
Universidade Federal do Pampa
Claudio Davi de Souza

Role Identification Platform, An Automated
Tool To Identify Roles Inside Self-Organizing

Software Development Teams

Alegrete
2016

Acknowledgements

I would like to give a very special thanks to Marcelo Thielo, for helping me through
all of this work, for coping with my paranoia and motivating me during the process. None
of this would be even close to be achieved if it weren’t for him. Thank you for being there
to help me through the hardships, thank you for our good times, conversations, laughter
during our meetings, ideas and encouraging words, I cannot possibly thank you enough,
qatlho’.

Also thank you to all of my friends and colleagues that saw me disappear for days
working on this project and managed to get me out sometimes. For making me laugh
when I was stressed out and for still being friendly even when I was not being a good
friend.

“Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to."

(Alice in Wonderland - Lewis Carroll)

Resumo
A Engenharia de Software sofreu mudanças drásticas desde a introdução das metodolo-
gias ágeis. Gerentes de projeto tem que lidar com a escolha, seleção e manutenção dos
membros de um time de desenvolvimento ágil. Muitas dessas atividades requerem um
alto grau interpretativo dos dados demonstrados pelas ferramentas de gestão de projetos
de software como, por exemplo a identificação de papéis informais dentro de um time,
e se há discrepância entre atividades de um mesmo membro. Técnicas de aprendizado
de máquina podem auxiliar o gerente de projeto na tomada de decisão. Neste trabalho,
é demonstrada a necessidade de subsidiar o gerente de projeto com mais informações,
sendo apresentados também trabalhos já realizados na área e finalmente é apresentada
uma solução que utiliza agrupamento de dados para designar e identificar os papéis den-
tro de um time de desenvolvimento ágil auto-organizável. A solução desenvolvida utiliza
o algoritmo 𝑘-médias para identificar padrões de atividades entre os times de desen-
volvimento. A solução coleta dados do software de gerenciamento de projeto JIRA. Os
relatórios gerados pela solução desenvolvida podem auxiliar o gerente de projeto a tomar
melhores decisões em relação aos seus times.

Palavras-chave: Gerenciamento de Projetos, Aprendizado de Maquina, Clustering, Pa-
péis, Times de desenvolvimento de Software

Abstract
Software Engineering deeply changed with the widespread use of agile methodologies.
Project managers have to deal with the assignment and maintenance of an agile soft-
ware development team. Several of the manager activities require a very well established
interpretative skill to make better decisions based on the information provided by the
software management tool. As an example, we can cite the identification of informal
roles inside a software team and the discrepancy of expected activities between the team
members. Machine Learning techniques can help the project manager dealing with ev-
eryday decisions. In this work, we assess the need to support the project manager with
more information. Related works and solutions in the field are also reviewed and finally
a solution using clustering techniques to assign and identify the roles played inside a self-
organizing software development team using agile is presented. The solution developed
uses the 𝑘-means algorithm to identify activity patterns using data collected from the
JIRA Software. The reports issued by the solution can help the project manager make
better decision regarding his teams.

Key-words: Project Management, Machine Learning, Clustering, Roles, Software Teams

List of Figures

Figure 1 – Scrum Summary . 21
Figure 2 – Clustering Example . 24
Figure 3 – Facilitator roles in self organizing teams 28
Figure 4 – Diagram showing the proposed solution being used with Scrum 32
Figure 5 – Component diagram illustrating the architecture model designed for

the platform . 39
Figure 6 – Base domain model used to help visualize the relationship between classes 40
Figure 7 – Final user interface mockup . 41
Figure 8 – Final user report settings interface . 42
Figure 9 – Solved issue on JIRA interface . 43
Figure 10 – Clustering options . 43
Figure 11 – Report example with sample data . 44
Figure 12 – Report example with 2 clusters . 45
Figure 13 – Report example with 3 clusters . 46
Figure 14 – New visualization model proposal . 47

List of Tables

Table 1 – Approximate web developer profile . 33
Table 2 – User Stories . 38
Table 3 – Approximate tester profiles . 55
Table 4 – Approximate software engineer profiles 55

Contents

1 INTRODUCTION . 17
1.1 Motivation . 17
1.2 Objectives . 17
1.2.1 Goals . 18
1.3 Structure . 18

2 BACKGROUND . 19
2.1 Agile Methods . 19
2.1.1 Scrum . 20
2.1.1.1 Scrum Summary . 20
2.1.1.2 Scrum Team . 20
2.2 Software Project Management . 22
2.3 Machine Learning . 23
2.3.1 Data Clustering . 24
2.3.2 Principal Components Analysis . 25

3 RELATED WORK . 27

4 PROPOSED SOLUTION . 31
4.1 Presentation . 31
4.1.1 Design and Implementation . 31
4.2 Methodology . 32
4.2.1 Collect Evidence . 34
4.2.2 Analyzing Answers . 34

5 ROLE IDENTIFICATION PLATFORM 37
5.1 Design . 37
5.1.1 User Stories . 37
5.1.2 Architecture and Design . 37
5.1.2.1 Architecture . 37
5.1.2.2 Domain . 38
5.1.3 JIRA integration . 38
5.1.3.1 Notation . 39
5.1.4 User Experience . 41
5.2 Usage . 42
5.2.1 Installation . 42

5.2.2 Using JIRA with RIP . 42
5.2.3 Using RIP . 43
5.2.4 Result Analysis . 44
5.3 Future Works . 46

6 CONCLUSION . 49

BIBLIOGRAPHY . 51

APPENDIX 53

APPENDIX A – PROFILES COLLECTED 55

APPENDIX B – FORMATTED DATASET 57

APPENDIX C – SAMPLE DATASET 59

17

1 Introduction

1.1 Motivation
Agile Methodologies are the most common software development management pro-

cesses in use today. It introduces concepts like self-organizing teams, which brought along
one important aspect of project management, that can be described with one question:
"How can I assign roles and verify them in a software team?".

Most of the research being done in the field covers several soft-skills that must be
present on a team, but very few of them tackle the technical skill set required for each
role.

Several tools were developed to provide the Project Manager with all the crucial
information about the project being managed. Although, he/she still has to interpret it
and make decisions that may lead to the success or downfall of the whole endeavor. This
information is entirely subjective to the Project Manager interpretative skills and expe-
rience. Moreover, the current available tools for project management lack the continuous
verifications of the team’s roles and work. It may clarifies what is being done by whoever
is doing it, but the variation of activities through time is not something that the technique
is able to cover yet.

The decision making process inside a software development project is intense and
sometimes excruciating. Even professionals with many years of experience still need the
right information from the right tools to achieve the expected level of certainty, before
making a decision.

When a team is assigned to a project, the project manager has to understand
and trust that each role is being properly fulfilled. Software projects are mostly about
the teams than anything else. However, sometimes teams are hard to understand. They
are often composed by experts and ideally each one of them are at least equally, and
sometimes even more skilled than the manager at their jobs. How do we identify those
people? How do we know that what they are doing is exactly what they are supposed to
be doing?

1.2 Objectives
In this work, we intend to cover the relation between the technical skills and ac-

tivities of the team. By using information already made available by project management
tools, we intend to classify and make continuous verification of the roles played inside

18 Chapter 1. Introduction

a software development team. Therefore saving work hours and energy of the project
manager and reducing risks for the project.

1.2.1 Goals

∙ Identify the main roles inside an agile software development team.

∙ Identify the main tasks performed by each role.

∙ Design and implement a software capable to identify roles and assign team members
to them based on activities performed by its members.

∙ Use Machine Learning algorithms and tools to solve real world problems.

1.3 Structure
In Background (chapter 2) we will cover some of the basis of this work. In the

Agile section (section 2.1) we will make an overview about agile and will go in detail
about Scrum on subsection 2.1.1. We will also briefly go through project management in
section 2.2.

After that, we will see some background on general Machine Learning (section 2.3),
and later specialize on a machine learning technique called Data Clustering (subsec-
tion 2.3.1).

In chapter 3, we will review some of the works in related areas regarding Agile
Team composition, human resource allocation and machine learning for agile project
management.

Later in chapter 4 we will dive into the proposal of the solution for the problems
mentioned on the previous chapters. The section Methodology (section 4.2) includes the
methods used to collect evidence to support the development of the tool.

19

2 Background

In this chapter we will describe the background research on Agile Project Man-
agement, Team formation and Machine Learning.

2.1 Agile Methods

According to the agile manifesto, Agile methods focus on delivering value. Agile
projects often release their product with the most valuable features first and update it
over time. When the requirements change (which is almost inevitable) an agile team is
ready to change directions to match the current state of the requirements. Agile can, in
fact, be described as adaptive (SHORE, 2009).

Agile methods have 4 core principles:

∙ Individuals and interactions over processes and tools.

∙ Working software over comprehensive documentation.

∙ Customer collaboration over contract negotiation.

∙ Responding to change over following a plan

Before Agile, software development resembled an assembly line. The process was
completely documented, the requirements were only defined in one step and there was no
place for change. After that, the software was developed, tested and delivered. This pro-
cess could take months or even years. Although software developed under agile methods
can take several months to be built, the customer is always close to the development and
any changes can be dealt with almost immediately.

Agile methods brought testing closer to the coding phase, so now, there are regular
verifications of the working product. Risks became easier to take care of. Agile made
it clear because issues were found early in the project and could be dealt with costing
very little in relation to the alternative. Another thing is: Agile Methodologies use cross-
functional teams that are empowered to make decisions about the project they are working
on (DEEMER et al., 2010). This means that there are no definitive, unchanging roles,
and the combination of all competences in the team must meet the requirements of the
project.

This work will focus on an Agile Methodology known as Scrum.

20 Chapter 2. Background

2.1.1 Scrum

Scrum was introduced by Ken Schwabe and Jeff Sutherland in 1993 (SUTHER-
LAND et al., 2007). They identified that the methodologies used at the time were not
fully capable of dealing with project of great complexity and had difficult change manage-
ment procedures. After identifying the problem, Schwabe claimed that a new approach
was needed to help software development teams deal with changes and complex problems
(SCHWABE, 1997). Therefore his work introduces an iterative incremental framework
for software development. His methodology was not the first nor the last to introduce
self-organizing teams.

2.1.1.1 Scrum Summary

Scrum is an iterative incremental framework for software development. It sets
development cycles of no more than a month are usually called Sprints, and cannot be
extended.

At the beginning of each Sprint, usually some stakeholder with the Scrum team,
chooses from a list called backlog the features that are going to be developed during that
Sprint. Changing the items/features chosen for that sprint while it is running, is not
recommended.

At the end, the team reviews the developed features with the stakeholders, gathers
feedback and starts again with new features(DEEMER et al., 2010). A short summary
of the entire development process can be reviewed in figure 1.

2.1.1.2 Scrum Team

The Scrum team, as mentioned before, is often seen as self organizing. However
that does not mean that it is chaotic. According to (MUNDRA; MISRA; DHAWALE,
2013), backed by Schwabe (1997) and Deemer et al. (2010), the main roles are:

∙ Product Owner

∙ Scrum Master

∙ Scrum Team

Each of the roles mentioned above are abstracts at some extent, so they will be broken
down into tasks and activities below. The definitions are based on the works of Deemer
et al. (2010) and Sutherland et al. (2007).

2.1. Agile Methods 21

Figure 1 – Scrum Summary

Source: (DEEMER et al., 2010)

1. Product Owner: This role is one of the most important roles in Scrum, it manages
the product backlog and represents everyone with interests in the project. If the
team has any doubt about a requirement they should ask the Product Owner.

2. Scrum Master: The Scrum Master is responsible to make the Scrum process work
as intended, to maximize its benefits. He is also in charge of removing impedi-
ments with the team or technology that may delay or damage the fluidity of the
development process.

3. Scrum Team: The Scrum team may vary from company to company but is com-
monly agreed and also suggested by several different authors that the team should
not have more than 10 members including the Scrum Master and Product Owner.
The scrum team can be subdivided in smaller roles as seen below:

a) Developers: The developers are responsible for all the technical work needed to
complete and deliver any given requirement. They can be database specialists,
User Interface designers, engineers or any other specialization that can help
get the work done.

b) Testers: Testers are the only team members that have an specific task. They
are involved in the project from the beginning, working directly with the Prod-
uct Owner to create acceptance tests. They are also responsible for the inte-
gration tests and executing functional tests.

22 Chapter 2. Background

2.2 Software Project Management
The term "project" describes a study or a piece of work with defined activities that

has to be finished over a schedule and has an intended purpose. A software project is no
different. People have to be managed, work activities should be tracked and coordinated,
progress monitored and so on. All of that, of course, within the scope of a software
product (FAIRLAY, 2009).

According to the PMBOK (INSTITUTE, 2001) "Project management is the appli-
cation of knowledge, skills, tools, and techniques to project activities to meet the project
requirements. As agile was built towards change, project management for agile also is
iterative during the project’s life cycle.

The PMBOK also divides project management in a 5 Process Group, those are:

1. Initiating: contains all the processes needed to start a new project or phase.

2. Planning: contains the processes needed to establish the scope, effort, objectives
and actions to accomplish those objectives.

3. Executing: contains the description of the projects executed to accomplish the
project’s objectives and specifications.

4. Monitoring and Controlling: contains all the processes needed to follow, analyze
and organize the performance and progress of the project.

5. Closing: contains all the processes needed to close all the project related activities
and processes.

We are not going into further details on each of these categories for the sake of
shortness.

Managing a project requires a lot of work, including, but not limited to, addressing
the various needs, concerns and expectations of everyone involved, balancing the project’s
often competing constraints, such as: scope, quality, budget, schedule and so on (INSTI-
TUTE, 2001).

The project team, manager and team members, should be able to balance the
demands of the project to deliver a good successful project.

Different from projects in many other areas, software projects are changeable,
which means that the Project Manager also has to manage requirements in order to keep
things on track.

Managing software teams has been proven to be difficult. Software is a team-
oriented, intellect intensive work that requires solving problems creatively. Building teams

2.3. Machine Learning 23

that will be assigned to a project is the first of many challenges of a Project Manager
(FAIRLAY, 2009). Shore et al. (2007), says that any problem regarding software building
is, at some point, a people problem.

According to Stellman e Greene (2005) managing a project is all about the team,
and trust is one of the most important aspect that a project manager has to have towards
his team. Any manager has to rely on his team’s expertise to get the job done. However, a
manager should not try to micromanage his teams activities, because he/she will certainly
get overwhelmed and potentially lead the project to failure (STELLMAN; GREENE,
2005).

2.3 Machine Learning

The concept of machine learning comes from the psychological concept of learn-
ing. While animals, including humans, learn from experience, machines learn from data.
Several mathematical models have been developed to try to mimic biological learning pat-
terns. There is a myriad of such methods available, e.g. Artificial Neural Networks. Ma-
chine learning techniques are used to allow machines modifying or adapting their behavior
to become more accurate and flexible in their tasks the more they practice (MARSLAND,
2009).

As machines learn through algorithms and data, algorithms can become very com-
plex depending on the problem or even the size of the dataset. There are four types of
Machine Learning according to Marsland (2009) and Sammut (2011):

∙ Supervised Learning: supervised learning refers to any algorithm or computer pro-
gram that learns through an input and output. Both, input and expected output,
must be given for training purposes. After that, the algorithm can be used to make
predictions. A classic example of the use of supervised learning is an algorithm that
is trained to predict a property value on a given time frame.

∙ Unsupervised Learning: refers to any machine learning process that learn in the
absence of an identifiable output or any type of feedback. Unsupervised Learning
is usually used to identify clusters of similar inputs. The algorithm must be able to
find similarities itself, within the given inputs.

∙ Reinforcement Learning: reinforcement learning is the middle ground between Su-
pervised Learning and Unsupervised learning. It uses information saying whether
it is right or wrong, but does not say how to correct it. The learner has to try out
different techniques and strategies to see what works best for the given purpose.

24 Chapter 2. Background

∙ Evolutionary Learning: evolutionary learning comes from the biological evolution
point of view. The possible solutions are like individuals in a population and a func-
tion called fitness function determines the quality of each solution. Then evolution
takes place after the classification of the current population based on its interaction
with other individuals inside the population. One example of evolutionary learning
are genetic algorithms. Genetic algorithms are heavily inspired by neo-Darwinian
evolution theory and can perform most of its biological counterpart jobs such as:
reproduction, mutation, recombination and selection.

This work will use an unsupervised learning technique for the problem of Data
Clustering.

2.3.1 Data Clustering

Data Clustering aims at organizing data based on similarity patterns between the
instances inside the dataset. As seen in Figure 2 the input patterns are represented in (a)
and the expected cluster result is shown in (b).

Figure 2 – Clustering Example

Source: (JAIN; MURTY; FLYNN, 1999)

The inputs that are close together are classified as one cluster, and the ones that are
far apart are classified into their own cluster with similar counterparts. This classification
is often made by calculating the distance from the data point to the center of the cluster.
One of the simplest methods of clustering is known as 𝑘-means algorithm, it is based on
a distance measure between the points on the dataset and the mean average to calculate
the cluster centroids.

2.3. Machine Learning 25

The 𝑘-means algorithm uses a value of 𝑘 that represents the number of desired
clusters. After that it chooses 𝑘 positions in the map and assigns the cluster centroids
𝜇 to those positions. In order to use it, the distance from each datapoint to the cluster
centroid must be calculated. Then the datapoint is assigned to the nearest cluster center
to the datapoint. There is a step in the algorithm where each cluster centroids should be
moved to match the mean of the positions of the datapoints assigned to it. This process
must be repeated until the cluster center stop moving (JAIN; MURTY; FLYNN, 1999),
(MARSLAND, 2009).

To use it, we must compute the distance of the datapoint to each cluster center
and assign it to the cluster.

As said before, the 𝑘-means algorithm is the simplest and most common clustering
algorithm. There are several other algorithms with the same purpose that are more
suitable for specific tasks that will not be covered here.

We are using clustering because we want to classify our data into similar groups.
Since we have the activities of all the agile team members related to a specific project, we
can identify their roles based on the data provided by a project management software.

2.3.2 Principal Components Analysis

Principal Component Analysis (PCA) is a multivariate statistical technique that
analyses data on a table containing several linear dependent variables that are in general
inter-correlated. It extracts all the important information into a new set of possibly less
inter-correlated variables. Reducing the original number of columns into a predefined set
of variables also known as principal components (ABDI; WILLIAMS, 2010). In short,
according to Bro e Smilde (2014), PCA aims to identify and select the important infor-
mation from the data table, compress the data set; thus simplifying its description. For
this work, we are using PCA in order to transform a multidimensional matrix of data into
a 2D matrix for visualization.

27

3 Related Work

Several models were built to to solve the automatic allocation of human resources
on projects and it is still an issue. The works mentioned below show different approaches
to try to solve this very issue.

As an example, Chi e Chen (2009) developed an ontology after having identified
more than a hundred properties of individual subjects (e.g. project budget, skill needs,
etc). Their work aims at identifying project needs and finding the ’best fit’ for team
composition. In their work, they filtered to about 35 features or properties and created
an ontological representation. They later experimented with their ontological model and
showed that it can be used in real world scenarios if provided with a reliable source of
knowledge. However their work is not easily applied and requires deep technical knowledge
to be automated and used, serving more as a model than a solution.

Acuña e Juristo (2004) analyzed behavioral competencies, focusing on responsi-
bilities and capabilities required by each project. Their model looks into each role and
each personal profile available and tries to find the closest match between them. Some of
the characteristics of their work is the reliance of management entries of profiles, personal
and project roles and constant updates on each individual capability.

Another approach, taken by Hoda, Noble e Marshall (2010) tackles directly the
core of the agile development, the self organizing teams. They identified six informal roles
that act as facilitators and are present in every agile team. After identifying these roles,
they classified them as seen in Figure 3. Their work is limited by its aim, where they
focus mostly in interpersonal skills and ignore most technical abilities.

Colomo-Palacios et al. (2012) proposes a system called ReSySTER that is a hybrid
recommender system that aims at helping software project managers to better assign
resources to projects. It uses fuzzy logic and rough sets to evaluate resources and allocate
them in the most suitable project. Despite being very promising, the system requires a
technical administrator and its data is collected via empirical data provided by the project
manager. Moreover, the system needs input based on the project manager experience.
Therefore, its classification is mostly based on empirical data.

One of the most complete works found was ’A team formation model based on
knowledge and collaboration’ (WI et al., 2009). Their work evaluates employees knowledge
with a technique called ’Know-What, Know-How, Know-Who’ to select team members
and project leaders. They use quantitative analysis with fuzzy models on the candidates
publications to evaluate their knowledge, not only that but they also use their publications
as a source for the ’Know-Who’ step of the process. This last step evaluates not only their

28 Chapter 3. Related Work

Figure 3 – Facilitator roles in self organizing teams

(HODA; NOBLE; MARSHALL, 2010).

knowledge but also his peers mentioned in the publications, creating something similar
to a social network. Their work focuses on teams of scientists. However, it could be used
in the assignment of software teams. Although, it does not provide a model for constant
evaluation throughout the duration of the project at hand.

Ferreira, Souza e Silva (2010) utilizes genetic algorithms that consider the can-
didates technical and personal abilities alongside with their preference in regard to an
activity. Their model cover almost all the aspects of an optimal team formation, but
it does not provide any model or method for continuous evaluation. Their work con-
tributes with an objective function that calculates the total of the candidate’s skills plus
his preference for an specific task. The objective function is represented below:

𝐶 =
𝐻∑︁

ℎ=1

𝑁∑︁
𝑛=1

𝐴𝑘𝑛𝛽 +
𝑁∑︁

𝑛=1
𝑃𝑟𝑛𝛼 (3.1)

𝐶 is the optimal candidate considering that 𝐻 are the skills required for each activity and
ℎ is the skill index. 𝑁 is the number of candidates and 𝑛 is its index. 𝐴𝑘𝑛 is the skill ℎ of
the candidate 𝑛 required. 𝛽 is the relevance factor of the skill in relation to the activity.
𝑃𝑟𝑛 is the preference of the candidate 𝑛 for an activity and 𝛼 is the relevance factor of
the preference attribute.

Genetic Algorithms for Project Management by Chang, Christensen e Zhang
(2001) defines a series of algorithms that can create software teams with efficiency. How-
ever it relies in external forms of receiving knowledge. Classification, roles and tasks are
not defined by the authors, their tool seeks to be a way of using the project manager’s
knowledge in tasks and activities required to better assign a software team. As the scope
of this work goes, we are trying to define this tasks and roles specifically so this type of
tools can be used in many different projects and contexts.

29

Allocation and team maintenance is still a problem. A lot of research is being
done on the field. All the solutions and researches described above tackle one aspect of
the problem. Some of them, as an example Colomo-Palacios et al. (2012), developed a
tool using machine learning techniques to solve this problem. However, it is clear that
some aspects are being ignored, such as technical skills and continuous verification.

31

4 Proposed Solution

4.1 Presentation

As seen in Related Works (chapter 3), most of the tools and techniques used to
verify team compositions in agile teams lack accounting some of the technical aspects of
the team. When a project manager needs to make a report or needs to identify what his
teams are doing, he will also need to understand all the roles played by his team members
and check if the roles established are being properly executed.

Most of the work of a project manager consists of decision making. The more
information available before making a decision, the better. We intend to develop an
intelligent tool that will help the project manager.

4.1.1 Design and Implementation

We designed and developed a tool that analyses and classifies the team members
into groups of roles. The groups are created using clustering methods with information
provided by the team members themselves. With that, we can identify patterns and roles
inside the agile team. The default clustering algorithm used by the tool is the 𝑘-means.
To develop the tool, we used Java as our main programming language, PostgreSQL as
our relational database, the Weka library for machine learning algorithms and Maven to
handle dependencies. As of now, the interface was developed using JavaFX and FXML.

The main process for the proper use of the tool is shown on Figure 4.

The cycle begins with a new Sprint (1). The development team uses the software
management tool as they are used to (2). The proposed solution takes data from the
team’s input (3) and applies machine learning algorithms to create profiles based on the
team members activities and assign the members to them (4). After that, the manager
can see the tool’s report, which will deliver information about the team members activities
as well as groups of similar activities and members, and use it to support his views during
the sprint review.

The tool’s report will contain information about the profiles created and their
members. The information provided should help the manager to identify problems with
more accuracy and also predict some development and problem trends. This way, the
project manager would have the necessary information to help his team to achieve better
results in the planned time.

32 Chapter 4. Proposed Solution

Figure 4 – Diagram showing the proposed solution being used with Scrum

4.2 Methodology
First, we tried to find academic journals and books that defined the basic profiles

needed on a software development team. Unfortunately, as agile development relies on
teams expertise and have no defined roles, we could not find suitable answers for our needs.
As a result of that, we could not find, on the literature, the technical skills required for
each role.

After that, we decided to create our own sample model for representing individuals
inside a software development team. Our model was created using information collected
from big tech companies websites. From that information we created feature vectors with
the most common activities. For each profile, we selected job offers randomly and from
the job requirements we collected the activities and knowledge required (features). Later,
after creating the list of features, we decided to use booleans to represent the presence
of the skill on each particular job offer. Continuous normalized values could also be
considered.

WDA = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
TPB = [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]

Above we can see the feature vector for an approximate profile of a Web developer from
company A (WDA), and one vector for a Tester Profile according to company’s B website

4.2. Methodology 33

(TPB). To improve readiness, we created a table with the vectors and its corresponding
features. The vectors are represented by the columns and the rows are the features that
each of the profile needs.

Table 1 – Approximate web developer profile collected from 4 different companies websites

Web Developer Profile
Company/
Features A B C D

Plan (Design) 1 1 0 0
Code 1 1 1 1
Unit Test 1 1 1 1
Integration Test 1 0 1 0
Unix 1 0 1 0
Prototype 1 1 0 1
Refactor Old Code 0 0 1 0
UI Design 0 1 0 1
Database 0 1 0 1
Test Automation 0 0 0 0
Test in production 0 0 0 0
Debug 0 0 1 0

Considering Table 1, we can for example, compare and sum the different values in
each feature, known as Hamming Distance (BOOKSTEIN; KULYUKIN; RAITA, 2002),
to calculate the difference between the profiles. In the case of sample profiles A and B,
from Table 1, the Hamming Distance of the profile A in relation to B is equal to 4.

Other profiles created using the same methodology were Tester and Software En-
gineer. Those two tables are available on Appendix A (Tables 3 and 4). It is important to
notice that all the profiles created use the same activities. We use that so we can compare
them against each other. The dataset created can be found in Appendix B.

The results of the clustering using the the 𝑘-means algorithm with 3 clusters were
initially proven inconclusive due to the size of the data set. To obtain an accurate solution,
we would need to get more data samples for each of the profiles as well as identify more
activities performed by each of them. Although, this experiment was very useful due to
the fact that we have experimented with different techniques and algorithms that were,
at the end, used on our solution.

After using and trying different techniques with WEKA, we decided to identify
the roles and tasks by asking members of several different worldwide tech companies. The
analysis of the answers are on subsection 4.2.2.

34 Chapter 4. Proposed Solution

4.2.1 Collect Evidence

We created a set of questions to assess the need of the proposed tool. Such ques-
tions are listed below. They were sent to 15 employees from 3 different worldwide tech
companies.

1. What has been your main role, considering the last five years?

2. Regarding your experience in the area of software engineering, what are the most
strategic profiles for building a development team? For example: Experienced/Full
Coder, Experienced/Full Test Engineer, Experienced Tester, UX Designer, DB Ana-
lyst, Project Manager, Technical Leader and any others you might consider relevant.

3. Related to your previous answer, could you list about 5 of the main activities you
consider fundamental for each of the profiles?

4. In your opinion, when choosing a developer for a software project (low/medium/high
complexity), what is the preferred balance between technical level (knowledge and/or
learning capabilities) and interpersonal skills?

5. Generally speaking, in software development teams, what is the highest acceptable
knowledge/skill gap among members with similar assignments? For example, when
is it acceptable to have an expert engineer performing the same task as a beginner?
What could be some effects of such disparity, in your opinion?

6. According to your experience, what are the risks involved (in the short and long
term) regarding the build of a software development team with disparities between
the member’s skills and the wished team profiles? Please consider low and medium
levels of disparity.

7. In a software development, how do you see the engagement of project members in
tasks that do not directly relate to their profiles/skills/knowledge? For example,
what would be the risk of a technical leader being deeply involved in management
activities or a test engineer writing production code?

4.2.2 Analyzing Answers

With the answers to the questions shown in section 4.2.1, we can identify if such
a tool is needed and how it could be designed. For that, we will analyze each individual
answer and compare with all the other answers on the same topic. Only general agreement
on any given topic will be considered for this work.

At the start of this writing we received back a few answers.

4.2. Methodology 35

The answers obtained were from professionals with at least 5 years of experience.
Covering a few areas, like research, development, technical leadership and management.

Most of the respondents seem to agree that a team of software engineers and
developers is, in fact, the most acceptable team formation. A software engineer affirms
that too many different roles in a software team tend to fail and agrees with 3 other
interviewees. Most of them said that different levels of engineers performing all the tasks
required for the software product is ideal.

However, a software developer and technical lead, stated that if someone was
hired to do one specific task, and ends up doing something different for a long time
it could create problems, such as delays, overloading the other with their activities, or
even doing something already being done or completed, thus creating a potential risk.
Another respondent agrees saying that the variation of activities if performed too often,
is never a good thing. It can lead to delays or even compromise the success of the project,
other respondent states that this variation may not be a big problem if it only happen
sometimes.

The most common roles cited by our respondents were:

∙ Developer: with main activities like, develop, design, test, code, fix bugs and re-
search.

∙ Tester: design tests, design and implement automated tests, create test plans.

∙ Software Engineer: has most of the same activities as a full developer and also
gather requirements, review, document and deploy

∙ UX Designer: implement, research and prototype.

On a side note, it is interesting to notice how all our interviewees mentioned, at
some point, mentoring. Which means that even when a development team has a great
level of skill disparity, spending time to teach other engineers is not only common but
very encouraged.

With all this evidence, it is clear that specific roles are very rare on real world
scenarios. This leads to two different conclusions. The first one is that it is hard to
define roles in a software team; and software engineers and developers must have the
most diverse skill set as possible. The second one is that there is still a need to proper
define this roles. As seen on the research done to create the data set, companies still look
for specific profiles to fill holes on their teams. Furthermore, the bigger team of generalist
developers and software engineers, the harder it gets to identify specific activities and
characteristics of each individual.

36 Chapter 4. Proposed Solution

It is important to remember that SCRUM (seen in subsection 2.1.1) provides some
roles but they are managerial and interpersonal roles, relying on the capabilities of the
teams self-organization. We are looking for a way to identify roles inside this sub-groups
of activities after the self-organization process.

The solution developed by the authors identifies team members and roles by groups
of similar activities and tasks. With this information, the project manager has the au-
thority and data to give the proper feedback for each group of team members.

37

5 Role Identification Platform

RIP (Role Identification Platform) uses data collected from the Atlassian JIRA
software and applies machine learning algorithms to the data obtained. The objective is
to identify different roles played and activity patterns inside the software development
team.

5.1 Design

In this section, the design steps of the software will be explored. At first, we
started developing the software without any established process. However, during the
development of RIP we felt the need to establish some practices to organize the work
and activities needed to accomplish our goals. After a month of development, we started
using Test Driven Development (TDD) alongside with eXtreme Programming (XP). This
decision, allowed us to test, implement and prototype easier with very small extra work.
Our sprints lasted about a week, where all the progress done was presented and evaluated.

In subsection 5.1.1 we will look through some of the user stories that were written
to guide de development process. In subsection 5.1.2 the software architecture chosen
will be presented and the most important design documents will be shown. Later at
subsection 5.1.3 we will go trough a brief overview of how the software management tool
was integrated with our platform.

5.1.1 User Stories

Following our objectives already stated in section 1.2 we wrote user stories that
would later guide the development of the tool. The Table 2, shows the user stories and
their statuses.

All of the stories were broken into very small activities that could not last more
than a day’s work. Some of them, were not approved at first for not meeting all the
requirements and we had to start over.

5.1.2 Architecture and Design

5.1.2.1 Architecture

The architectural model (Figure 5) of the RIP platform it is a slightly modified
version of the common Model View Controller (MVC) architectural pattern. We have

38 Chapter 5. Role Identification Platform

Table 2 – User Stories
User Stories

ID Description Priority Status

US 01 As a Project Manager I want to see in which group
each of my team members is a part of. HIGH DONE

US 02 As a Team Member, I want to set my own activities
according to my work. MEDIUM DONE

US 03 As an user, I believe that all my data should come
from my own JIRA Server instance. HIGH DONE

US 04 As a Project Manager I want to be able to tinker
the settings of my clustering algorithm. LOW DONE

US 05 As an user, I want to access past reports made by
me. MEDIUM DONE

US 06 As a Project Manager, I want to choose the
clustering algorithm. LOW DONE

US 07 As a Team Member, I want to create new activities
at any time. MEDIUM DONE

chosen to use the Repository design pattern that uses Data Access Objects (DAO) to
handle with the database information writing and retrieval.

We also added external Weka Libraries to our project in order to get stable and
well tested machine learning algorithms.

For the View Component, we are using JAVAFX with FXML. We can later extend
the FXML and stylize it with Cascading Style Sheets (CSS) in order to suit clients needs
without having to redesign the whole application.

5.1.2.2 Domain

After a thorough evaluation of the User Stories, objectives and JIRA (our chosen
software management application) architecture, we found a few entities that could be part
of our model.

From those we filtered and produced a very high level domain model seen in
Figure 6 that demonstrates the relationship between classes.

5.1.3 JIRA integration

After studying several software management tools, we decided to have JIRA as
our default application. The main reason is that we already had a server instance li-
cense. Other reasons include: its vast library of resources for developers available on their
website, well documented software and being commonly used for agile management and
facilitated by its plug-ins and built-in functionalities.

5.1. Design 39

Figure 5 – Component diagram illustrating the architecture model designed for the plat-
form

5.1.3.1 Notation

As a result of the study done on JIRA, we decided to create a notation that could
be used to identify the activities that were done to finish each Issue. The process goes as
follows:

Before resolving a issue, the team member tagged as the assignee writes on the
description what he has to say as normal. After that, he can write the activities completed
and time that was spent in each activity. The following notation needs to be used in order
to be recognized by RIP.

40 Chapter 5. Role Identification Platform

Figure 6 – Base domain model used to help visualize the relationship between classes

An activity can be created at anytime during the development process. It will be
added to the current list of activities and considered when a report is created, granted that
all the rules of the notation were obeyed and the issue has all the necessary information
(assignee and resolution "Done").

@actvity:TimeSpent

e.g.

Normal description of the solution used to solve issue
@develop:3
@test:1
@design:2

The example shown will be recognized by RIP as Developed for 3 hours, designed
for 2 and tested for 1 hour. Each activity must start in a new line with ’@’ (at) symbol
in order to be recognized as an activity by RIP, when the name of the activity is finished
the user has to use ’:’ (colon), to be recognized as the end of an activity and finally, the
number of hours without spaces just after the colon. It is important to end each activity
with a new line, otherwise errors may occur.

Resolving the issue will add the issue to a list that will be later processed.

5.1. Design 41

Figure 7 – Final user interface mockup

RIP will run through all the issues that are assigned to each team member and
sum all the matching activities. Later this data will be synchronized with all the other
team members so they all have orthogonal vectors that can be compared using machine
learning algorithms.

More detail about the usage of the tool can be found at section 5.2.

5.1.4 User Experience

After the planning process, the development of the platform was started. Using
mock-up tools and a very iterative process, the following images represent our prototypes
that were later implemented (Figure 7 and Figure 8). The ’options’ menu offers the
possibility to load the data from the JIRA Server instance previously installed, offers a
"refresh" function to reload the data presented on the interface and a quit option to close
the application. You can also find information about the application clicking on "About".

42 Chapter 5. Role Identification Platform

Figure 8 – Final user report settings interface

5.2 Usage

5.2.1 Installation

As our application reads data from a third party software, we have to run a few
steps to install it and execute it. All the installation steps are well documented and can
be seen in a file named config.file inside the DevOps folder, Just outside the main src
folder. We use Maven to build our project, therefore it should not be a problem to build
the .jar file and other extensions needed. As an enhancement to the project for future
updates, that it is not on our original scope and schedule, a developer may write a script
that shall skip the DevOps phase thus creating a fully automatic installation process.

5.2.2 Using JIRA with RIP

After the setup process is done, the development team should use JIRA as it would
normally use. Creating issues and assigning them to others. After solving an Issue, it
should be marked as "Done" and the description must contain the amount of hours plus
the activities needed to solve that issue. The correct format for that input can be seen in
(subsubsection 5.1.3.1). A JIRA Issue example can be seen in Figure 9; the issue shown
on the mentioned figure, contains all the characteristics needed for RIP to recognize it as a
valid entry, which means (a)Its status is DONE. (b) Its description contains the activities
following the RIP notation rules. (c) It contains an assignee. What RIP will do is: (a)
read all Issues and load all that have the DONE resolution. (b) Create a list of features
based on the issue description and (c) assign all read features to the assignee.

Later this data will be processed and reports can be generated based on the infor-
mation provided by the team members.

Side Note: It is important to convince the development team to adopt a standard

5.2. Usage 43

Figure 9 – Solved issue on JIRA interface

naming pattern when creating and adding activities to their assigned issues.

5.2.3 Using RIP

After using JIRA for certain period of time, the Project manager can then use RIP
to obtain information about his team. To check if the team data has been successfully
loaded, he can click on the side menu and see if all the team members names are listed.

The user later can create new reports (after loading JIRA data), clicking on "New
Report". You can see the options in Figure 10.

The options window gives the user an advantage to choose which algorithm he

Figure 10 – Clustering options

44 Chapter 5. Role Identification Platform

wants to use, and the number of clusters he needs to identify.

RIP uses one machine learning algorithm: 𝑘-means already explained in subsec-
tion 2.3.1. However, it is possible to extend the code base if more algorithms are necessary.

Another option, "𝑁o of Clusters", comes with a default value of 2. This means
that if the project manager wants to identify two different groups of team members with
related activities, he should keep the default settings on. However, he is free to choose
how many groups he wants to identify just by tinkering with this value.

It is important to have in mind that the number of clusters has a major influence
on how the data can be interpreted; Too many of them, and the user will get a very sparse
set of instances that may or may not reflect the team’s reality. One might think that more
clusters would mean a more specific group of team members with related activities, which
is not true. There is no "rule of thumb" for cluster number, for the use of this tool, we
recommend that the user choose a number that he thinks is most fitting for his team, e.g.:
there are 3 different sets of activities going on that the same team is involved, therefore,
the user can set the number of cluster to 3 in order to classify the members accordingly.

5.2.4 Result Analysis

Figure 11 is a report generated by RIP algorithms after the settings seen previously.
For this report, we have used stochastic algorithms to create 6 team members and chosen
to classify them into two different clusters using the platform.

Figure 11 – Report example with sample data

5.2. Usage 45

Reading the report is quite simple. The red squares are the cluster centroids.
Inside our context, the centroid would be the "average" team member in any particular
group of related team members. Looking at the report, on the top right corner we have
a centroid and two instances related to it, "Roberto" and "Leticia".

Looking carefully, we can notice two particular instances that are far from their
centroid, "Fernando" and "Pedro". We can see by looking at the position of the centroids,
that they belong to the left centroid. However, as they are far away, the user may
want to personally check their activities, as they are not matching none of the patterns
established by the group. Contextualizing this situation, we may, for example, have a
group of developers and testers on the same team. These leads to some questions about
the activities that Fernando and Pedro are actually doing, because we can clearly see on
the report that they do not belong to any of the existent groups.

As we already stated, the number of clusters centroids chosen is crucial for having
a good representation of the reality of the team. We can see in Figure 12 that two clusters
does not represent the actual state of the team. However, if the same dataset is applied
again with three clusters set, we have a much more accurate report, seen in Figure 13.

It is possible that sometimes the user cannot see one of the points in the chart.
That happens because the point is probably the only instance of a different cluster,
meaning that the centroid is positioned directly above the datapoint. To avoid these
inconveniences one should select a different number of clusters to better represent their
dataset.

Figure 12 – Report example with 2 clusters

46 Chapter 5. Role Identification Platform

Figure 13 – Report example with 3 clusters

5.3 Future Works

As seen in previous sections, RIP can be used to identify groups of related team
members based on their activities. We achieved our goal in building a functional prototype
for the task at hand, although there is still room for improvement.

We believe that RIP can have more machine learning algorithms for the user to
choose. The architecture used to develop the tool allows that. This is one of the works
that can improve our platform, thus improving the analysis that can be performed by the
user.

Another thing that can be done, is to rethink the design. As a prototype, we
aimed for simplicity. Our platform was originally built using FXML, which means that
it can be extended using CSS. Thus its design can be improved without the use of extra
software and frameworks.

Moreover, we intended to build tour platform for data visualization and analysis,
therefore new visualization techniques can be also a good idea for extending the software.
We have created a new visualization model to be implemented, it can be seen in Figure 14.
With this new visualization, we can see a centroid axis and a distance axis. Each instance
is correlated to its centroid vertically, and the distance can easily be seen, this also shows
the distance between each centroid on the horizontal axis. A correlation between centroids
and instances from another clusters can also be inferred.

Some code refactoring could also be done. We have legacy code from our earlier

5.3. Future Works 47

Figure 14 – New visualization model proposal

models that can be translated to a more legible and flexible code, some methods can be
moved to "helper" classes because they are repeated throughout the code.

We believe that RIP could have a binary option for those whom does not want to
deal with source code. For that to be possible, we have to extend the platform creating a
JIRA Login form from inside our platform. Moreover, a script should also be written to
create the database directly on launch, with all the dependencies installed.

Finally, due to the lack of real data, we have not validated our model in a real
case scenario. All we have done so far was using empirical data, based on heuristics and
experience to check the consistency of all answers obtained. We strongly recommend a
careful and thorough evaluation of RIP within a company or real software development
team.

49

6 Conclusion

We have seen that despite the fact that agile methodologies are well established
and widely used, they still have some issues, as in the case of human resources man-
agement. In many software development team, teams are assigned to complete a task
and are expected to self organize in order to deliver the desired results. This leads to a
management problem, where the manager has little to no data on how the team members
are individually performing.

After interviewing several professionals, we concluded that it is very hard to define
roles inside software development teams. So we now have a manager and development
teams that have only a general idea of how everything is working. To solve this issue,
we developed a platform that can help the project manager to identify roles and activity
patterns inside the development team.

RIP currently is a platform designed to help project managers identifying pat-
terns on their teams. RIP uses a clustering algorithm called 𝑘-means to group together
members with similar activity patterns. The platform uses JIRA, a third party software
management application, as its main source of data.

After processing the data, RIP will show a report containing information about
the team composition. Thus, supplying the project manager with more information to
back his decisions up.

As stated on the beginning of this work, our goal was to design and implement
a tool that is capable to identify the main roles and team members related to it using
machine learning algorithms. With RIP, have all that with the click of a button.

There is still room for improvement. However, we consider the project as a success,
since roles can be identified through patterns of activities that development teams tend
to create, and with our solution, can now be visualized.

Some mistakes were made at the beginning, like not using software processes and
reactive planning; those were corrected during the process. We expect that our tool can
be useful outside the academia and intend to keep improving it.

51

Bibliography

ABDI, H.; WILLIAMS, L. J. Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, Wiley Online Library, v. 2, n. 4, p. 433–459, 2010.
Cited on page 25.

ACUÑA, S. T.; JURISTO, N. Assigning people to roles in software projects. Software:
Practice and Experience, Wiley Online Library, v. 34, n. 7, p. 675–696, 2004. Cited on
page 27.

BOOKSTEIN, A.; KULYUKIN, V. A.; RAITA, T. Generalized hamming distance.
Information Retrieval, Springer, v. 5, n. 4, p. 353–375, 2002. Cited on page 33.

BRO, R.; SMILDE, A. K. Principal component analysis. Analytical Methods, Royal
Society of Chemistry, v. 6, n. 9, p. 2812–2831, 2014. Cited on page 25.

CHANG, C. K.; CHRISTENSEN, M. J.; ZHANG, T. Genetic algorithms for project
management. Annals of Software Engineering, Springer, v. 11, n. 1, p. 107–139, 2001.
Cited on page 28.

CHI, Y.-L.; CHEN, C.-Y. Project teaming: Knowledge-intensive design for composing
team members. Expert Systems with Applications, Elsevier, v. 36, n. 5, p. 9479–9487,
2009. Cited on page 27.

COLOMO-PALACIOS, R. et al. Resyster: A hybrid recommender system for scrum
team roles based on fuzzy and rough sets. International Journal of Applied Mathematics
and Computer Science, v. 22, n. 4, p. 801–816, 2012. Cited 2 times on pages 27 and 29.

DEEMER, P. et al. THE SCRUM PRIMER. [S.l.: s.n.], 2010. Cited 3 times on pages
19, 20, and 21.

FAIRLAY, R. E. D. Managing And Leading Software Projects. [S.l.]: IEE Computer
Society, 2009. Cited 2 times on pages 22 and 23.

FERREIRA, F. d. S.; SOUZA, J.; SILVA, J. S. d. V. Formaçao de grupos de trabalho
com algoritmo genético. III Congresso Tecnológico da InfoBrasil, p. 1–5, 2010. Cited on
page 28.

HODA, R.; NOBLE, J.; MARSHALL, S. Organizing self-organizing teams. p. 285–294,
2010. Cited 2 times on pages 27 and 28.

INSTITUTE, P. M. Project management body of knowledge (pmbok R○ guide). In: .
[S.l.]: Project Management Institute, 2001. Cited on page 22.

JAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data Clustering: A Review. [S.l.: s.n.],
1999. Cited 2 times on pages 24 and 25.

MARSLAND, S. Machine Learning An Algorithmic Perspective. [S.l.]: Chapman
Hall/CRC, Taylor Francis Group, 2009. Cited 2 times on pages 23 and 25.

52 Bibliography

MUNDRA, A.; MISRA, S.; DHAWALE, C. A. Practical scrum-scrum team: Way to
produce successful and quality software. p. 119–123, 2013. Cited on page 20.

SAMMUT, G. I. W. C. Encyclopedia of Machine Learning. [S.l.]: Springer, 2011. Cited
on page 23.

SCHWABE, K. Scrum Development Process. [S.l.]: Springer, 1997. Cited on page 20.

SHORE, J. et al. The art of agile development. [S.l.]: " O’Reilly Media, Inc.", 2007.
Cited on page 23.

SHORE, S. W. J. The Art of Agile Development. [S.l.]: O’Reilly, 2009. Cited on page
19.

STELLMAN, A.; GREENE, J. Applied software project management. [S.l.]: " O’Reilly
Media, Inc.", 2005. Cited on page 23.

SUTHERLAND, J. et al. The scrum papers: Nuts, bolts, and origins of an agile process.
Citeseer, 2007. Cited on page 20.

WI, H. et al. A team formation model based on knowledge and collaboration. Expert
Systems with Applications, Elsevier, v. 36, n. 5, p. 9121–9134, 2009. Cited on page 27.

Appendix

55

APPENDIX A – Profiles Collected

Table 3 – Approximate tester profiles collected from 4 different companies websites

Tester Profile
Company/
Features A B C D

Plan (Design) 0 0 0 0
Code 1 1 1 1
Unit Test 1 1 1 0
Integration Test 1 1 1 1
Unix 0 0 1 0
Prototype 0 0 0 0
Refactor Old Code 0 0 0 1
UI Design 0 0 0 0
Database 0 1 0 1
Test Automation 1 1 1 1
Test in production 1 1 0 0
Debug 1 1 1 1

Table 4 – Approximate software engineer profiles collected from 3 different tech companies
websites

Software Engineer Profile
Company/
Features A B C

Plan (Design) 1 1 1
Code 1 1 1
Unit Test 1 0 0
Integration Test 0 0 0
Unix 0 0 1
Prototype 0 0 0
Refactor Old Code 0 0 0
UI Design 0 1 1
Database 1 1 1
Test Automation 0 0 0
Test in production 0 0 0
Debug 0 0 0

57

APPENDIX B – Formatted Dataset

% 1. Title: Davi Sample DataSet
%
% 2. Sources: Claudio Souza

@RELATION Work
@ATTRIBUTE plan REAL
@ATTRIBUTE code REAL
@ATTRIBUTE unitTest REAL
@ATTRIBUTE ItegTest REAL
@ATTRIBUTE Unix REAL
@ATTRIBUTE Prot REAL
@ATTRIBUTE Refact REAL
@ATTRIBUTE UIDes REAL
@ATTRIBUTE Datab REAL
@ATTRIBUTE autTest REAL
@ATTRIBUTE ProdTest REAL
@ATTRIBUTE debug REAL
@ATTRIBUTE class {developer, tester, engineer}
@DATA
1,1,1,1,1,1,0,0,0,0,0,0, developer
0,1,1,1,1,0,1,0,0,0,0,1, developer
1,1,1,0,0,1,0,1,1,0,0,0, developer
0,1,1,0,0,1,0,1,1,0,0,0, developer
0,1,1,1,0,0,0,0,0,1,1,1, tester
0,1,1,1,1,0,0,0,0,1,0,1, tester
0,1,1,1,0,0,0,0,1,1,1,1, tester
0,1,0,1,0,0,1,0,1,1,0,1, tester
1,1,1,0,0,0,0,0,1,0,0,0, engineer
1,1,0,0,1,0,0,1,1,0,0,0, engineer
1,1,0,0,0,0,0,0,1,0,0,0, engineer

59

APPENDIX C – Sample Dataset

%Author: Claudio Davi Souza
%Role Identification Platform Dataset

@RELATION features

@ATTRIBUTE code NUMERIC
@ATTRIBUTE model NUMERIC
@ATTRIBUTE plan NUMERIC
@ATTRIBUTE document NUMERIC
@ATTRIBUTE prototype NUMERIC
@ATTRIBUTE debug NUMERIC
@ATTRIBUTE test NUMERIC
@ATTRIBUTE design NUMERIC
@ATTRIBUTE layout NUMERIC
@ATTRIBUTE reference NUMERIC
@ATTRIBUTE refactor NUMERIC
@ATTRIBUTE report NUMERIC
@ATTRIBUTE decision NUMERIC
@ATTRIBUTE manage NUMERIC
@ATTRIBUTE implement NUMERIC

@DATA
0, 0, 0, 0, 0, 5, 1, 4, 3, 5, 0, 0, 0, 0, 0
5, 5, 5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 4, 2, 2, 4, 0, 0, 0, 0, 0
4, 4, 5, 4, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 3, 4, 5, 2
0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 4, 1, 5, 3, 5

