate a performance testing solution?
Hypothesis The performance testing practice would benefit from a open-source perfor-

mance monitoring tool that is easy to learn, light-weight and easy to integrate.
Main Goal To develop a performance monitoring tool for Web applications.

2.4 Chapter Summary

This chapter provided an idea of what the methodology is and how this research
can be classified. In addition, the established research project has been presented so
that it is possible to understand which processes have been executed so far and which
ones will still be executed. Chapter 3 provides the theoretical basis necessary for the
accomplishment of this work and also assists in understanding the mentioned research
process.

31

3 BACKGROUND
In this chapter, we provide definitions of the terms used in this study in the context

of software performance and software performance measurement. Sections 3.1 and 3.2
introduce the main features of software testing and software performance engineering.
The Sections 3.4 and 3.5 report the theoretical basis of the work in relation to monitoring
and monitoring tools.

3.1 Software Testing

Testing is defined as a process of evaluation that either the specific system meets
its originally specified requirements or not (JAMIL et al., 2016). It is mainly a process
encompassing validation and verification where the developed system meets the require-
ments defined by the user. Software testing refers to finding bugs, errors or missing re-
quirements in the developed system or software. Thus, it is an investigation that provides
the stakeholders with the exact knowledge about the quality of the product.

Software testing can also be considered as a risk-based activity. An important
issue related with the testing process is related to the understanding that testers must
have about how to minimize a large number of tests into manageable tests (PATTON,
2005).

Software testing is an important component of software quality assurance. The
importance of testing can be considered from life-critical software, e.g. flight control,
testing which can be highly expensive because of risk regarding schedule delays, cost
overruns, or outright cancellation (FELDERER; SCHIEFERDECKER, 2014).

Software testing contains certain levels and steps according to which the person
who does the testing differs from level to level (KOREL, 1990). Section 3.2 reports
a software-oriented approach that focuses on architecture, design, and implementation
choices.

3.2 Software Performance Engineering

The term Software Performance Engineering (SPE) was coined by Smith (1990)
for a model-based approach to construct software systems that meet performance require-
ments. Smith e Williams (2003) applied this approach to object-oriented systems. In their
approach, a systematic, quantitative approach to constructing software systems that meet
performanced objectives is constructed.

Woodside, Franks e Petriu (2007) provides a broader definition of SPE, also in-
cluding measurement-based approaches. Performance measurement complements and
validates performance prediction models, but requires prototypical implementations or
earlier versions of the software system.

32 Chapter 3. BACKGROUND

The SPE process begins early in the software development life cycle and uses quan-
titative methods to identify satisfactory designs and to eliminate those that are likely to
have unacceptable performance before developers invest significant time in implemen-
tation. SPE continues through the detailed design, coding and performance and load
testing phases to predict and manage the performance of the evolving software as well as
monitoring and reporting actual performance versus specifications and predictions and are
represented in Figure 3. SPE methods encompass: performance data collection; quantita-
tive performance analysis techniques; prediction strategies; management of uncertainties;
data presentation and tracking; performance testing, stress and load testing, model verifi-
cation and validation; critical success factors; and performance design principles, patterns
and anti patterns (FOSTER, 1995).

Figure 3 – Integration of SPE in the software development process

Architecture Design

Modeling Measurement (Testing) Measurement (Monitoring)

Implementation

Testing

Deployment

Operation Maintenance

Requirements analysis

Source: Software Performance Engineeering (SPE) approaches adapted from (EHLERS, 2012)

3.3 Performance Testing

Features and functionality supported by a software system is not the only concern.
A software application’s performance like its response time, reliability, resource usage and
scalability do matter. The goal of performance testing is not to find bugs but to eliminate
performance bottlenecks. Performance testing is defined as a type of software testing to
ensure software applications will perform well under their expected workload (KHAN,
2010).

Performance testing is done to provide stakeholders with information about their
application regarding speed, stability, and scalability. More importantly, performance
testing uncovers what needs to be improved before the product goes to market. Without
performance testing, software is likely to suffer from issues such as: running slow while
several users use it simultaneously, inconsistencies across different operating systems and
poor usability. To talk about software performance testing it is necessary to understand
all the activities involved in evaluating how the system can be expected in the field. This
is assessed from the user’s perspective and is generally evaluated in terms of throughput,
response time, or some combination of the two. Alternatively, the performance test can
be used to evaluate the level of system availability (MATHUR, 1991).

3.4. Performance Monitoring 33

Within that structure, there are a number of different goals regarding performance
testing and monitoring, in which including:

∙ The design of test case selection or generation algorithms specifically intended to
test for performance criteria rather than functional correctness criteria;

∙ The definition of metrics to assess the comprehensiveness of a performance test case
selection algorithm for a given program;

∙ The definition of metrics to compare the effectiveness of different performance test-
ing strategies for a given program;

∙ The definition of relations to compare the relative effectiveness of different perfor-
mance testing strategies in general; This requires that we are able to say in some
concrete way what it means for this performance testing strategy to be better than
that one;

∙ The comparison of different hardware platforms or architectures for a given appli-
cation.

There are also a number of things that require to be measured when evaluating a
software system’s performance. Included among these are: resource usage, throughput,
stimulus-response time, and queue lengths detailing the average or maximum number of
tasks waiting to be serviced by selected resources. Typical resources that need to be
considered include: network bandwidth requirements, CPU cycles, disk space, disk access
operations, and memory usage (SMITH, 1990).

3.4 Performance Monitoring

Software monitoring involves obtaining the information relating to the state, be-
havior, and environment of a software system at run time, so as to deal with potential
deviations of system behavior from requirements at the earliest possible time. Monitoring
is usually carried out in parallel with the system’s normal execution, without interrupting
its operation. Starting from early 1960s with the advent of debuggers, software monitor-
ing has been widely used for debugging and testing, correctness checking, security and
dependability analysis, performance evaluation and enhancement, and system control
(SCHROEDER, 1995).

Performance monitoring is the single way that can measure the computer system
behaviour in the system’s real environment. Monitors collect data that can serve as a
basis for computer tuning, computer system model design, workload analysis, model vali-
dation, or just finding out more about how the system really works. Performance monitors
are either programs that execute on the same system they measure (software monitors)

34 Chapter 3. BACKGROUND

or independent devices that are attached to the monitored computer through a set of
electronic probes (hardware monitors). Each technique has its own advantages and dis-
advantages. Combining the advantages of software and hardware monitoring techniques
has already brought about some increases in both the efficiency and the effectiveness of
performance monitoring (WHOLEY; HATRY, 1992).

The necessity of specifying and monitoring the different compositional properties
as well as the functional and nonfunctional requirements of Web Based Systems is widely
recognized by industry and academia.

Lamanna, Skene e Emmerich (2003) have proposed a Web Service Based Systems
monitoring approach with the introduction of the language SLAng. This language is
an extension of the existing business process languages. In this language properties are
defined as a list of Quality of Service parameters. At the implementation stage QoS pa-
rameters are assigned to the target business process, this leads to an intrusive approach.
The target servers are required to support these QoS parameters. This approach becomes
less extensible and flexible. The approach described in Sahai et al. (2002) creates moni-
toring agents to monitor the business process. These agents monitor the business process
by gathering the network usage information. Another process evaluates the properties
for any change in the process. This approach requires the business process to update
constantly in order to adopt to new property requirements.

A software monitor can abstract data stored in memory, but it always introduces an
additional system overhead. A badly designed software monitor can create an overhead
as large as 40% of the total processing time Zheng et al. (2018). A simple hardware
monitor can count event occurrences and time event duration and record collected data
without the slightest interference with the host system. A more sophisticated monitor can
accumulate data in a fashion that enables later output of complete frequency distributions
of monitored events, but the domain of events that can be measured by a hardware monitor
is limited. Such events have to have a hardware representation that is externally accessible
and does not require addressing to make the stored information available. An easy-to-use
interface between the system’s software and an external hardware monitor would solve
many problems (JANES; LENARDUZZI; STAN, 2017).

3.5 Performance Testing Tools

Eichelberger et al. (2015) propose a monitoring process common to most monitor-
ing tools (see Figure 4). In this process a performance engineer determines the intended
monitoring scope for the SUT. This step is highly dependant on the system and on the in-
tended final analysis. Next, the monitoring tool performs an instrumentation of the SUT
and gathers monitoring data. Depending on the monitoring tool, this data can be further
aggregated or simply collected for a concurrent or subsequent analysis. This analysis is
usually performed by the performance engineer with the help of an analysis system that

3.6. Chapter Summary 35

is often part of the monitoring tool.
In the case of monitoring tools, the measurement is usually performed during the

operation of the live system under real (in contrast to realistic) conditions. Thus, the
monitoring results provide a good description of the actual events in the system. But the
overhead caused by the monitoring tool has to be minimal, limiting the amount of data
retrieved.

Figure 4 – The monitoring process

Specify monitoring scope Instrumentation

Data collection

Data aggregation
Data analysis

Performance engineer
Monitoring tool

Analysis System

Source: adapted from (EICHELBERGER et al., 2015)

Performance testing tools address applications and system design problems by
testing scalability and reliability. Unlike bug testing tools, performance and load testing
tools establish a performance baseline and then attempt to find out performance bottle-
necks by adding up stress. Specific tests include spike tests, soak or endurance tests, load
tests, and others. The main objective of performance testing applications is to establish
benchmarks for a target system. A target might be a server, a Web app, or a group of
servers, or a whole network. Performance testing can be monitored in real-time for valid-
ity testing. Results should supply root cause analysis and trace bottlenecks. Additionally,
performance test tools calculate Service Level Agreements (SLA) compliance and offer an
overall view of system resilience (SUBRAYA; SUBRAHMANYA, 2000).

3.6 Chapter Summary

The most important concepts for our work are presented in this chapter. In general,
it was necessary to investigate two major domains, namely: (i) Performance Testing and
(ii) Performance Monitoring Tools. Among the topics covered, we highlight Section 3.3
and Section 3.5, which presents important definitions for the understanding of this work.

37

4 SYSTEMATIC MAPPING STUDY
This chapter describes the procedures used to investigate the literature for this

study. For this purpose to be achieved was carried out the planning and execution of a
Systematic Mapping Study (SMS).

4.1 Protocol

An SMS identifies, selects and critically appraises research in order to answer a
clearly formulated question (BARN; BARAT; CLARK, 2017). The SMS should follow a
clearly defined protocol or plan where the criteria is clearly stated before the mapping is
conducted. It is a comprehensive, transparent search conducted over multiple databases
that can be replicated and reproduced by other researchers. It involves planning a well
thought out search strategy which has a specific focus or answers a defined question. The
review identifies the type of information searched, critiqued and reported within known
time-frames.

The SMS is built on a structured and defined process presented by Engström e
Petersen (2015). This process defines the necessary steps to achieve the SMS objectives.
Figure 5 shows the steps of the SMS as well as the tasks that were performed in the work
conduction.

Figure 5 – SMS Process

SM
S

P
ro

ce
ss

Planning Conducting Documenting

Need for a mapping study

Establish research aim

Define research questions
and develop research protocol

Identify relevant research
(conduct search)

Data extraction
Primary study properties

Data extraction
Primary study properties

Main findings synthesis

Assess threats to validity

Final Report

Source: Adapted from Engström e Petersen (2015).

4.1.1 Scope and Objective

With the purpose of provide an empirical reference for professionals and researchers
who search for new tools or tools that have certain particularities in the development and
execution of performance testing, the objective of this study is to identify and characterize
existing performance testing tools in the literature. In addition, we aim at identifying the
academic and open source tools and finding out their quality attributes. In this sense,
the description of the goal is described according to the GQM (Goal, Question, Metric)
paradigm Koziolek (2008) can be observed in Table 2.

38 Chapter 4. SYSTEMATIC MAPPING STUDY

Table 2 – Objective according to the GQM paradigm

For the purpose of: Identify / Characterize
With respect to: performance testing tools
From the viewpoint of: performance test engineers and researchers
In the context of: performance testing environment

4.1.2 Question Structure

The Research Questions (RQs) are structured based on the Population, Interven-
tion, Comparison, Outcome and Context (PICOC) criteria as recommended by Kitchen-
ham (2007) and can be observer in Table 3.

Table 3 – PICOC structure

Population: published research on software;
Intervention: performance testing;
Comparison: general comparison of the retrieved tools;
Outcome: performance testing tools;
Context: both academic and industrial context.

4.1.3 Research Question

The following RQs are define according to the PICOC question structure estab-
lished in Section 4.1.2.

RQ1. What are the tools that support performance testing? Our goal is to find out
which quality attributes are associated with these tools, their reported strengths
and limitations.

RQ2. What characterizes a performance testing tool? In order to answer this question,
the following sub-questions are needed:

∙ RQ2.1. What are the elaboration approaches of the test scripts interpreted by the
performance load generators?

∙ RQ2.2. What performance monitoring approaches are applied?

∙ RQ2.3. What are the persistence strategies of metrics data collected by perfor-
mance monitors?

4.1.4 Search Process

Formal literature research was conducted using only databases that: (i) have a
search engine capable of using keywords; and (ii) contain computer science documents.
The selection includes the following bases: Association for Computing Machinery (ACM)

4.1. Protocol 39

Digital Library1, Engineering Village2, IEEE Xplore3, ScienceDirect4, SCOPUS R○5 and
SpringerLink6. To define the search string the terms and synonyms presented in Table 4
were used, as well as, the Boolean operator “OR” to select alternative terms and synonyms,
and the Boolean operator “AND” to add more terms to the string. The resulting string
can be seen in Figure 6.

Table 4 – Search string definition.

Terms Synonyms

Performance Test Load Test, Stress Test, Soak Test, Spike Test, Workload Test, Automation Test

Tool Generator, Injector, Monitor, Analyzer, Framework, Suite, Environment, Plug*in

Software Application, System

Figure 6 – Search String.

(("Performance Test" OR "Load Test" OR "Stress Test" OR "Spike Test" OR
"Soak Test" OR "Workload Test" OR "Automation Test") AND (Tool OR Plugin
OR Plug-In OR Framework OR Generator OR Monitor OR Injector OR Suite OR

Analyzer OR Environment) AND (Software OR System OR Application))

4.1.5 Inclusion and Exclusion Criteria

Inclusion Criteria

IC1. The publication should report the use of a tool that supports performance testing.

IC2. The publication should propose a tool to support performance testing.

Exclusion Criteria

EC1. Duplicated studies.

EC2. The publication is not related to performance testing in the software area. e.g.
performance testing of an engine.

EC3. The publication is written in a language other than English.

EC4. The publication is only available in the form of abstract, slide show, poster or short
paper.

EC5. The publication is not available for download.

EC6. The publication does not report or propose a performance testing tool.
1 ACM: <https://www.dl.acm.org>
2 Engineering Village: <https://www.engineeringvillage.com>
3 IEEE: <https://www.ieeexplore.ieee.org>
4 ScienceDirect: <https://www.sciencedirect.com>
5 SCOPUS R○: <https://www.scopus.com>
6 SpringerLink: <https://www.link.springer.com>

https://www.dl.acm.org
https://www.engineeringvillage.com
https://www.ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.scopus.com
https://www.link.springer.com

40 Chapter 4. SYSTEMATIC MAPPING STUDY

4.1.6 Quality Assessment Criteria

The purpose of using quality assessment criteria is to evaluate the power from
selected studies to answer some research question. The quality assessment criteria is
used in two stages: the former stage being the individual evaluation of each researcher,
to reduce the probability of bias; the latter stage where the researchers should reach a
consensual note about the publications in a “divergent state” in the quality measurement
grade.

Each of the cited QA criteria is evaluated by each researcher, according to the
following degree: Yes (Y) = 1; Partial (P) = 0.5; No (N) = 0. So the total score ranging
the five questions can result in: 0-1.0 (very bad); 1.5 or 2.0 (regular); 2.5 or 3.0 (good);
3.5 or 4.0 (very good); and 4.5 or 5.0 (excellent). Each of the criteria and their possible
evaluations are described below:

QA1. Does the publication make a contribution to the software performance testing
field?

∙ Y: A contribution is explicitly defined in the publication;

∙ P: A contribution is implied;

∙ N: No contributions could be identified.

QA2. Does the publication characterize a software performance testing tool?

∙ Y: The publication proposes and demonstrates the use of a tool;

∙ P: The publication proposes or demonstrates the use of a tool, never both;

∙ N: No, the publication does not propose or demonstrate the use of a tool.

QA3. Does the publication apply any type of empirical evaluation?

∙ Y: The publication explicitly applied an evaluation (for instance, a case study, an
experiment or proof of correctness);

∙ P: The evaluation is a “toy” example;

∙ N: No evaluations could be identified.

QA4. Does the publication present some type of analysis, showing results?

∙ Y: The publication presents some type of analysis or shows the results obtained;

∙ P: The publication presents only a summary of the results;

∙ N: No form of analysis or result were presented.

4.1. Protocol 41

QA5. Does the publication describe the techniques used in load generation and moni-
toring?

∙ Y: The publication explicitly describes load generation and monitoring techniques;

∙ P: The publication describes either load generation techniques, or monitoring tech-
niques, never both;

∙ N: The publication does not describe any load generation or monitoring techniques.

4.1.7 Selection Process

The selection process is divided in five stages, which are performed by two re-
searchers. The process steps as well as the researchers involved are described below:

(1) Initial selection: The search strings were generated using the selected keywords and
synonyms adapting for each of the databases particularities. The initial selection
encompassed all papers up to 2019 (exclusive), resulting in a total of 1673 studies.
An initial selection was performed by researcher one, according to criteria EC1, EC2
and EC4 (see Section 4.1.5);

(2) Eliminate redundancies: at this stage, researchers one and two worked together on
a pre-analysis of articles to eliminate redundancies. After the removal of duplicates,
1160 different papers remained;

(3) Intermediate selection: at this stage, researchers one and two read separately the title
and the abstract (reading the introduction and conclusion when necessary) of each
study. Here, the researchers decided to select or reject an article following IC1, IC2,
EC1 - EC6 (see Section 4.1.5);

(4) Final selection and elimination of discrepancies: At this stage, all other studies were
completely read by researchers one and two, who applied the same criteria for the
intermediate selection. In case of disagreement/divergence, a third researcher would
read the studies and discuss whether or not the study should be included in the final
selection. This resulted in the inclusion of 146 papers;

(5) Quality assessment: Based on the quality criteria (see Section 4.1.6), we assessed
the power of the studies to answer our research questions. The quality criteria were
evaluated independently by the two researchers; therefore, reducing the probability
of erroneous and/or biased results. Then researchers agreed in a consensual note
on the publications that received a divergent grade. Papers that achieved at least a
total score of 3 (good) and received a Yes (Y) response in QA2 were selected for data
extraction. The final selection was composed of 53 papers that reported a total of 38
performance testing tools.

42 Chapter 4. SYSTEMATIC MAPPING STUDY

4.1.8 Data Extraction Strategy

To extract the relevant data from the selected publications, we produced a form
that would help to answer the RQs and also to check the QA criteria. The following
data were extracted for each study: title; year of publication; authors; name of the tool
presented; type of license supported by the tool (commercial, academic, open-source);
language or types of script supported; supported classes and types of metrics in respect
to performance monitoring; reports generated on the tests performed; architecture and
organization of data persistence.

When a study miss the information needed to answer all questions on the form,
additional ad-hoc research was conducted. An important issue during data extraction was
solved in a way that both researchers acted as data extractors and also as data verifiers,
thus reducing the probability of errors and/or bias in data extraction7

The data presented here were manipulated using the Thoth8 tool. This tool as-
sisted in the whole process of this SMS, supporting the classification and extraction of
data, the selection and qualification of the papers and also aided in visualizing the results.

4.1.9 Data Analysis Strategy

The data was tabulated to show: The list of published tools, its licensing and
their source in Table 5 (addressing RQ1.); The list of published tools, supported input
approaches of each and its categorization in Table 6 (addressing RQ2.1.); The list of
published tools, their quality attributes including monitored metrics and its categorization
in Table 7 (addressing RQ2.2.); The list of published tools, and the persistence strategies
of each tool in Table 7 (addressing RQ2.3.).

4.2 Systematic Mapping Study Results

In this section we discuss the answers to our RQs (see Section 4.1.3). In each case,
we indicate the utility of these results for researchers and practitioners.

RQ1. What are the tools that support performance testing?

The purpose of this question is to map the tools used or proposed by scientific
studies that support some kind of performance testing. In total, thirty eight (38) per-
formance testing tools were identified through our SMS. Table 5 lists these tools, their
license type and the studies where they were found. Most of the tools were cited only
once or twice, while some of then have been heavily referenced (11 and 9 times) showing
a clear preference and greater adoption of these tools, namely LoadRunner and Apache
Jmeter, the former being a commercial tool, while the latter is open source.
7 All artifacts used in the Systematic Mapping Study are available at the Google Drive repository.
8 Thoth: http://lesse.com.br/tools/slr

https://drive.google.com/open?id=1ZMkMWL7EyDSAHdiAtaXpXmUWwoVXO7YG
http://lesse.com.br/tools/slr

4.2. Systematic Mapping Study Results 43

Table 5 – Tools and references.

References Tool Name License Type
(JOVIC et al., 2010) Abbot Open-Source
(Kiran; Mohapatra; Swamy, 2015; Putri; Hadi; Ramdani,
2017; AGNIHOTRI; PHALNIKAR, 2018; APTE et al.,
2017; ZHANG et al., 2011; SINGH; SINGH, 2012; WU;
WANG, 2010; PODELKO, 2016; KRIŽANIĆ et al., 2010)

Apache JMeter Open-Source

(APTE et al., 2017) AutoPerf N/D
(ZHANG et al., 2011) Framework CPTS Commercial
(KIM; KIM; CHUNG, 2015; DILLENSEGER, 2009) CLIF load injection

framework Open-Source

(Zhou; Zhou; Li, 2014) Cloud Load Testing
Framework (CLTF) N/D

(MICHAEL et al., 2017) CloudPerf Commercial
(PODELKO, 2016) CloudTest Commercial
(CUCOS; DONCKER, 2005) gRpas N/D
(JOVIC et al., 2010) Jacareto Open-Source
(Amirante et al., 2016) Jattack Open-Source
(JOVIC et al., 2010) JFCUnit Open-Source
(DEVASENA; KUMAR; GRACE, 2017) Load Testing Tool for

Cloud (LTTC) N/D
(ZHANG et al., 2011; Netto et al., 2011; Khan; Amjad,
2016; Chunye; Wei; Jianhua, 2017; Li; Shi; Li, 2013; YAN
et al., 2011; PU; XU, 2009; Kalita; Bezboruah, 2011;
PODELKO, 2016; Hamed; Kafri, 2009; RODRIGUES et
al., 2014)

LoadRunner Commercial

(PODELKO, 2016) LoadStorm Commercial
(JOVIC et al., 2010) Marathon Open-Source
(ABBORS et al., 2013) MBPeT Academic
(PODELKO, 2016; KRIŽANIĆ et al., 2010) NeoLoad Commercial
(Kim; Choi; Wong, 2009) PJUnit Open-Source
(RODRIGUES et al., 2015; RODRIGUES et al., 2014) PLeTsPerf N/D
(JOVIC et al., 2010) Pounder Open-Source
(FAN; MU, 2013) Python Built-in Tool Open-Source
(Krishnamurthy; Rolia; Majumdar, 2006) Session-based Web

Application Tester (SWAT) N/D
(KIM; KIM; CHUNG, 2015), (PODELKO, 2016) Silk Performer Commercial
(BRUNE, 2017) Simulating User

Interactions (SUI) Academic
(Kamra; Manna, 2012) Test Harness Commercial
(ZHANG et al., 2011; KRIŽANIĆ et al., 2010) The Grinder Open-Source
(RODRIGUES et al., 2014) Visual Studio Commercial
(KRIŽANIĆ et al., 2010; HABUL; KURTOVIC, 2008;
YAN et al., 2011), (PU; XU, 2009) WebLOAD Commercial
(YAN et al., 2014; Yan et al., 2012a; Yan et al., 2012b) WS-TaaS N/D
(Maâlej; Hamza; Krichen, 2013) WSCLT N/D
(STUPIEC; WALKOWIAK, 2013) Not Named Tool N/D
(ZHANG et al., 2011; YAN et al., 2011; PU; XU, 2009) IBM Rational Performance

Tester (RPT) Commercial
(YAN et al., 2011; PU; XU, 2009) QALoad Commercial
(APTE et al., 2017) Tsung Open-Source
(PU; XU, 2009) Etest N/D
(PU; XU, 2009) OpenSTA Open-Source
(YAN et al., 2011; PU; XU, 2009) WAS N/D

RQ2. What characterizes a performance testing tool?

In order to find any problems in software, the main characteristic of a performance
testing tool is that it should generate a certain workload on a target system (SUT). These
problems may be related to scalability, reliability, or any system bottlenecks, and this can
occur in a variety of ways.

Each tool can have unique characteristics in its implementation. However, despite

44 Chapter 4. SYSTEMATIC MAPPING STUDY

adopting distinct features and strategies, it is perceived that tools developed for this
purpose make use of an already consolidated architecture.

Users of these tools may need to select a tool for a specific purpose, and selecting
the most appropriate one may become a problem based on a lack of information about
them. Therefore, we propose in this work a new taxonomy based on this extensive SMS,
represented by feature model in Figure 8 the groups and elements of our taxonomy are
presented and explained collectively in Section 4.3, including the classification of 38 tools
found in the literature during the execution of this SMS. We believe this taxonomy will
assist others in the process of identifying, categorizing, developing, and deploying new
tools or features for performance testing and monitoring tools.

RQ2.1. What are the elaboration approaches of the test scripts interpreted
by the performance load generators?

The goal of this research question is to explore different kinds of approaches for
workload input definition and elaboration, and determine whether these types of input
could be classified into different categories. Three main categories were observed: Model-
Based Testing Dalal et al. (1999), Capture and Replay Memon e Soffa (2003), and Manual
Scripting. The dispersion of tools within these categories is shown in Figure 7 and Table 6
specifies which kind of model and/or scripting language each tool supports. Choosing a
tool whose model or scripting language is best known by the test engineers can result in a
smaller learning curve in its use, and fewer errors when creating test scenarios. The tools
that stood out most in this area were JMeter and LoadRunner, the tools were shown to
support a greater number of different input types, which could explain why they were the
most mentioned in RQ1.

Figure 7 – Input approach Venn diagram.

CR
Jacareto;
SWAT;

IBM Rational
Performance;

MBT
CLTF; MBPeT;

PleTsPerf; WSCLT;
not named

performance tool;

Scripting
PJUnit; SUI;

Framework CPTS;
CLIF; CloudPerf;

CloudTest; Jattack;
Test Harness;
SilkPerformer;
The Grinder;
WebLOAD;

Python Built-in Tool;
gRpas;

Marathon;
AutoPerf;

LTTC;

Abbot;
Jmeter;

VisualStudio;
LoadRunner;

JFCUnit;
Marathon; NeoLoad;
Pounder; QALoad;

LoadStorm;
OpenSTA;
QALoad;
Tsung;

4.2. Systematic Mapping Study Results 45

RQ2.2. What performance testing monitoring approaches are applied?

Performance monitoring is an ongoing process of data collection and analysis to
compare how well a project, program, or policy is being implemented in relation to the
expected Križanić et al. (2010). This task is fundamental in the software development life
cycle and is also part of the preventive software maintenance cycle. Performance moni-
toring tasks are facilitated with the employment of monitoring tools. Most performance
testing tools have dedicated features for monitoring, while others utilize a dedicated tool
for monitoring.

Performance monitoring tools typically provide analysis of specific metrics and
notifications about critical changes in the system. The selection of an appropriate tool
for monitoring should be given in relation to which metrics one wishes to collect to analyze
the performance requirements of the application being tested.

To answer this research question in detail, the data were classified according to
the monitoring approaches found in the primary studies resulting from this SMS and
in accordance with the metrics selected in Section 4.3.3.1. The first approach refers
to metrics directly related to the application, such as: response time, hits per second,
responses per second, transactions per second, transaction success rate, number of virtual
users, and total test time. The second approach presents metrics related to the resources
from which the system under test (SUT) is hosted, which are classified as CPU, memory,
I/O and network utilization.

All tools analyzed use metrics of the two approaches represented. In general, the
tools monitored the SUT metrics more than the application itself. The reason is that, in
the application metrics approach, the data obtained during and after the tests execution
needed to be interpreted to be shown in a clear and objective way to the user. Meanwhile,
the metrics related to the SUT are only data captured at certain moments in the workload
execution and shown to the user.

The results obtained during this classification were represented in Table 7, where
it is possible to visualize each monitoring metric that the tool in question has.

RQ2.3. What are the persistence strategies of metrics data collected by per-
formance testing monitors?

To evaluate the performance of a system, it is necessary to monitor its behavior
during workload execution. This results in a high-volume of data persisted for later anal-
ysis, thus making the implementation of a persistence layer necessary. As consequence,
most persistence layers will use external files for persistence or underlying database man-
agement system. So the file types that have been observed as most common are XML
and JSON, respectively (see Table 7). Finally, as for database management systems, no
patterns or preferences were identified.

46 Chapter 4. SYSTEMATIC MAPPING STUDY

Table 6 – Tools and workload input approaches.

CR MBT Scripting Language

Tool Name

C
ap

tu
re

R
ep

la
y

P
T

A

SA
M

SW
M

U
M

L
A

D

U
M

L
U

C

.N
et

B
ea

nS
he

ll

C C
#

C
+

+

C
lo

ju
re

G
ro

ov
y

Ja
va

Ja
va

Sc
ri

pt

JS
O

N

Jy
th

on

P
yt

ho
n

R
ub

y

Sc
al

a

SC
L

X
M

L

Abbot X X
Apache
JMeter X X X X X

AutoPerf X
CLIF X
CLTF X

CloudPerf X
CloudTest X

gRpas X
IBM RPT X

Jacareto X
Jattack X

JFCUnit X X X
LTTC X

LoadRun-
ner X X X X X

Load-
Storm X X X

Marathon X X
MBPeT X

NeoLoad X X
Not

Named
Tool

X

OpenSTA X X
PJUnit X

PLeTsPerf X X
Pounder X X

Python
Built-in

Tool
X

QALoad X X X
SWAT X

Silk
Performer X

SUI X
Test

Harness X X

The
Grinder X X

Tsung X X
Visual
Studio X X

WebLOAD X
WSCLT X

Etest*
Frame-

work
CPTS*
WAS*

WS-TaaS*
*It was not possible to find information on the input approach of these tools in the literature or by “ad-hoc”

manner.
PTA: Probabilistic Timed Automata; SAM: Sequencial Action Model; SWM: Stochastic Workload Model;

UML AD: UML Activity Diagram; UML UC: UML Use Case diagram.

4.2. Systematic Mapping Study Results 47

Table 7 – Monitored metrics and Persistence strategies.

Monitored Metrics Persistence strategy
Application SUT Resources

Tool Name
R

es
po

ns
e

ti
m

e

H
it

s
pe

r
se

c.

R
es

po
ns

es
pe

r
se

co
nd

T
ra

ns
ac

ti
on

s
pe

r
se

co
nd

T
ra

ns
ac

ti
on

su
cc

es
s

ra
te

#
V

ir
tu

al
U

se
rs

T
ot

al
te

st
ti

m
e

C
P

U

M
em

or
y

I/
O

N
et

w
or

k

P
ro

pr
ie

ta
ry

fil
es

D
at

ab
as

es

H
tm

l

JS
O

N

P
la

in
T

ex
t

JD
B

C
D

ri
ve

rs

X
M

L

Abbot X X X
Apache JMeter X X X X X X X X X X X X

AutoPerf X X X X X
CLIF load

injection
framework

X X X X X X X

Cloud Load
Testing

Framework
(CLTF)

X

CloudPerf X X X X X X
CloudTest X X X X X X X X

Framework CPTS X X X X X X X X X X
gRpas X X X X X

IBM Rational
Performance

Tester
X X X X X X X X X

Jacareto X X X X
Jattack X X X X X

JFCUnit X X X X X X
Load Testing Tool
for Cloud (LTTC) X X X X X X

LoadRunner X X X X X X X X X X X X X
LoadStorm X X X X X X X X X

Marathon X X X
MBPeT X X X X X X X

NeoLoad X X X X X X X
Not Named Tool X X

OpenSTA X X X
PJUnit X X X X

Pounder X X X X X
Python Built-in

Tool X X X X X

QALoad X X X
Session-based

Web Application
Tester (SWAT)

X X X X

Silk Performer X X X X X X X
Simulating User

Interactions (SUI) X X X X X X X

Test Harness X X X X
The Grinder X X X X X X

Tsung X X X X X X X
Microsoft Visual

Studio X X X X X X X X X X X

WAS X X X
WebLOAD X X X X X X X X X

WS-TaaS X X X X X X X X X X
WSCLT X X X X X

PLeTsPerf*
Etest*

* It was not possible to find information on the monitored metrics or persistence strategies of these tools in the
literature or by “ad-hoc” manner.

48 Chapter 4. SYSTEMATIC MAPPING STUDY

4.3 Taxonomy of Performance Testing Tools

A taxonomy is a scientific method of classification according to an established
system in a specific domain, with the resulting catalog used to provide a framework for
analysis. Any taxonomy should take into account the importance of separating elements of
a group into subgroups that are unambiguous, and taken together include all possibilities
(CLARKE; MALLOY, 2001).

The main objective of our taxonomy is to reduce the gap between practice and
research in performance testing tools, especially when it comes to the terms used and
the approaches implemented in each one. This taxonomy provides means of comparison
and evaluation of the tools features that can be useful in deciding which tool to use or
how to design future systematic mapping. Not all features of the tools represented in the
taxonomy were planned to be identified in our initial research research perspective, but
are nevertheless identified and are represented in the taxonomy.

4.3.1 Input Approaches

Refers to the input approach that the tools support and/or provide means of
elaboration. They were divided as follows:

4.3.1.1 Capture Replay

Capture Replay (CR), also known as Record and Playback, is a technique where a
test engineer performs the tests manually once in the application. This is, by interacting
with the graphical user interface (GUI) in “capture” mode, the tool stores this interaction
and outputs a test script that can be “replayed” by the tool multiple times by several
Virtual Users (VU). The continuous modification of a GUI may render these types of tests
obsolete, forcing the test engineers to re-capture those tests. However, modern CR tools
do not rely solely on coordinates for test case execution but maintain extra information
such as the handle, type, and label (if any) of the elements, enabling the replayer to locate
the element when it has been moved (MEMON; SOFFA, 2003). Sometimes, this technique
also employees manual script editing for the removal of random generated values, hard
coded values and enhancements whenever possible.

4.3.
Taxonom

y
ofPerform

ance
Testing

Tools
49

Figure 8 – Taxonomy of performance testing tools represented by feature model

Performance Testing Tool

Input Approach

CR MBT Scripting

Load Generator

Architecture

Distributed Local

Implementation

Processes Threads

Monitor

Metrics

Application

Web Resources

Throughput Hits per second Responses per second

Transaction

TRT TPS TSR

SUT

System Resources

Processor Memory Disk Network

Runtime Technology Database Web Server Virtualization Technology

Data Persistence

Database External File

CSV XML JSON Plain Text

Analysis

Representation

Graphical Textual

Results Analysis

Test Oracle SLA

Legend
Mandatory
Optional
Or
Abstract
Concrete

Source: the author.

50 Chapter 4. SYSTEMATIC MAPPING STUDY

4.3.1.2 Model-Based Testing

Model-Based Testing (MBT) approach involves developing and using a data model
to generate tests. The model is essentially a specification of the inputs to the software, and
can be developed early in the cycle from requirements information. It can be especially
effective for systems that are changed frequently, because testers can update the data
model and then rapidly regenerate a test suite, avoiding tedious and error-prone editing
of a suite of hand-crafted tests Dalal et al. (1999) or even tests that were created using
the CR technique. In our research we were able to find tools using as input Probabilistic
Timed Automata (PTA), Sequential Action Models (SAM), Stochastic Workload Models,
UML Activity Diagrams, and UML Use Case Diagrams.

4.3.1.3 Scripting

Manual script writing technique in which the test engineer manually writes a set
of code statements, into a defined programming language, that will be executed by the
load generator in the form of Virtual Users (VU).

4.3.2 Load Generator

This group represents the often called “module” of load generation. Its the core
of many performance testing tools, it is responsible for interpreting the scripts and gener-
ating the correspondent workload in the SUT. It employs the creation and management
of multiple VU, which can be executed locally or in a distributed manner, utilizing a
master/slave approach.

4.3.2.1 Architecture

The architecture of a load generator deals mainly with the organization of its
elements, which can be organized in a: (i) Local architecture when the VU are created and
run in a single machine. This severely impacts the quality of the results obtained through
performance testing, since they rely on the amount of workload that can be generated and
maintained in a SUT. Limiting the load generation to one machine only, however broad
it may be, limits the amount of load that can be generated, creating a bottleneck in the
load generator itself; (ii) Distributed architecture load generators on the other hand, as
the name implies, distribute the load of generating VU in a master/slave manner. This
architecture enables having a local master controller that handles the test distribution
and execution on the slaves, which are remote instances that will send the requests to
the SUT. This architecture adds another layer of complexity onto load generators, as the
test engineers will have to set up multiple computers and/or utilize cloud services, such
as Azure, AWS or Google Cloud.

4.3. Taxonomy of Performance Testing Tools 51

Another difficulty when utilizing distributed architectures, is how to handle pa-
rameterized data in tests. This is because that first, if the load generator master controller
does not handle the distribution of parameters, you will need to have separated files, and
second, if the test engineer wants to update, them he has to go through each slave node
to make the modifications.

4.3.2.2 Implementation

Characterizes the low level representation for load generators implementations.
We were able to identify, albeit not in all cases, two different implementation approaches:
(i) creating different process for each instance of a Virtual Users (VU), which do not
share the same memory space, and are independent to each other. This is important
for VU isolation, so that a problem within an instance of a VU does not affect the rest;
(ii) The use of multiple threads for the VU execution, which shares the same memory
address, lowering the communication cost between VUs. On the other hand, a problem
within a VU will certainly affect the others and the reliability of the load generator itself.

4.3.3 Monitor

Refers to the monitoring modules present in some tools, the metrics they monitor
as well as the data persistence approaches taken.

4.3.3.1 Metrics

A software metric is a measure of software characteristics which are quantifiable or
countable. Software metrics are important for many reasons, including measuring software
performance, planning work items, measuring productivity, and many other uses. Metrics
capture a value pertaining to systems at a specific point in time, like the number of users
currently logged in to a web application or CPU usage. Therefore, metrics are usually
collected once per second, per minute, or at another regular interval to monitor a system
over time.

There are two important subcategories of metrics in our taxonomy:
(1) Application Metrics: indicates the top-level health of the system by mea-

suring its useful output.
(i) Web Resources: These are vital performance counters for assessment of

Web application ability to maintain the workload simulated. (a) Throughput: Shows the
amount of server throughput during each second of the load test scenario run. Through-
put measures the actual rate at which work requests are completed; (b) Hits Per Second:
Shows the number of requests per second; (c) Responses Per Second: shows the number
of HTTP status codes returned from the Web server during each second of the load test

52 Chapter 4. SYSTEMATIC MAPPING STUDY

scenario run, grouped by status code.
(ii) Transaction: During load test scenario execution, VU generate data as they

perform transactions. This metric enables collecting data that shows the transaction
performance and status throughout script execution, in which are presented as follows:
(a) Transaction Response Time (TRT): Different response time values under different
load. Average response time, maximum, percentile, and so on; (b) Transaction Per Second
(TPS): Shows the number of transactions generated per second; (c) Transaction Success
Rate (TSR): Shows the number of transactions that passed, failed, or stopped.

(2) System Under Test (SUT) Metrics: Most components of software in-
frastructure serve as a resource for monitoring systems. System Resources: Some
resources are low-level, e.g. a server’s resources include such physical components as pro-
cessor, memory, disks, and network. Each one of them have a list of performance counters
that could be used to measure the performance requirements of SUT, such as:

(i) Processor: Program execution threads consume processor (CPU) resources.
Available performance counters measure how much CPU processing time threads and
other executable units of work consume. These processor utilization measurements allow
to determine which applications are responsible for CPU consumption. The processor
performance counter are presented as follows: (a) % Processor Time; (b) % Interrupt
Time; (c) Processor Queue Length.

(ii) Memory: A shortage of RAM is often evident indirectly as a disk perfor-
mance problem, when excessive paging to disk consumes too much of the available disk
bandwidth. Consequently, paging rates to disk are an important memory performance
indicator. When observing a shortage of available RAM, it is often important to de-
termine how the allocated physical memory is being used and count resident pages of a
problematic process known as its working set. Instances of memory performance counters
are shown as follows: (a) Available Bytes; (b) Working Set; (c) Page Reads/Sec.

(iii) Disk: Through the I/O manager stack, an operation system maintains phys-
ical and logical disk operations. A physical disk is the internal representation of specific
storage device.It is important to be proactive about disk performance because it tends
to degrade rapidly, particularly when disk-paging activity occurs. Examples of disk per-
formance counters are presented, such as: (a) Avg. Disk secs/transfer ; (b) % Idle Time;
(c) Disk Transfers/Sec; (d) Avg. Disk Queue Length.

(iv) Network: Networking performance has become ever more important today
with the proliferation of distributed and cloud applications. Network interface statistics
are gathered by software embedded in the network interface driver layer. This software
counts the number of packets that are sent and received. Networking bottlenecks are
tricky to catch and analyze. Packet rates, collision rates and error rates do not always
point to the cause of the problem. (a) Bytes Total/Sec; (b) Server Bytes Total/Sec;
(c) Connections Established.

4.3. Taxonomy of Performance Testing Tools 53

Runtime Technology: Application performance also depends on the architec-
tural level monitoring and tuning. However, architectural design is built upon specific
technologies. Each platform differs in which metrics and counters impact on the ap-
plication performance. Common examples of runtime technologies are Java Platform
Enterprise Edition (Java EE) or the .NET Framework.

Database: It is imperative to ensure optimal performance of the database as this
is essential to any data-driven application. There are many factors affecting overall appli-
cation performance that may come from the database side, such as: Poor database design;
Poor logic used in queries; Database server machines dedicated to multiple applications.

Web Server: The function of a Web server is to service requests made through
the HTTP protocol. Some Web servers even provide modules presenting information on
server activity for automating the monitoring process.

Virtualization Technology: Virtualization platforms provide the service of cre-
ating a virtual (software) version of hardware. This adds another layer to complexity and
computational efforts which also needs to be monitored and tuned for better results per-
formance wise. Virtualization technology metrics can be very similar to those of System
Resources, depending on the virtualization platform.

4.3.3.2 Data Persistence

The most common approaches for storing the data results from monitoring are the
use of external files (like CSV, XML, JSON or even as plain text) or databases systems,
for instance SQL or NoSQL.

4.3.4 Analysis

Refers to how the data results from the monitoring is processed and represented
in performance testing reports.

4.3.4.1 Representation

How results are being presented to the test engineer, it could be a graphical and/or
textual data representation using different techniques to generate a performance testing
report. For instance, Word, PDF or HTML documents.

4.3.4.2 Result Analysis

What techniques, methods or approaches of automatic data analysis the tool ap-
plies in the measured data results. For instance, a test oracle or a Service Level Agreement
(SLA) (LEE; BEN-NATAN, 2002).

54 Chapter 4. SYSTEMATIC MAPPING STUDY

4.4 Threats to Validity

In this section, the threats identified in the context of this study are described as
suggested by (COOK; CAMPBELL, 1979).

Construct Validity: This is a threat that affect the statements in this paper:
provide an empirical reference that serves as a starting point decision making in selecting
testing performance tools. In this sense, it is important to reassert that our analysis
is built on well accepted guidelines for performing SMS in SE proposed by (Engström;
Petersen, 2015), including a research.

First of all, systematic mappings are known for not guaranteeing the inclusion of
all the relevant works on the field. This can be explained by the limitation of the search
mechanisms for set of keywords defined in this study and the lack of them in some of the
relevant works. In order to avoid this bias, articles not found in database where manually
inserted into the body of knowledge.

Internal Validity: This type of threats is related to how we ensure that the
performed analysis is valid to the problem statement. Likewise, in order to reduce possible
bias, the stages of selection of the studies and data extraction were carried out by two
researchers. The results found by each were tabulated and compared, so that any kind
of bias could be identified, and when in disagreement, the authors could debate and a
consensus was reached.

External Validity: The use of a well-defined and validated protocol assures
that any other group of researchers could replicate this mapping using the same set of
parameters would yield the same results. The only variable that could compromise this
assumption is time, as new researches and tools emerge everyday. To minimize this threat
the update of this SMS in the future is required.

Conclusion Validity: This research found a relatively good number of focused
papers, thus providing a statistical power to drive our conclusions. This could be affected
by terminological problems in the search string, which may have led to the absence of some
primary studies. For the minimization of these problems, the generated string was tested
and the results were previously analyzed in a way that one could notice the relevance of
the same. When necessary, the search string was modified and the process was redone.
Finally, we reduced the threat of not indexing all available content on the web by using
six (6) digital libraries.

4.5 Related Work - Systematic Mapping Review

This section summarizes main contributions from related works shown in Table 8.
The survey conducted by Jiang e Hassan, summarizes various test type definitions

(Load Testing, Performance Testing and Stress Testing). In addition, specifies the rela-
tionship between them and verifies the techniques that are used in the three phases of

4.6. Chapter Summary 55

performance testing: the workload design phase, the load execution phase and the per-
formance testing analysis phase. For each of these phases, some open research issues are
provided.

To clarify concepts, objectives and types of performance testing, Sharmila presents
a brief description of nine (9) performance testing tools found in the market through an
empirical study. In this study, the authors list the main characteristics that performance
tests aim to identify in a given system.

In order to deepen the search for performance testing tools, Isha conducted a
research on performance testing tools for web applications. In this study, eighteen (18)
performance testing tools were found, presenting their important characteristics.

From this mapping, the authors constructed a taxonomy on software testing, that
captured both the perspective of the problem and solution. The authors reinforce the idea
that a taxonomy should be expandable, so that the initial structure should be assessed
as sound and beneficial from researchers and practitioners perspectives.

Although the articles discussed in this section cover several aspects regarding per-
formance testing tools, they fail to systematically investigate the available tools and their
characteristics. Therefore, it is relevant to review which performance testing tools are
available or are applied and which approaches and techniques are employed. A broad
view of these tools would allow a greater understanding of the peculiarities of each and
also an empirically supported background in decision making as benefit to the research
and practice.

Table 8 – Related work summary.

Concept Our Study Sharmila and Ramadevi
(Sharmila, 2014)

Isha and Vikram
(Isha, 2015)

Engstrom and Petersen
(Engström; Petersen, 2015)

Jiang and Hassan
(Jiang; Hassan, 2015)

Paper Type SLR Ad-hoc review Survey Proposal Survey
Interval up to Dec 2018 not specified 2000 - 2014 not specified 1993 - 2013

Contribution
overview of

tools and tools
taxonomy

overview of tools overview of tools testing taxonomy compares the state of
research and practice

Tools 38 9 18 0 not specified

4.6 Chapter Summary

This chapter presented an SMS on performance testing tools. The developed
protocol and it’s execution was described in Section 4.1, its results, the tools found, and
the answers to the research questions are discussed in Section 4.2. The main contribution
of this mapping is described in Section 4.3 in the form of a taxonomy of performance
testing tools.

57

5 PERFMOON’S DESIGN
This chapter describes the development of the solution and the creation process

behind it.

5.1 Initial Considerations

The PerfMoon tool is designed for the purpose of being an independent module
and will be available from the official repository1. This module will compose a larger
and more robust solution in the scenario of performance and monitoring tests. This
complete solution is the product of existing projects in the research group LESSE of
Federal University of Pampa (UNIPAMPA).

The integration of these modules will enable the modeling of complete test cases in
a textual or graphic way, through Canopus DSL proposed by (BERNARDINO; ZORZO;
RODRIGUES, 2016). The artifact generated by this DSL will compose the data input
required to generate load through the LoadSun tool. The tool developed in this work,
PerfMoon, will be responsible for monitoring certain metrics and for generating data that
can be analyzed by the Earthnalysis tool. The complete solution called COSMOS can be
seen in Figure 9, where the names of the authors are also represented.

Figure 9 – COSMOS - LESSE’s Performance Testing Solution.

COSMOS

Input
Approach

Canopus

João
Carbonell

Aníbal
Neto Workload

Generator

LoadSun

Victor
Costa

Monitor

PerfMoon

Gustavo
Girardon

Analysis

Earthnalysis

Filipe
Garcia

Source: the author.

5.2 Aspects of Analysis

When a system is in operation, various activities and events happen to the system
and its operating environment, while the system states also undergo frequent changes.
1 PerfMoon’s Repository is available at: <https://github.com/ProjetoDSL/PerfMoon>

https://github.com/ProjetoDSL/PerfMoon

58 Chapter 5. PERFMOON’S DESIGN

For all events and states relevant to a service to be monitored, we need to know first
which of them will affect the service behavior.

Although the monitoring tools have different behaviors and data structures, as can
be seen in Table 7, some common characteristics were investigated and mapped among
these tools that made possible the design of a tool compatible with these several solutions.
In addition to investigating existing tools, framework proposals were also evaluated, as
can be seen in Table 6.

From this study was possible to perform an analysis and from this analysis, it was
possible to design and implement the tool solution called PerfMoon, which includes Web
software monitoring features. The artifacts were generated, considering the functional,
non-functional requirements and the definition of these requirements defined the use cases
to be designed and implemented in the tool.

5.3 PerfMoon Requirements

The functional and non-functional requirements were categorized according to the
functionalities predicted for the tool and described in two groups according to their ap-
proach, the first approach refers to metrics directly related to the application, while the
second presents metrics related to the features of the system under test (SUT).

5.3.1 Functional Requirements

∙ FR01: Throughput: The tool must monitor the amount of server throughput
(received and sent bytes) during each second of the load test scenario run. The
system throughput or aggregate throughput is the sum of the data rates that are
delivered to all terminals in a network. Throughput is essentially synonymous to
digital bandwidth consumption; it can be analyzed mathematically by applying the
queuing theory, where the load in packets per time unit is denoted as the arrival
rate and the throughput, where the drop in packets per time unit, is denoted as the
departure rate.

∙ FR02: Hits Per Second: The tool must monitor the number of hits per second
the server. Hits per second refers to the number of HTTP(s) requests sent by the
user(s) to the Web server in a second.

∙ FR03: Processor (CPU): The tool must monitor the percentage of processor
(CPU) utilization of the server. This measurement will occur with the following
metrics:

– Total CPU : This metric is responsible for reporting the result of the sum of
the system cpu and user cpu usage metrics.

5.3. PerfMoon Requirements 59

– System CPU : Shows the amount of CPU time used by the kernel. The kernel
is responsible for low-level tasks, like interacting with the hardware, memory
allocation, communicating between OS processes, running device drivers and
managing the file system. Even the CPU scheduler, which determines which
process gets access to the CPU, is run by the kernel.

– User CPU : One level up, the “user” CPU state shows CPU time used by
user space processes. These are higher-level processes, like your application, or
the database server running on your machine. In short, every CPU time used
by anything else than the kernel is marked “user”, even if it wasn’t started
from any user account.

– Idle CPU : The “idle” CPU state shows the CPU time that’s not actively
being used. Internally, idle time is usually calculated by a task with the lowest
possible priority.

∙ FR04: Memory: A tool must monitor the percentage of server memory utiliza-
tion. This measure occurs with the following measures:

– Total Memory: The amount of memory that can be used by programs. The
value is obtained by subtracting a few reserved bits and the kernel binary code
from the amount of physical RAM available on the system.

– Available Memory: The estimated amount of memory that can be used for
starting new programs without swapping.

– Used Memory: A value calculated by subtracting the amount of Buffers,
Cache, and Free memory from the Total memory.

∙ FR05: Disk I/O: The tool should allow writing of the disk input and output
logs. Disk I/O includes read or write or input/output operations (defined in KB/s)
involving a physical disk. In simple words, it is the speed with which the data
transfer takes place between the hard disk drive and RAM, or basically it measures
active disk I/O time.

∙ FR06: External Notification: The solution must allow the load generator tool
(LoadSun’s) to communicate and report the exact start and end time of the load
test. This will allow the tool to start or end load test log recording.

∙ FR06: Log Format: The tool should allow the user to choose which format to
save their logs. Initially the tool should work with json and xml format.

5.3.2 Non-Functional Requirements

∙ NFR01: The tool must efficiently organize the way it will compress the log files.

60 Chapter 5. PERFMOON’S DESIGN

∙ NFR02: The solution must be possible to be integrated with other modules of
COSMOS Performance Testing Solution developed by the LESSE group.

∙ NFR03: The solution should use a minimal system resources as possible under
test.

∙ NFR04: The solution must be possible to be integrated with other modules. In
order to fully evaluate the performance of a system the solution must take into
account the implementation and the communication protocols utilized by the other
modules developed at the LESSE group.

5.4 Design Decisions

This section describes the decisions taken to carry out this study and the devel-
opment of this tool.

DD01: Programming Language: Python is a highly functional programming
language it can do almost what other languages can do with comparable speed. It is
used to make data analysis, create GUIs and websites. This language has an excellent
interactive shell and has a large collection of open source packages, a very simple syntax
and it takes much less time to write and debug by being simple and readable. These are
the main reasons for choosing the language.

DD02: Architecture: The architecture was based on a server-client model
widely used in the most diverse current systems. One of the main advantages of this
decision is proper management, which makes file management a simple task because the
files are all stored in the same location. The designed architecture is best described in
Section 5.5 and a simplified version can be seen in Figure 10.

DD03: License: Open source solutions often have thriving communities around
them, bound by a common drive to support and improve a solution that the community
benefit from. The global communities united around improving these solutions introduce
new concepts and capabilities faster, better, and more effectively than internal teams
working on proprietary solutions.

DD04: Data Persistence: This setting are related to part of the monitored
information that the user wishes to save to the database. With the high volume of data
that can be monitored and generated, it is of the utmost importance that such data be
organized and made available to other tools.

DD05: Data Integrity: A fundamental component of information security. In
its broadest use, “data integrity” refers to the accuracy and consistency of data stored in
a database. All data characteristics must be correct - including monitoring rules, metrics,
and definitions - for the data to be complete.

5.5. Architecture 61

5.5 Architecture

The architecture of the PerfMoon tool is designed to work in a simplified way.
The monitoring tool is designed to provide as much information as possible in a short
time through a web-based interface. The tool can dynamically adapt how information is
displayed or how it will be saved.

Currently the tool uses the psutil library to get exact system information and the
log writing settings are dynamic allowing the user to easily change their metrics. As can
be seen in Figure 10, some components of the simply designed architecture are presented.

Figure 10 – PerfMoon Architecture

Network

CPU

Memory

Services

Database

System Under Test

PerfMoonRuntime

Disk I/O

Log Collector

St
at

is
ti

cs
an

d
P

er
fo

rm
an

ce
D

at
a

JSON

CSV

Metrics

Source: author.

Measurements can be initiated either by the monitoring server (depending on
system configuration) or it can be initiated by an external program (or script) residing
on the monitored resource.

When a monitoring agent is initiated for collecting metrics, it measures the relevant
metric values from the monitored components and passes them on to the monitoring
server. Depending on the configuration of the system, the server may send alerts to
interested parties on occurrence of an event.

62 Chapter 5. PERFMOON’S DESIGN

5.6 Chapter Summary

This chapter reported on how the decisions applied to this project were taken. In
the Section 5.1 the main purpose of the tool is discussed together with motivation. In
Section 5.4 the design decisions are reported. Section 5.3 is responsible for describing the
functional and non-functional requirements of the tool. Finally, Section 5.4 and Section
5.5 report the decisions made for the project execution as well as the proposed architecture
for PerfMoon.

63

6 EXPERIMENTAL BENCHMARKING: PERFMOON’S
This chapter is organized as follows: A Section 6.1 describes the initial considera-

tions of this experiment. Section 6.2 describes how the experiment was designed, executed
and how the data will be represented. In Section 6.3 we can see what was monitored dur-
ing the experiment. Section 6.4 describes the test environment and its settings. Finally
the final results are presented in Section 6.5.

6.1 Initial Considerations

In this experimental benchmark we followed the model proposed by Robert K.
Yin (YIN; SAGE., 2003). The main objective of this experiment is to compare results
obtained by monitoring a server with a Web application. This server was monitored using
two distinct tools. The first tool used was StackDriver1. The StackDriver tool is a business
tool owned by Google Company. StackDriver aggregates infrastructure metrics, logs, and
events, providing developers and operators with an advanced set of observable signals that
streamline root cause analysis and reduce average resolution time. StackDriver does not
require extensive integration or multiple dashboards nor does it require developers to use
a specific cloud provider. The second tool used was PerfMoon. This tool was developed
throughout this work and has its development details described in Section 5.3.

These monitoring tools were employed to complement the reporting capabilities of
performance test tools. In addition, these monitoring tools can be used to monitor system
performance on an ongoing basis and to alert system administrators to lowered levels of
performance and higher levels of system errors and alerts. These tools may also be used
to detect and notify in the event of suspicious behavior (such as Denial of Service Attack
(DoS) and Distributed Denial of Service Attack (DdS)), scan server logs and compile
metrics from them.

6.2 Experimental Benchmarking Design

Load testing, in general, refers to the practice of assessing the system behavior un-
der load (BEIZER, 1984). Load refers to the rate of the incoming requests to the system.
A load test usually lasts for several hours or even a few days. Load testing requires one
or more load generators which mimic clients sending thousands or millions of concurrent
requests to the application under test. During the course of a load test, the application
is monitored and performance data along with execution logs are stored. Performance
data record resource usage information such as CPU utilization, memory, disk I/O and
network traffic. Execution logs record the run time behavior of the application under test.

1 Google StackDriver is available at: <https://app.google.stackdriver.com/>

https://app.google.stackdriver.com/

64 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

To obtain monitoring data, this experiment benchmark planned to perform two
load tests on the monitored system. The first test will be monitored by the PerfMoon’s.
The second test will be monitored by the StackDriver tool.

These load tests will be generated by the LoadSun tool (COSTA, 2019) that was
designed to work as a standalone module in a more complete solution called COSMOS
performance testing solution and can be seen in Figure 9. With the educational aspects
and the idea of integration in mind the workload generation solution was designed to
work in a simple way and with a low entry barrier, however, seeking to maintain the
important characteristics of a workload generator, generating workloads at a low cost
of computational resources and be adaptable to different types of workload models to
support the different types of performance tests.

The result data of these tests will be stored in log files. These log files will be
processed and analyzed to demonstrate the dynamic behavior of the monitored system.
Results will also be compared against each other to prove that PerfMoon successfully
performs monitoring. This will allow the experiment to prove that the PerfMoon tool is
functional. When comparing the results of this tool with the proprietary Google Stack-
Driver tool, we can say that the monitoring results are consistent.

The results will also be analyzed mathematically with the rating of each scenario
tested by the degree of performance deviation between the previous and current runs.

Cosine similarity metric finds the normalized dot product of the two attributes.
By determining the cosine similarity, we would effectively try to find the cosine of the
angle between the two objects. The cosine of 0 is 1, and it is less than 1 for any other
angle.

Cosine similarity is particularly used in positive space, where the outcome is neatly
bounded in 0 and 1. One of the reasons for the popularity of cosine similarity is that it
is very efficient to evaluate, especially for sparse vectors.

If the two distributions are very similar, the cosine distance is close to 1. If they are
very different, the cosine distance is close to 0. As deviation is the opposite of similarity,
we use the following formula to calculate the deviation:

cos(𝑡, 𝑒) = 𝑡𝑒

‖𝑡‖‖𝑒‖
=

∑︀𝑛
𝑖=1 𝑡𝑖𝑒𝑖√︁∑︀𝑛

𝑖=1 (𝑡𝑖)2
√︁∑︀𝑛

𝑖=1 (𝑒𝑖)2

Note that t(x) and e(x) correspond to the number of instances in the previous and
current runs which have response time x for a particular scenario.

The technical specifications of the Web application used and the server can be
viewed in Section 6.4.1. The benchmark traffic was defined by common scenarios most
commonly encountered in real-life deployments. These scenarios represent virtual users
who can access their accounts, search for products, add them to their cart and finally
make the purchase. The test scenario details that will be run and monitored can be

6.3. Collecting Data Evidence 65

Table 9 – Test Scenario.

Script Action Name Think time (s) Request Method API Route

1

Login 10 POST /public/login
Search Request 5 GET /public/products/search
Product Detail 15 GET /public/product/
Order Product 5 POST /public/product/order
Cart 5 GET /public/cart
Check out 15 POST /public/checkout

2

Home Page 5 GET /public/home
New Products 10 GET /public/products/new
Best Sellers 10 GET /public/products/bestsellers
Product Detail 15 GET /public/product/
Search Request 10 GET /public/products/search

viewed in Table 9.

6.3 Collecting Data Evidence

A typical load test uses one or more load generators that simultaneously send
requests to the System Under Test (SUT). During this type of test the system behavior
data like execution logs and various metrics are collected. Execution logs record software
activities and errors. Execution logs are generated by debug statements that developers
insert into the source code to record the runtime behavior of the SUT. Metrics can
be web application related (e.g., number of passed/failed requests) or sut related (e.g.,
resource usage information like CPU utilization, memory, disk I/O and network traffic or
the end-to-end response time).

Two artifacts are recorded during a load test: execution logs and performance
metrics. Execution logs record from application related metrics (e.g.. ”User authentica-
tion successful) and errors (e.g. ”Fail to retrieve product”). Performance metrics record
the system’s resource usage like CPU, memory, and disk I/O. Performance metrics be
collected by resource monitoring tools with very little overhead. The information from
execution logs and performance metrics complement each other, as over the course of a
load test, execution logs record the system behavior and performance metrics keep track
of the system resource utilization.

To conduct this experiment benchmark and to be able to compare the monitoring
results of the two tools, only a few monitoring metrics were selected to be monitored. The
selected metrics have been grouped and are detailed below:

∙ Host-Based Metrics: Any metric involved in assessing the health or performance
of an individual machine, currently disregarding your application’s batteries and
services. Monitored metrics:

– CPU Usage;

66 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

– Memory Usage;

– Disk I/O Usage.

∙ Application Metrics: These are metrics concerned with units of processing or
work that depend on the host-level resources, like services or applications. The
specific types of metrics to look at depends on what the service is providing, what
dependencies it has, and what other components it interacts with. Metrics at this
level are indicators of the health, performance, or load of a Web application. Mon-
itored metrics:

– Responses Time;

– Transactions Time;

– Hits Per Second.

∙ Network and Connectivity Metrics: Gauges of outward-facing availability, but
are also essential in ensuring that services are accessible to other machines for any
systems that span more than one machine. Networks should be checked for their
overall functional correctness and their ability to deliver necessary performance.
Monitored metrics:

– Bandwidth Utilization;

– Server Latency.

6.4 Test Environment

This section describes technical details of the test environment. Hardware config-
urations are presented as well as configurations in third party software. The test environ-
ment has been configured as required by the tested Web application.

6.4.1 SUT Environment

Public servers are owned and operated by third parties; they deliver superior
economies of scale to customers, as the infrastructure costs are spread among a mix of
users, giving each individual client an attractive low-cost, “Pay-as-you-go” model. All
customers share the same infrastructure pool with limited configuration, security protec-
tions, and availability variances. These are managed and supported by the cloud provider.
One of the advantages of a public server is that they may be larger than an enterprises
cloud, thus providing the ability to scale seamlessly, on demand.

The Google service called Compute Engine delivers (acronym-next-pages’s) run-
ning in Google’s data centers and worldwide fiber network. Compute Engine’s tooling
and workflow support enable scaling from single instances to global, load-balanced cloud

6.4. Test Environment 67

Table 10 – SUT Hardware Configuration.

CPU product Intel(R) Xeon(R) CPU 2 Core @ 2.30GHz
width 64 bits

Memory size 3840MiB

PCI
product Intel 440FX - 82441FX PMC [Natoma]
width 32 bits
clock 33MHz

Disk product Google PersistentDisk
size 10GiB (10GB)

Connection
provider Google Cloud
download 1274.13 Mbit/s
upload 987.37 Mbit/s

OS version Ubuntu 16.04.6 LTS (GNU/Linux 4.15.0-1047-gcp x86_64)

computing. Compute Engine’s acronym-next-pages’s boot quickly, come with persistent
disk storage, and deliver consistent performance. The virtual servers are available in many
configurations, including predefined sizes or the option to create custom machine types
optimized for specific needs. Flexible pricing and automatic sustained-use discounts make
Compute Engine the leader in price/performance.

To perform this experiment a virtual machine was instantiated in the Compute
Engine module of Google Company. Hardware configurations can be observed on the Ta-
ble 10.

6.4.2 Testbed Environment

The hardware used to create the load test consists of a robust server providing
enough processing power to produce the requested loads. This hardware has been tem-
porarily allocated only for the execution of these load tests. For the execution of this
experiment benchmark it was necessary that the monitored servers receive certain work-
loads. As mentioned in Section 6.1, the LoadSun tool was responsible for the workload
used in the test. The test will run for 1 hour and 10 minutes, in this period it will start
with 400 VUs and maintain this load for 10 minutes, then it will add another 400 VUs
and so on, until 2400 VUs have been kept for 10 minutes then it will start ramping down
for another 10 minutes until it reaches 0 VUs and the test ends. Table 11 presents the
information related to load generation while Figure 11 shows a model of how the test was
designed.

The server configuration used for load generation can be viewed in Table 12, while
the test scenario is described in Table 9.

68 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

Table 11 – Ramp up configuration.

Total VUs Test Time

0 0 min. Test Start
Ramp Up

400 10 min. Ramp Up
800 20 min. Ramp Up
1200 30 min. Ramp Up
1600 40 min. Ramp Up
2000 50 min. Ramp Up
2400 60 min. Ramp Down
0 70 min. Test End

Figure 11 – Expected VUser Ramp Up.

Source: The author

Table 12 – Testbed Hardware Configuration.

CPU product Intel(R) Xeon(R) CPU 1 Core @ 2.30GHz
width 64 bits

Memory size 3840MiB

PCI
product Intel 440FX - 82441FX PMC [Natoma]
width 32 bits
clock 33MHz

Disk product Google Persistent Disk
size 10GiB (10GB)

Connection
provider Google Cloud
download 661.96 Mbit/s
upload 332.00 Mbit/s

OS version Ubuntu 16.04.6 LTS (GNU/Linux 4.15.0-1047-gcp x86_64)

6.4.3 Environment Toolkit

Environments Toolkit consist of a collection of tools and are intended primarily
to support the coding and testing phase of the software development cycle. They provide

6.4. Test Environment 69

little environment-defined control or management over the ways in which the tools are
applied. The toolkit approach starts with the operating system and adds coding tools such
as a compiler, editor, assembler, linker, and debugger, as well as tools to support large-
scale software development tasks such as version control and configuration management.

To carry out the monitoring tests it was necessary to perform certain software
installations. Below are all the third party software needed to perform the experiment
benchmark.

∙ Linux2 - The operating system: Ubuntu is a complete Linux operating system,
freely available with both community and professional support. Ubuntu community
is built on the ideas enshrined in the Ubuntu Manifesto: that software should be
available free of charge, that software tools should be usable by people in their local
language and despite any disabilities, and that people should have the freedom to
customize and alter their software in whatever way they see fit (NEIL, 2016).

– Version used in the experiment: Ubuntu 16.04.6 LTS (GNU/Linux 4.15.0-
1047-gcp x86_64).

∙ Apache3 - The web server: Apache is the most widely used web server software.
Developed and maintained by Apache Software Foundation, Apache is an open
source software available for free. It runs on 67% of all webservers in the world.
It is fast, reliable, and secure (LIU; IFTIKHAR; XIE, 2014). It can be highly
customized to meet the needs of many different environments by using extensions
and modules.

– Several Apache modules were used, here are listed the main mod-
ules: core_module, watchdog_module, http_module, log_config_module,
logio_module, fastcgi_module.

– Apache Version: Apache/2.4.18 (Ubuntu) mod_fastcgi/mod_fastcgi-SNAP-
0910052141

∙ PHP - The programming language: PHP4: Hypertext Preprocessor (or sim-
ply PHP) is a general-purpose programming language originally designed for Web
development. PHP code may be executed with a command line interface (CLI),
embedded into HTML code, or used in combination with various web template sys-
tems, Web content management systems, and web frameworks. PHP code is usually
processed by a PHP interpreter implemented as a module in a webserver or as a
Common Gateway Interface (CGI) executable (VASWANI, 2009). The Web server

2 Ubuntu is available at: <http://releases.ubuntu.com/16.04/>
3 Apache is available at: <https://www.apache.org/>
4 PHP is available at: <https://www.php.net/>

http://releases.ubuntu.com/16.04/
https://www.apache.org/
https://www.php.net/

70 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

outputs the results of the interpreted and executed PHP code, which may be any
type of data, such as generated HTML code or binary image data.

– Version used in the experiment: PHP 7.2.24-1+ubuntu16.04.1+deb.sury.org+1
(cli) (built: Oct 24 2019 18:28:51) (NTS).

6.5 Experimental Benchmarking Analysis

The results of this experiment benchmark are presented in this section. The mon-
itoring details of the tools used (PerfMoon and StackDriver) are compared to each other
and detailed in the following sections. Two load tests were performed, the former was
monitored with the experimental treatment - PerfMoon -and the later with the control
treatment - Google StackDriver tool.

6.5.1 CPU Consumption

CPU utilization refers to a computer’s usage of processing resources, or the amount
of work handled by a CPU. Actual CPU utilization varies depending on the amount and
type of managed computing tasks. Certain tasks require heavy CPU time, while others
require less because of non-CPU resource requirements.

During the monitoring of the first test, using the PerfMoon tool, it was noticed that
the CPU utilization had a linear increase reaching the peak utilization with approximately
50 minutes of testing. At this time of testing the load of virtual users accessing the system
was the maximum set by the script as seen in Table 11. Maximum CPU utilization reached
97.33% and the overall average utilization during the test was 52%.

Figure 12 – CPU Usage - Monitored by PerfMoon

In the second test monitoring using the StackDriver tool, the maximum CPU
utilization was 89% and the overall average CPU utilization during the test was 48%.
The CPU utilization data during the tests can be viewed in Figure 12 and Figure 13
respectively.

6.5. Experimental Benchmarking Analysis 71

Figure 13 – CPU Usage - Monitored by Google StackDriver

6.5.2 Memory Consumption

During the load tests performed under the system it was possible to notice that
the running processes do not need to perform a large memory allocation volume. When
constant executions of dynamic processes occur and these are not always cached, process-
ing occurs on the CPU Section 6.5.1. Memory is not the best way for execute dynamic
processes in Web applications.

During monitoring with the PerfMoon tool the maximum memory utilization was
23.2% and the overall average was 9.5%.

Figure 14 – Memory Usage - Monitored by PerfMoon

In the monitored test with the StackDriver tool, reported memory utilization was
double that reported by the PerfMoon tool. In this monitoring the maximum memory
utilization reached 9.8% while the total test average was 5.1%.

Figure 15 – Memory Usage - Monitored by Google StackDriver

72 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

6.5.3 Disk I/O Consumption

As non-volatile storage media hard disk drives and solid state drives are both
particularly safety-relevant and performance-critical components within the server en-
vironment. Since such an individual storage medium has in comparison with server
components, such as the processor or main memory, a very high access time, particu-
lar importance is attached to the sizing and configuration of disk subsystems (AHMAD,
2007). On account of the plethora of different application scenarios there is a very large
number of configuration options in particular for disk subsystems. It is therefore also not
possible to assess all the aspects of a disk subsystem with a single performance counter.

In the monitoring process it was possible to notice that both tools have a similar
performance. In monitoring using the PerfMoon tool the maximum disk usage rate was
35.5% and the overall average was 32.8%. During this testing and monitoring the disk
write speed reached about 1380KiB/s. This metric is directly linked to the speed with
which the PerfMoon tool audits your log files. Figure 16 reports this data graphically.

Figure 16 – Disk I/O Consumption - Monitored by PerfMoon

With the StackDriver tool, the maximum disk usage rate was 34.6% with an
overall average of 31.6%. The write speed peaked at 1195KiB/s as shown in the following
Figure 17.

6.5.4 Network Throughput Comparison

Network throughput is usually represented as an average and measured per second,
or in some cases as data packets per second. Throughput is an important indicator of the
performance and quality of a network connection. A high ratio of unsuccessful message

6.5. Experimental Benchmarking Analysis 73

Figure 17 – Disk I/O Consumption - Monitored by StackDriver

delivery will ultimately lead to lower throughput and degraded performance. In the
monitoring descriptions we will use the acronyms TX and RX which are abbreviations
for Transmit and Receive, respectively.

In the tests performed, the received rate captured by the PerfMoon tool peaked
at 274.9KiB/s and an overall average of 160.2KiB/s during the test, while the transmit
rate peaked at 268KiB/s and the overall average of 148KiB/s. With the StackDriver
tool the maximum received rate monitored by the tool was 238.8KiB/s and the overall
average was 140KiB/s. The transmit rate peaked at 223.6KiB/s and an overall average of
127KiB/s. Figure 18 and Figure 19 report these results. Network bandwidth consumption
was also monitored. During the 1 hour and 10 minute tests, the PerfMoon tool captured
801.1 Megabytes of data sent and received, while the StackDriver tool reached 760.5
Megabytes.

Figure 18 – Network Throughput Consumption - Monitored by PerfMoon

74 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

Figure 19 – Network Throughput Consumption - Monitored by StackDriver

6.5.5 Response Time

The response time measures the server response of every single transaction. It
starts when a VU sends a request and ends at the time that the application states that
the request has completed.

During the performance of the load tests, the response times for each test were
monitored. With PerfMoon monitoring tool, the average response time from the server
running the Web application was 164.2ms. PerfMoon’s detected that the highest response
time was 2084ms at 51 minutes of test execution. With the StackDriver tool, the average
response time was 160.6ms and the highest detected value was 1840ms. This response
peak delay was also detected during the period when virtual user generation peaked.
Figure 20 and Figure 21 graph the monitoring results with PerfMoon and StackDriver
respectively.

Figure 20 – Response Time - Monitored by PerfMoon

6.5.6 Deviation Results

The deviation formula given in section 6.2 was also applied to the various results
generated by the monitoring tools. Table 13 shows the correlation of the results monitored

6.6. Threats to Validity 75

Figure 21 – Response Time - Monitored by StackDriver

by the treatments PerfMoon and StackDriver tools. In the table is possible to see that
the deviation was small and that the PerfMoon tool developed in this work has a degree
of precision similar to the commercial tool StackDriver from the company Google.

For the calculation of deviations, only the general averages of log results were used.
If the monitoring result is closer to numeral 1, smaller is the deviation and mathematically
prove that the monitoring results are similar. The most oscillating metric after applying
the deviation calculation was ram memory. The PerfMoon tool consumed an average of
9.5% during testing, while the compared tool used 5.1%. The least oscillating metric
with the best deviation results was the response time. PerfMoon’s detected an average of
164ms while StackDriver tool 160.6ms. The result of the deviation calculation was 0.951.

Table 13 – Cosine Application.

Correlation CPU Memory Disk I Disk O Net. Rx Net. Tx Response
CPU 0.922
Memory 0.772
Disk I 0.934
Disk O 0.901
Net. Rx 0.889
Net. Tx 0.915
Response 0.951

6.6 Threats to Validity

In this section, different validity threats related to the case study and experiment
are discussed. The author used Creswell e Creswell (2017) to explain different validity
threats in the research.

76 Chapter 6. EXPERIMENTAL BENCHMARKING: PERFMOON’S

6.6.1 Internal Validity

Internal validity is how well an experiment reduces its own systematic error within
the circumstances of the experiment being performed (STILL, 2011).

Internal validity focus on how sure we can be that the treatment actually caused
the outcome. There can be other reasons that have caused the result on which we do not
have control over or have not measure (FELDT; MAGAZINIUS, 2010).

The internal validity threats in this research are:

∙ The author never had used the selected monitoring tool (Google StackDriver) once
before. To overcome this threat, the author learned how to conduct the performance
monitoring by taking help from the online tutorials. After the author learned how
to properly use the tool, the experiment was conducted;

∙ There was a threat that the monitored metrics in the experiment can really explain
the outcome the author wants to research. To overcome this threat, some pilot tests
were conducted before the execution of the real experiment. The researcher used
both tools and tested the scenarios to validate the results of both.

6.6.2 External Validity

External validity is related with whether the results can be generalized outside the
scope of the study (FELDT; MAGAZINIUS, 2010).

∙ There was the threat of network infrastructure with unstable internet speed. This
experiment was done in a rented server of Google Cloud Platform where the internet
speed was stable and high enough that it would not limit the testing capabilities of
any of the tools.

6.6.3 Construct Validity

Construct validity motivation is on the relation between the theory behind the
experiment and the interpretations. The interpreted result might not correspond to the
effect what is being measured (FELDT; MAGAZINIUS, 2010).

∙ There was a threat that the selected tool can answer the selected parameters for
the experiment. To mitigate this threat, different literature, through the systematic
mapping previously discussed in this term paper, and the official websites of the
selected tools were studied and confirmed that the tool can satisfy the selected
parameters.

6.7. Chapter Summary 77

6.6.4 Conclusion Validity

Conclusion validity concentrate on how sure the treatment used in an experiment
really is related to the actual result obtained (FELDT; MAGAZINIUS, 2010).

∙ Conclusion validity is a threat that can lead the research to an incorrect conclusion.
To mitigate this threat, the author acquired a background in performance testing
research and was assisted by his supervisor and co-supervisor, both researchers in
the field of software engineering and performance testing;

∙ The author used a web application for testing. There was a threat that if the web
application is down from hosting side. To overcome this threat, the experiment was
conducted in a proprietary solution, which was hosted in a server the researcher had
total control of.

6.7 Chapter Summary

This chapter describes how the experimental benchmarking planning and execution
decisions were made.

79

7 CONCLUSIONS AND FUTURE WORK
In this chapter the conclusions and future works regarding this work are presented.

7.1 Conclusions

Through this study, it was possible to observe the importance of the process of
software testing. It is process is part of the software development cycle and has as main
objective to reveal faults or bugs so that they are corrected until the final product reaches
the expected quality.

Performance tests consist of evaluating the responsiveness, robustness, availabil-
ity, reliability and scalability of an application, according to the number of concurrent
connections, evaluating its performance at high workload and considering its behavior
under normal circumstances. In particular, the purpose of such experiments may be to
ensure that the software does not present problems or unavailability in conditions of in-
sufficient computing resources when working in high competition or suffering some attack
of negation of service.

Professional software testers (also called test analysts, test engineers, etc.) are
accustomed to perform tests of different natures and purposes, involving not only the
functional tests of the application, but several other activities such as: evaluation require-
ments specification, technical project evaluation, checks on other documents, performance
and capacity tests, and interface evaluation.

With the results of this study, it is noticed that one of the great problems found in
the area of performance and monitoring test is the fact that the performance specialists
need not only to design the tests, but also to be aware of the technologies that will be
used to execute them. It can become a problem if the tester does not have this knowledge.
It is a common problem that can occur and affect the project in several ways, with the
most significant impact on the final cost of the project. Tests that run erroneously or
resources allocated and distributed incorrectly cause losses and delays.

Software monitoring has been explored for a long time in various fields, such as
performance evaluation and enhancement, fault tolerance, and standalone computing.
Based on a systematic literature mapping, which analyzed and summarized research re-
lated to traditional software monitoring, it was possible to propose a taxonomy (can be
seen in Figure 4.3 that will serve as a catalog for classification of monitoring tools, as-
sisting professionals and students in the process of identifying the characteristics of these
tools. This study also proposes a tool called PerfMoon (see in Chapter 5). The tool is
proposed as a module of a group of tools that, when integrated, can fill and assist current
gaps found in the literature such as modeling test scripts from models and performance
and monitoring tests.

The results of experimental benchmarking indicate that the tool proposed and
developed in this paper, PerfMoon, has a level of accuracy similar to the commercial

80 Chapter 7. CONCLUSIONS AND FUTURE WORK

StackDriver tool owned by one of the world’s largest technology companies, Google Com-
pany.

For future work PerfMoon tool needs to be integrated with the remaining tool
modules of the COSMOS performance testing solution. The tool also lacks more func-
tionality so it can span more web servers and not just Apache Web Server.

The description of all the tasks performed in this term paper is presented in sec-
tion 7.4 in the form of a schedule. The main lessons learned are described in the following
section.

7.2 Lessons Learned

During the preparation of this term paper, the analysis of results revealed common
patterns that have resulted in some lessons learned. For each lesson, this section presents
support from the case studies and the implications of that lesson for software engineering.

7.2.1 Efficient Systematic Mapping Protocol

Protocols set out the plans for the conduct of systematic mappings. These proto-
cols describes the methods used in the mapping, synthesizes and narratively presents the
studies collected and the data they contain. The creation of these protocols is a complex
activity, because it requires a lot of time for reviews and improvements, and requires that
researchers have previous experience in systematic studies.

7.2.2 Testing Tools Classification

In the literature software testing and monitoring tools are classified in different
ways based on different criteria, such as complexity, development technology or intended
use. This process is complex and time-consuming, as this information is sometimes not
explicit in primary studies.

7.2.3 Software Testing

Software testing are really required to point out the errors and failures that were
been committed during the development phases. These tests guarantee the high quality
of the software product making it reliable.

7.2.4 Performance Testing

Performance testing are essential, but they must follow a correct execution struc-
ture. Testing with failed results can lead to wrong decisions in the project and this can
raise the cost of the project. There are different practices for performing performance
tests, these should be chosen according to the specification of the test to be performed.

7.3. Publications 81

7.2.5 Performance Monitoring

Performance monitoring provide data that can quickly isolate and resolve problems
that can adversely affect software performance. These tests monitor several metrics of a
given software over a period of time and generate results for analysis.

7.3 Publications

It is worth mentioning successful publications, attempted publications, and plan-
ning for future publications derived from this term paper. The events described below
were sorted in chronological order.

∙ ESEM 2019 - The ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) is the premier conference for presenting
research results related to empirical software engineering. (Attempted publication.)

∙ SBES 2019 - The XXXIII Brazilian Symposium on Software Engineering (SBES),
annually promoted by the Brazilian Computer Society (SBC), is the premier Soft-
ware Engineering event in Latin America. SBES is held in conjunction with CBSoft
- Brazilian Conference on Software: Theory and Practice. (Attempted publication.)

∙ IPCCC 2019 - The International Performance, Computing, and Communications
Conference is a premier IEEE conference presenting research in the performance of
computer and communication systems. For over three-and-a-half decades, IPCCC
has been a research forum for academic, industrial, and government researchers.
(Paper was accepted, but unfortunately it was not possible to gather resources to
travel to London.)

∙ ERES 2019 - The Regional School of Software Engineering (ERES) is an event
promoted annually by the Brazilian Computer Society (SBC). The third edition
of the event, ERES 2019, has taken place in Rio do Sul (SC), the Alto Vale do
Itajaí region, from October 7 to 9, 2019, and was jointly organized by the Federal
Institute of Santa Catarina (IFC) and Santa Catarina State University (UDESC).
(Paper accepted and presented.)

∙ SIEPE 2019 - The 11th International Teaching, Research and Extension Salon
(SIEPE) was held in Santana do Livramento (Brazil) and Rivera (Uruguay) on
October 22, 23 and 24, 2019. (Paper accepted and presented in oral and poster
modalities.)

∙ SAC 2020 - The 35th ACM/SIGAPP Symposium On Applied Computing (SAC).
In the Software Verification and Testing (SVT) Track. (Currently under review.)

82 Chapter 7. CONCLUSIONS AND FUTURE WORK

∙ STVR - Software Testing, Verification and Reliability (STVR) is an international
journal, publishing 8 issues per year. It publishes papers on theoretical and practical
issues of software testing, verification and reliability. (Planned for publication.)

7.4 Schedule

In this section, the task schedule is presented and the performed tasks for com-
pleting this study are also defined. The Table 14 lists these tasks and the date they were
executed.

Term Paper 1: The development of this present study was divided in 4 stages
that are detailed below:

∙ Planning a SMS: In this stage, the planning of the SMS was developed. During
these 4 months the protocol was developed and refined. This stage was responsible
for the definition of research questions, identification of research sources (databases),
inclusion and exclusion criteria, data extraction metrics and rules for quality eval-
uation.

∙ Executing the SMS: Started in December 2018, this step was responsible for
conducting the SMS. During this period the process of searching for the primary
studies, the application of inclusion and exclusion rules, quality evaluation and the
extraction of data according to the metrics defined in the protocol were carried out.

∙ Analysis Designing: The analysis and design of the proposed tool occurred
during the period from May to June.

∙ Writing Term Paper: The writing of this term paper occurred in the period from
April to June.

Term Paper 2: The study to be developed was divided into 4 stages, they are:

∙ Tool Development: PerfMoon’s prototype development will commence in late
June.

∙ Planning Evaluation: Determine a general approach and establish an empirical
evaluation framework.

∙ Conducting Evaluation: Evaluate the PerfMoon tool according to the indicators
proposed in the previous step.

∙ Writing Term Paper: Writing and presentation of the final term paper.

Although this report ends here, PerfMoon’s future evolution is already planned to
be executed whitin LESSE’s research group in the years to come.

7.4.
Schedule

83

Table 14 – Schedule.

2018/2 2019/1 2019/2
Task Set Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Planning the Systematic Mapping - - - - - - - - - - -
Executing the Systematic Mapping - - - - - - - - - -
Writing Term Paper Project - - - - - - - - - - - -
Analysis & Design - - - - - - - - - - - - -
Presenting Term Paper Project - - - - - - - - - - - - - -
PerfMoon’s Development - - - - - - - - - - - -
Plan Tool Evaluation - - - - - - - - - - - -
Writing Term Paper - - - - - - - - - - - - -
Tool Evaluation - - - - - - - - - - - - - -
Presenting Term Paper - - - - - - - - - - - - - -
Refining Term Paper for Homologation - - - - - - - - - - - - - -

85

Bibliography
ABBORS, F. et al. Model-based performance testing in the cloud using the MBPeT
tool. In: . [S.l.: s.n.], 2013. p. 423–424. Cited in page 43.

AGNIHOTRI, J.; PHALNIKAR, R. Development of Performance Testing Suite Using
Apache JMeter. In: BHALLA, S. et al. (Ed.). Proc. Intelligent Computing and
Information and Communication. Singapore: Springer Singapore, 2018. p. 317–326.
ISBN 978-981-10-7245-1. Cited in page 43.

AHMAD, I. Easy and efficient disk i/o workload characterization in vmware esx
server. In: Proceedings of the 2007 IEEE 10th International Symposium
on Workload Characterization. Washington, DC, USA: IEEE Computer
Society, 2007. (IISWC ’07), p. 149–158. ISBN 978-1-4244-1561-8. Disponível em:
<https://doi.org/10.1109/IISWC.2007.4362191>. Cited in page 72.

Amirante, A. et al. Jattack: a WebRTC load testing tool. In: Proc. Principles,
Systems and Applications of IP Telecommunications. [S.l.: s.n.], 2016. p. 1–6.
Cited in page 43.

AMMANN, P.; OFFUTT, J. Introduction to software testing. [S.l.]: Cambridge
University Press, 2016. Cited in page 23.

APTE, V. et al. AutoPerf: Automated Load Testing and Resource Usage Profiling
of Multi-Tier Internet Applications. In: Proc. ACM/SPEC International
Conference on Performance Engineering. New York, NY, USA: [s.n.],
2017. (ICPE ’17), p. 115–126. ISBN 978-1-4503-4404-3. Disponível em: <http:
//doi.acm.org/10.1145/3030207.3030222>. Cited in page 43.

BARN, B.; BARAT, S.; CLARK, T. Conducting systematic literature reviews and
systematic mapping studies. In: Proceedings of the 10th Innovations in Software
Engineering Conference. New York, NY, USA: ACM, 2017. (ISEC ’17), p. 212–213.
ISBN 978-1-4503-4856-0. Disponível em: <http://doi.acm.org/10.1145/3021460.
3021489>. Cited in page 37.

BEIZER, B. Software System Testing and Quality Assurance. New York, NY,
USA: Van Nostrand Reinhold Co., 1984. ISBN 0-442-21306-9. Cited in page 63.

BENEDIKT, M.; FREIRE, J.; GODEFROID, P. Veriweb: Automatically testing
dynamic web sites. In: CITESEER. In Proceedings of 11th International World
Wide Web Conference (WW W’2002. [S.l.], 2002. Cited in page 24.

BERNARDINO, M.; ZORZO, A. F.; RODRIGUES, E. M. Canopus: A Domain-Specific
Language for Modeling Performance Testing. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST’16). [S.l.:
s.n.], 2016. p. 157–167. Cited in page 57.

BERTOLINO, A. Software testing research: Achievements, challenges, dreams. In: IEEE
COMPUTER SOCIETY. 2007 Future of Software Engineering. [S.l.], 2007. Cited
in page 23.

BRUNE, P. Simulating User Interactions: A Model and Tool for Semi-realistic Load
Testing of Social App Backend Web Services. In: Proc. WEBIST. [S.l.: s.n.], 2017. p.
235–242. Cited in page 43.

https://doi.org/10.1109/IISWC.2007.4362191
http://doi.acm.org/10.1145/3030207.3030222
http://doi.acm.org/10.1145/3030207.3030222
http://doi.acm.org/10.1145/3021460.3021489
http://doi.acm.org/10.1145/3021460.3021489

86 Bibliography

CHAWLA, D.; SODHI, N. Research methodology: Concepts and cases. [S.l.]:
Vikas Publishing House, 2011. Cited in page 27.

CHEUNG, C. M. K.; LEE, M. K. O. The asymmetric effect of website attribute
performance on satisfaction: An empirical study. Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, p. 175c–175c, 2005. Cited
in page 24.

Chunye, D.; Wei, S.; Jianhua, W. Based on the analysis of mobile terminal
application software performance test. In: Proc. IEEE/ACIS 18th International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing. [S.l.: s.n.], 2017. p. 391–395. Cited in page 43.

CLARKE, P.; MALLOY, B. A. A Unified Approach to Implementation-Based Testing
of Classes. In: Proc. 1st Annual International Conference on Computer and
Information Science. [S.l.: s.n.], 2001. Cited in page 48.

COOK, T.; CAMPBELL, D. Quasi-Experimentation: Design and Analysis Issues
for Field Settings. [S.l.]: Houghton Mifflin, 1979. Cited in page 54.

COSTA, V. Proposal of a Tool to Generate Workloads on Web Applications - LoadSun.
forthcoming, 2019. Cited in page 64.

CRESWELL, J. W.; CRESWELL, J. D. Research design: Qualitative, quantitative,
and mixed methods approaches. [S.l.]: Sage publications, 2017. Cited in page 75.

CUCOS, L.; DONCKER, E. de. “gRpas”, a Tool for Performance Testing and
Analysis. In: Proc. Springer-Verlag 5th International Conference on
Computational Science - Volume Part I. Berlin, Heidelberg: [s.n.], 2005.
(ICCS’05), p. 322–329. ISBN 3-540-26032-3, 978-3-540-26032-5. Disponível em:
<https://doi.org/10.1007/11428831_40>. Cited in page 43.

Dalal, S. R. et al. Model-based testing in practice. In: Proc. IEEE International
Conference on Software Engineering. [S.l.: s.n.], 1999. p. 285–294. ISSN 0270-5257.
Cited 2 times in pages 44 and 50.

DEGWEKAR, S.; SU, S. Y. W.; LAM, H. Constraint specification and processing
in web services publication and discovery. In: Proceedings. IEEE International
Conference on Web Services, 2004. [S.l.: s.n.], 2004. p. 210–217. Cited in page 23.

DEVASENA, M. S. G.; KUMAR, V. K.; GRACE, R. K. LTTC: A Load Testing Tool for
Cloud. In: MODI, N.; VERMA, P.; TRIVEDI, B. (Ed.). Proc. Springer Singapore
International Conference on Communication and Networks. [S.l.: s.n.], 2017. p.
689–698. ISBN 978-981-10-2750-5. Cited in page 43.

DILLENSEGER, B. CLIF, a framework based on Fractal for flexible, distributed load
testing. annals of telecommunications - annales des télécommunications, v. 64,
n. 1, p. 101–120, 2009. ISSN 1958-9395. Disponível em: <https://doi.org/10.1007/
s12243-008-0067-9>. Cited in page 43.

EHLERS, J. Self-adaptive performance monitoring for component-based
software systems. Tese (Doutorado) — Christian-Albrechts Universität Kiel, 2012.
Cited in page 32.

https://doi.org/10.1007/11428831_40
https://doi.org/10.1007/s12243-008-0067-9
https://doi.org/10.1007/s12243-008-0067-9

Bibliography 87

EICHELBERGER, H. et al. Adaptive application performance management for big data
stream processing. Softwaretechnik Trends, v. 35, n. 3, p. 35–37, 2015. Cited 2 times
in pages 34 and 35.

Engström, E.; Petersen, K. Mapping software testing practice with software testing
research — SERP-test taxonomy. In: Proc. IEEE 8th International Conference
on Software Testing, Verification and Validation Workshops. [S.l.: s.n.], 2015.
p. 1–4. Cited 3 times in pages 37, 54, and 55.

FAN, H.; MU, Y. A performance testing and optimization tool for system developed by
Python language. Institution of Engineering and Technology, p. 24–27(3), 2013. Cited
in page 43.

FELDERER, M.; SCHIEFERDECKER, I. A taxonomy of risk-based testing.
Int. J. Softw. Tools Technol. Transf., Springer-Verlag, Berlin, Heidelberg,
v. 16, n. 5, p. 559–568, out. 2014. ISSN 1433-2779. Disponível em: <http:
//dx.doi.org/10.1007/s10009-014-0332-3>. Cited in page 31.

FELDT, R.; MAGAZINIUS, A. Validity threats in empirical software engineering
research-an initial survey. In: Seke. [S.l.: s.n.], 2010. p. 374–379. Cited 2 times in pages
76 and 77.

FOSTER, I. Designing and building parallel programs: concepts and tools for
parallel software engineering. [S.l.]: Addison-Wesley Longman Publishing Co., Inc.,
1995. Cited in page 32.

HABUL, A.; KURTOVIC, E. Load testing an AJAX application. In: Proc. IEEE 30th
International Conference on Information Technology Interfaces. [S.l.: s.n.],
2008. p. 729–732. Cited in page 43.

Hamed, O.; Kafri, N. Performance testing for web based application architectures (.NET
vs. Java EE). In: Proc. First International Conference on Networked Digital
Technologies. [S.l.: s.n.], 2009. p. 218–224. ISSN 2155-8728. Cited in page 43.

Isha, B. V. A. A Brief Survey on Web Application Performance Testing Tools Literature
Review. In: INTERNATIONAL JOURNAL OF LATEST TRENDS IN ENGINEERING
AND TECHNOLOGY. [S.l.], 2015. Cited in page 55.

JAMIL, M. A. et al. Software testing techniques: A literature review. In: . [S.l.: s.n.],
2016. p. 177–182. Cited in page 31.

JANES, A.; LENARDUZZI, V.; STAN, A. C. A continuous software quality monitoring
approach for small and medium enterprises. In: Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion. New
York, NY, USA: ACM, 2017. (ICPE ’17 Companion), p. 97–100. ISBN 978-1-4503-4899-7.
Disponível em: <http://doi.acm.org/10.1145/3053600.3053618>. Cited in page 34.

Jiang, Z. M.; Hassan, A. E. A Survey on Load Testing of Large-Scale Software Systems.
IEEE Transactions on Software Engineering, v. 41, n. 11, p. 1091–1118, 2015.
ISSN 0098-5589. Cited 2 times in pages 54 and 55.

JOVIC, M. et al. Automating Performance Testing of Interactive Java Applications. In:
Proc. ACM 5th Workshop on Automation of Software Test. New York, NY,
USA: [s.n.], 2010. (AST ’10), p. 8–15. ISBN 978-1-60558-970-1. Cited in page 43.

http://dx.doi.org/10.1007/s10009-014-0332-3
http://dx.doi.org/10.1007/s10009-014-0332-3
http://doi.acm.org/10.1145/3053600.3053618

88 Bibliography

Kalita, M.; Bezboruah, T. Investigation on performance testing and evaluation of
PReWebD: a .NET technique for implementing web application. IET Software, v. 5,
n. 4, p. 357–365, 2011. ISSN 1751-8806. Cited in page 43.

Kamra, M.; Manna, R. Performance of Cloud-Based Scalability and Load with an
Automation Testing Tool in Virtual World. In: Proc. IEEE 8th World Congress on
Services. [S.l.: s.n.], 2012. p. 57–64. ISSN 2378-3818. Cited in page 43.

KHAN, M. E. Different forms of software testing techniques for finding errors.
International Journal of Computer Science Issues (IJCSI), Citeseer, v. 7, n. 3,
p. 24, 2010. Cited in page 32.

Khan, R.; Amjad, M. Web application’s performance testing using HP LoadRunner and
CA Wily introscope tools. In: Proc. International Conference on Computing,
Communication and Automation. [S.l.: s.n.], 2016. p. 802–806. Cited in page 43.

KIM, G.-H.; KIM, Y.-G.; CHUNG, K.-Y. Towards virtualized and automated
software performance test architecture. Multimedia Tools and Applications,
v. 74, n. 20, p. 8745–8759, 2015. ISSN 1573-7721. Disponível em: <https:
//doi.org/10.1007/s11042-013-1536-3>. Cited in page 43.

Kim, H.; Choi, B.; Wong, W. E. Performance Testing of Mobile Applications at the Unit
Test Level. In: Proc. IEEE 3rd International Conference on Secure Software
Integration and Reliability Improvement. [S.l.: s.n.], 2009. p. 171–180. Cited in
page 43.

Kiran, S.; Mohapatra, A.; Swamy, R. Experiences in performance testing of
web applications with Unified Authentication platform using Jmeter. In: Proc.
International Symposium on Technology Management and Emerging
Technologies. [S.l.: s.n.], 2015. p. 74–78. Cited in page 43.

KITCHENHAM, B. A. Guidelines for performing Systematic Literature Reviews
in software engineering. EBSE Technical Report EBSE-2007-01. [S.l.: s.n.],
2007. Cited in page 38.

KOREL, B. Automated software test data generation. IEEE Trans. Softw. Eng.,
IEEE Press, Piscataway, NJ, USA, v. 16, n. 8, p. 870–879, ago. 1990. ISSN 0098-5589.
Disponível em: <http://dx.doi.org/10.1109/32.57624>. Cited in page 31.

KOZIOLEK, H. Goal, question, metric. In: Dependability metrics. [S.l.]: Springer,
2008. p. 39–42. Cited in page 37.

Krishnamurthy, D.; Rolia, J. A.; Majumdar, S. A Synthetic Workload Generation
Technique for Stress Testing Session-Based Systems. IEEE Transactions on Software
Engineering, v. 32, n. 11, p. 868–882, 2006. ISSN 0098-5589. Cited in page 43.

KRIŽANIĆ, J. et al. Load testing and performance monitoring tools in use with AJAX
based web applications. In: Proc. IEEE 33rd International Convention MIPRO.
[S.l.: s.n.], 2010. p. 428–434. Cited in page 43.

Križanić, J. et al. Load testing and performance monitoring tools in use with AJAX
based web applications. In: 33rd International Convention MIPRO. [S.l.: s.n.],
2010. p. 428–434. Cited in page 45.

https://doi.org/10.1007/s11042-013-1536-3
https://doi.org/10.1007/s11042-013-1536-3
http://dx.doi.org/10.1109/32.57624

Bibliography 89

KUMAR, R. Research Methodology: An Introduction. [S.l.]: New Dehli: APH
Publishing Corporation, 2008. Cited in page 27.

LAMANNA, D. D.; SKENE, J.; EMMERICH, W. Slang: A language for defining
service level agreements. In: IEEE COMPUTER SOC. NINTH IEEE WORKSHOP
ON FUTURE TRENDS OF DISTRIBUTED COMPUTING SYSTEMS,
PROCEEDINGS. [S.l.], 2003. p. 100–106. Cited in page 34.

LANGDON, C. S. The state of web services. Computer, v. 36, n. 7, p. 93–94, July
2003. ISSN 0018-9162. Cited in page 23.

LEE, J.; BEN-NATAN, R. Integrating Service Level Agreements: Optimizing
Your OSS for SLA Delivery. New York, NY, USA: John Wiley & Sons, Inc., 2002.
ISBN 0471428663. Cited in page 53.

Li, P.; Shi, D.; Li, J. Performance test and bottle analysis based on scientific research
management platform. In: Proc. 10th International Computer Conference on
Wavelet Active Media Technology and Information Processing. [S.l.: s.n.], 2013.
p. 218–221. Cited in page 43.

LIU, X.; IFTIKHAR, N.; XIE, X. Survey of real-time processing systems for big data.
In: Proceedings of the 18th International Database Engineering &
Applications Symposium. New York, NY, USA: ACM, 2014. (IDEAS ’14), p.
356–361. ISBN 978-1-4503-2627-8. Disponível em: <http://doi.acm.org/10.1145/
2628194.2628251>. Cited in page 69.

MATHUR, A. P. Performance, effectiveness, and reliability issues in software testing.
In: IEEE. [1991] Proceedings The Fifteenth Annual International Computer
Software & Applications Conference. [S.l.], 1991. p. 604–605. Cited in page 32.

Maâlej, A. J.; Hamza, M.; Krichen, M. WSCLT: A Tool for WS-BPEL Compositions
Load Testing. In: Proc. Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises. [S.l.: s.n.], 2013. p. 272–277. ISSN 1524-4547. Cited
in page 43.

MEMON, A. M.; SOFFA, M. L. Regression testing of GUIs. ACM SIGSOFT
Software Engineering Notes, ACM, v. 28, n. 5, p. 118–127, 2003. Cited 2 times in
pages 44 and 48.

MICHAEL, N. et al. CloudPerf: A Performance Test Framework for Distributed and
Dynamic Multi-Tenant Environments. In: Proc. ACM/SPEC 8th International
Conference on Performance Engineering. New York, NY, USA: ACM,
2017. (ICPE ’17), p. 189–200. ISBN 978-1-4503-4404-3. Disponível em: <http:
//doi.acm.org/10.1145/3030207.3044530>. Cited in page 43.

MYERS, G. J.; SANDLER, C. The Art of Software Testing. USA: John Wiley &
Sons, 2004. ISBN 0471469122. Cited in page 23.

NEIL, N. J. Learning Ubuntu 14.04 LTS: A Beginners Guide to Linux. 2nd.
ed. USA: CreateSpace Independent Publishing Platform, 2016. ISBN 1539852598,
9781539852599. Cited in page 69.

http://doi.acm.org/10.1145/2628194.2628251
http://doi.acm.org/10.1145/2628194.2628251
http://doi.acm.org/10.1145/3030207.3044530
http://doi.acm.org/10.1145/3030207.3044530

90 Bibliography

Netto, M. A. S. et al. Evaluating Load Generation in Virtualized Environments for
Software Performance Testing. In: Proc. IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum. [S.l.: s.n.],
2011. p. 993–1000. ISSN 1530-2075. Cited in page 43.

PATTON, R. Software Testing (2Nd Edition). Indianapolis, IN, USA: Sams, 2005.
ISBN 0672327988. Cited in page 31.

PERRY, W. E. Effective methods for software testing: Includes complete
guidelines, Checklists, and Templates. [S.l.]: John Wiley & Sons, 2007. Cited in
page 23.

PODELKO, A. Reinventing performance testing. In: CMG. [S.l.], 2016. Cited in page
43.

PU, Y.; XU, M. Load testing for web applications. In: Proc. IEEE First
International Conference on Information Science and Engineering. [S.l.: s.n.],
2009. p. 2954–2957. Cited in page 43.

Putri, M. A.; Hadi, H. N.; Ramdani, F. Performance testing analysis on web application:
Study case student admission web system. In: Proc. International Conference on
Sustainable Information Engineering and Technology. [S.l.: s.n.], 2017. p. 1–5.
Cited in page 43.

RODRIGUES, E. M. et al. PLeTsPerf - A Model-Based Performance Testing Tool. In:
Proc. IEEE 8th International Conference on Software Testing, Verification
and Validation. [S.l.: s.n.], 2015. p. 1–8. ISSN 2159-4848. Cited in page 43.

RODRIGUES, E. M. et al. Evaluating capture and replay and model-based performance
testing tools: an empirical comparison. In: Proc. ACM 8th International
Symposium on Empirical Software Engineering and Measurement. [S.l.: s.n.],
2014. p. 9. Cited in page 43.

SAHAI, A. et al. Automated sla monitoring for web services. In: SPRINGER.
International Workshop on Distributed Systems: Operations and
Management. [S.l.], 2002. p. 28–41. Cited in page 34.

SCHROEDER, B. A. On-line monitoring: A tutorial. Computer, IEEE, v. 28, n. 6, p.
72–78, 1995. Cited in page 33.

SHAMS, M.; KRISHNAMURTHY, D.; FAR, B. A model-based approach for testing the
performance of web applications. In: Proc. ACM 3rd international workshop on
Software quality assurance. [S.l.: s.n.], 2006. p. 54–61. Cited in page 24.

Sharmila, E. R. S. Analysis of Performance Testing on Web Applications. In:
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN COMPUTER
AND COMMUNICATION ENGINEERING. International Journal of Advanced
Research in Computer and Communication Engineering. [S.l.], 2014. Cited in
page 55.

SINGH, M.; SINGH, R. Load Testing of web frameworks. In: . [S.l.: s.n.], 2012. p.
592–596. ISBN 978-1-4673-2922-4. Cited in page 43.

Bibliography 91

SMITH, C. U. Performance Engineering of Software Systems. 1st. ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990. ISBN 0201537699.
Cited 2 times in pages 31 and 33.

SMITH, C. U.; WILLIAMS, L. G. Software performance engineering. In: UML for
Real. [S.l.]: Springer, 2003. p. 343–365. Cited in page 31.

STILL, J. D. Experimental design: Does external validity trump internal validity?
interactions, ACM, New York, NY, USA, v. 18, n. 3, p. 66–68, maio 2011. ISSN
1072-5520. Disponível em: <http://doi.acm.org/10.1145/1962438.1962453>. Cited in
page 76.

STUPIEC, E.; WALKOWIAK, T. Automatic Load Testing of Web Application in SaaS
Model. In: ZAMOJSKI, W. et al. (Ed.). Proc. Springer International New Results
in Dependability and Computer Systems. Heidelberg: [s.n.], 2013. p. 421–430.
ISBN 978-3-319-00945-2. Cited in page 43.

SUBRAYA, B.; SUBRAHMANYA, S. Object driven performance testing of web
applications. In: IEEE. Proceedings First Asia-Pacific Conference on Quality
Software. [S.l.], 2000. p. 17–26. Cited in page 35.

VASWANI, V. PHP: A BEGINNER’S GUIDE. 1. ed. New York, NY, USA:
McGraw-Hill, Inc., 2009. ISBN 0071549013, 9780071549011. Cited in page 69.

WAZLAWICK, R. Metodologia de pesquisa para ciência da computação. [S.l.]:
Elsevier Brasil, 2017. v. 2. Cited in page 27.

WEYUKER, E. J.; VOKOLOS, F. I. Experience with performance testing of software
systems: issues, an approach, and case study. IEEE transactions on software
engineering, IEEE, v. 26, n. 12, p. 1147–1156, 2000. Cited in page 23.

WHOLEY, J. S.; HATRY, H. P. The case for performance monitoring. Public
administration review, American Society for Public Administration, v. 52, n. 6,
p. 604, 1992. Cited in page 34.

WOODSIDE, M.; FRANKS, G.; PETRIU, D. C. The future of software performance
engineering. In: IEEE COMPUTER SOCIETY. 2007 Future of Software
Engineering. [S.l.], 2007. p. 171–187. Cited in page 31.

WU, Q.; WANG, Y. Performance testing and optimization of J2EE-based web
applications. In: Proc. IEEE Second International Workshop on Education
Technology and Computer Science. [S.l.: s.n.], 2010. v. 2, p. 681–683. Cited in
page 43.

YAN, M. et al. Delivering Web service load testing as a service with a global cloud.
v. 27, n. 3, 2014. Cited in page 43.

Yan, M. et al. Building a TaaS Platform for Web Service Load Testing. In: Proc. IEEE
International Conference on Cluster Computing. [S.l.: s.n.], 2012. p. 576–579.
ISSN 1552-5244. Cited in page 43.

Yan, M. et al. WS-TaaS: A Testing as a Service Platform for Web Service Load Testing.
In: Proc. IEEE 18th International Conference on Parallel and Distributed
Systems. [S.l.: s.n.], 2012. p. 456–463. ISSN 1521-9097. Cited in page 43.

http://doi.acm.org/10.1145/1962438.1962453

92 Bibliography

YAN, X. et al. Performance Testing of Open Laboratory Management System
Based on LoadRunner. In: Proc. IEEE First International Conference on
Instrumentation, Measurement, Computer, Communication and Control.
[S.l.: s.n.], 2011. p. 164–167. Cited in page 43.

YIN, R.; SAGE. Case Study Research: Design and Methods. SAGE Publications,
2003. (Applied Social Research Methods). ISBN 9780761925521. Disponível em:
<https://books.google.com.br/books?id=BWea_9ZGQMwC>. Cited in page 63.

ZHANG, L. et al. Design and implementation of cloud-based performance testing
system for web services. In: Proc. IEEE 6th International Conference on
Communications and Networking in China. [S.l.: s.n.], 2011. p. 875–880. Cited in
page 43.

ZHENG, P. et al. A detailed and real-time performance monitoring framework for
blockchain systems. In: Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice. New York, NY, USA:
ACM, 2018. (ICSE-SEIP ’18), p. 134–143. ISBN 978-1-4503-5659-6. Disponível em:
<http://doi.acm.org/10.1145/3183519.3183546>. Cited in page 34.

Zhou, J.; Zhou, B.; Li, S. Automated Model-Based Performance Testing for PaaS
Cloud Services. In: Proc. IEEE 38th International Computer Software and
Applications Conference Workshops. [S.l.: s.n.], 2014. p. 644–649. Cited in page
43.

https://books.google.com.br/books?id=BWea_9ZGQMwC
http://doi.acm.org/10.1145/3183519.3183546

93

Index
BPMN, 28

CNPQ, 25
CR, 19, 48

DdS, 63
DoS, 63

EC, 39

FR, 20, 58

IC, 39

LESSE, 25, 57, 60, 82

MBT, 19, 50

NFR, 20, 59

QoS, 34

RQ, 19, 38

SBS, 34
SE, 23
SLA, 35
SMS, 25, 37, 42, 44, 45, 54, 82
SPE, 31, 32
SUT, 20, 65, 66

UNIPAMPA, 57

, 66, 67
VU, 51, 67, 68, 74

WBS, 34

	a6c1b45b6ec204559d2e90730f54e9d5b440cc3f4068cf3e3d2c133f8974aa7d.pdf
	Title page

	a6c1b45b6ec204559d2e90730f54e9d5b440cc3f4068cf3e3d2c133f8974aa7d.pdf
	a6c1b45b6ec204559d2e90730f54e9d5b440cc3f4068cf3e3d2c133f8974aa7d.pdf
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of acronyms
	Table of Contents
	INTRODUCTION
	Motivation
	Objectives
	Contribution
	Organization

	METHODOLOGY
	Introduction
	Research Design
	Research Synthesis
	Chapter Summary

	BACKGROUND
	Software Testing
	Software Performance Engineering
	Performance Testing
	Performance Monitoring
	Performance Testing Tools
	Chapter Summary

	SYSTEMATIC MAPPING STUDY
	Protocol
	Scope and Objective
	Question Structure
	Research Question
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment Criteria
	Selection Process
	Data Extraction Strategy
	Data Analysis Strategy

	Systematic Mapping Study Results
	Taxonomy of Performance Testing Tools
	Input Approaches
	Capture Replay
	Model-Based Testing
	Scripting

	Load Generator
	Architecture
	Implementation

	Monitor
	Metrics
	Data Persistence

	Analysis
	Representation
	Result Analysis

	Threats to Validity
	Related Work - Systematic Mapping Review
	Chapter Summary

	PERFMOON'S DESIGN
	Initial Considerations
	Aspects of Analysis
	PerfMoon Requirements
	Functional Requirements
	Non-Functional Requirements

	Design Decisions
	Architecture
	Chapter Summary

	EXPERIMENTAL BENCHMARKING: PERFMOON'S
	Initial Considerations
	Experimental Benchmarking Design
	Collecting Data Evidence
	Test Environment
	SUT Environment
	Testbed Environment
	Environment Toolkit

	Experimental Benchmarking Analysis
	CPU Consumption
	Memory Consumption
	Disk I/O Consumption
	Network Throughput Comparison
	Response Time
	Deviation Results

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Chapter Summary

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Lessons Learned
	Efficient Systematic Mapping Protocol
	Testing Tools Classification
	Software Testing
	Performance Testing
	Performance Monitoring

	Publications
	Schedule

	Bibliography
	Index

